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Abstract: A graph labeling is the task of integers, generally spoken to by whole numbers, to the edges
or vertices, or both of a graph. Formally, given a graph G = (V, E) a vertex labeling is a capacity
from V to an arrangement of integers. A graph with such a capacity characterized is known as
a vertex-labeled graph. Similarly, an edge labeling is an element of E to an arrangement of labels.
For this situation, the graph is called an edge-labeled graph. We examine an edge irregular reflexive
k-labeling for the disjoint association of the cycle related graphs and decide the correct estimation of
the reflexive edge strength for the disjoint association of s isomorphic duplicates of the cycle related
graphs to be specific Generalized Peterson graphs.
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1. Introduction.

All graphs considered in this paper are basic, limited and undirected. Chartrand et al. [1]
proposed the accompanying issue. Appoint a positive whole number mark from the set {1, 2, ...k} to
the edges of a basic associated graph of request no less than three in such a path, to the point that the
graph winds up unpredictable, i.e., the weight (mark entirety) at every vertex is particular. What is the
base estimation of the biggest mark k over all such sporadic assignments? This parameter of the graph
G is notable as the irregularity strength of the graph G. A phenomenal review on the anomaly quality
is given by Lahel in [2]. For ongoing outcomes, see the papers by Amar and Togni in [3], Dimitz et al.
in [4], Gyarfas in [5] and Nierhoff in [6].

Propelled by these papers, an edge irregular k-labeling as a vertex naming Γ : V(G)→ {1, 2, ..., k}
was characterized, with the end goal that for each two unique edges gq and g

′
q
′

there is wΓ(gq) 6=
wΓ(g

′
q
′
), where the heaviness of an edge gq ∈ E(G) is wΓ(gq) = Γ(g) + Γ(q). The base k for which

the graph G has an edge irregular k-labeling is called the edge irregularity strength of the graph G,
indicated by es(G). In [7], the limits of the parameters es(G) are evaluated. Furthermore, the correct
estimation of the edge irregularity strength for a few groups of graphs is resolved; in particular for
stars, twofold stars and also the cartesian product of two paths.
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Baca et al. [8], characterized the total labeling Γ : V(G) ∪ E(G) → {1, 2, ..., k} to be an edge
irregular total k-labeling of the graph G if for each two distinctive edge gq and g

′
q
′

of G one has
wΓ(gq) = Γ(g) + Γ(gq) + Γ(q) 6= wΓ(g

′
q
′
) = Γ(g

′
) + Γ(g

′
q
′
) + Γ(q

′
). The total edge irregularity

strength, tes(G), is characterized as the base k for which G has an edge edge irregular total k-labeling.
Evaluations of these parameters are acquired, which gives the exact estimations of the total irregularity
strength for paths, cycles, stars, and haggles diagrams. Additionally, results on the aggregate
inconsistency quality can be found in [9,10].

The fundamental issue for the sporadic marking emerges from a thought of graphs with distinct
degree. In a simple graph, it is not conceivable to develop a graph in which each vertex has a novel
degree; be that as it may, this is conceivable in multigraphs (graphs in which we permit different edges
between the contiguous vertices). The inquiry at that point moved toward becoming: “what is the
smallest number of parallel edges between two vertices required to guarantee that the graph shows
vertex irregularity?” This issue is proportional to the marking issue as depicted toward the start of
this area.

Ryan et al. [11] proclaimed that the vertex labels ought to speak to circles at the vertex. The result
was two-overlap; first, every vertex name was required to be a considerable number, since each circle
added two to the vertex degree; and second, not at all like in all out unpredictable marking, the mark
0 was allowed to speak to a loopless vertex. Edges continued to be marked by whole numbers from
one to k.

Thus, they defined labellings Γe : E(G)→ {1, 2, ..., ke} and Γv : V(G)→ {0, 2, ..., 2kv}, and then,
labeling Γ is a total k-labeling of G defined such that Γ(x) = Γv(r) if r ∈ V(G) and Γ(r) = Γe(r) if
r ∈ E(G), where k = max{ke, 2kv}.

The total k-labeling Γ is called an edge irregular reflexive k-labeling of the graph G if for every
two different edges gq and g

′
q
′

of G, one has wt(gq) = Γv(g) + Γe(gq) + Γv(q) 6= wt(g
′
q
′
) = Γv(g

′
) +

Γe(g
′
q
′
) + Γv(q

′
). The smallest value of k for which such labeling exists is called the reflexive edge

strength of the graph G and is denoted by res(G). For recent results see [12,13].
The after effect of this variety was not generally shown in the naming quality, however, it produced

some essential results:
tes(K5) = 5 whereas res(K5) = 4

The impact of this change was quick in the accompanying conjecture where we could evacuate
the trouble, for some exemptions see [14].

Conjecture 1. Any graph G with maximum degree ∆(G) other than K5 satisfies

tes(G) = max
{⌈
|E(G)|+ 2

3

⌉
,
⌈

∆ + 1
2

⌉}
.

Conjecture 1 has been verified for complete graphs and complete bipartite graphs [15,16], for the
grid [17], for hexagonal grid graphs [18], for toroidal grid [19], for generalized prism [20], for categorical
product of two cycles [21], for strong product of cycles and paths [22], for zigzag graphs [23], for star
in [24], for the categorical product of cycle and path in [25], for convex polytopes in [26] and for the
strong product of two paths in [27].

In terms of res(G), Baca et al. [28] purpose the following conjecture and prove Theorem 1.

Conjecture 2. Any graph G with maximum degree ∆(G) satisfies

res(G) = max
{⌈
|E(G)|

3
+ r
⌉

,
⌊

∆ + 2
2

⌋}
,

where r = 1 for |E(G)| ≡ 2, 3(mod 6), and zero otherwise.
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Conjecture 2 has been verified for the disjoint union of Gear graphs and Prism graphs in [11] and
for Cycle graph in [28].

Theorem 1. If G be a cycle graph [28], then res(Cn) =

 d
|E(G)|

3 e, if n 6≡ 2, 3(mod 6)

d |E(G)|
3 e+ 1, if n ≡ 2, 3(mod 6).

2. Constructing an Edge Irregular Reflexive Labeling

Let us recall the following lemma.

Lemma 1. Let G be any graph [28], then res(G) ≥

 d
|E(G)|

3 e, if n 6≡ 2, 3(mod 6)

d |E(G)|
3 e+ 1, if n ≡ 2, 3(mod 6).

The lower destined for res(G) emerges from the way that the negligible edge weight under
an edge edge irregular reflexive labeling in one, and the base of the maximal edge weight, that is
|E(G)| can be accomplished just as the aggregate of three numbers, somewhere around two of which
are even.

In this paper, we investigate the res(G) for disjoint union of s isomorphic copies of Generalized
Peterson graphs.

3. Applications of Graph Labeling

The field of graph theory assumes a fundamental job in different fields. In graph hypothesis,
the principle issue is graph labeling. Graph labeling is the task of number’s form 1 to n for vertex,
edges and both of the graphs separately. One of the vital territories in graph theory is graph labeling
which is utilized in numerous applications like coding hypothesis, radar, cosmology, circuit structure,
rocket direction, correspondence arrange tending to, x-beam crystallography, information base
administration. Here we might want to improve the edge irregular reflexive k-labeling with
applications in the field of software engineering. This paper gives a diagram of the labeling of graphs in
heterogeneous fields to some degree, however, for the most part it centers around vital real territories
of software engineering like information mining, picture preparing, cryptography, programming
testing, data security, correspondence systems and so forth. These are different subjects in designing
investigations and they are all the more effectively utilized in different areas like government parts
and corporate segments. More preciously, the edge unpredictable reflexive k-labeling drives us to deal
with the irregular situation in networking. For more details of graph labeling see [29].

4. Generalized Petersen Graph

The Generalized Petersen graph P(n, m) has been studied extensively in recent years. Generalized
Petersen graphs were first defined by Watkins [30]. Mominul Haque [31] determined the irregular
total labelings of Generalized Petersen graphs. Jendrol and Žoldák [32] determined the irregularity
strength of Generalized Petersen graphs. Chunling et al. [33] determined the total edge irregularity
strength of Generalized Petersen graphs. Ahmad et al. [34] determined the total irregularity strength
of Generalized Petersen graph. Naeem et al. [35] provide the total irregularity strength of disjoint
union of isomorphic copies of the Generalized Petersen graph. Gera et al. [36] completely describe the
spectrum of the Generalized Petersen graph P(n, m). Yegnanarayanan [37] computed the spectrum,
the Estrada index, Laplacian Estrada index, signless Laplacian Estrada index, normalized Laplacian
Estrada index, and energy of Generalized Petersen graph P(n, m).
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In this paper, we investigate the reflexive edge irregularity strength of complete disjoint union of
s isomorphic copies of the Generalized Peterson graphs. First we define the vertex set and edge set of
disjoint union of s isomorphic copies of Generalized Peterson graph P(n, m) in the following way.

V(sP(n, m)) = {xj
i , yj

i : 1 ≤ i ≤ n; 1 ≤ j ≤ s}

E(sP(n, m)) = {xj
i x

j
i+m, xj

i y
j
i , yj

iy
j
i+1 : 1 ≤ i ≤ n; 1 ≤ j ≤ s}

where the subscripts i and i + m are taken under modulo n.

Theorem 2. For s ≥ 1, n ≥ 3 and 1 ≤ m ≤ b n−1
2 c. we have

res(sP(n, m)) =

{
ns + 1, if s is odd

ns, if s is even

Proof. Since (sP(n, m)) has 3ns edges. Therefore From Lemma 1, we get

(sP(n, m)) ≥
{

ns + 1, if s is odd
ns, if s is even

Next, we will show that res(sP(n, m)) ≤
{

ns + 1, if s is odd

ns, if s is even

For this we define a f -labeling on (sP(n, m)) as follow:

k =

{
ns + 1, if s is odd

ns, if s is even

For s = 1, 1 ≤ m ≤ b n−1
2 c. and i = 1, 2, ..., n we have the following labeling of vertices and edges

along with their weights.
f (x1

i ) = 0, f (x1
i x1

i+1) = i,

f (y1
i ) =

{
n− 1, for i = 1

k, for i = 2, 3, ..., n

f (x1
i y1

i ) =

{
1, for i = 1

i− 1, for i = 2, 3, ..., n

f (y1
i y1

i+1) =


1, for i = 1

i− 1, for i = 2, 3, ..., n− 1

2, for i = n

wt(x1
i x1

i+1) = i, wt(x1
i y1

i ) = n + i

wt(y1
i y1

i+1) =


2n + 1, for i = 1

2n + 1 + i, for i = 2, 3, ..., n− 1

2n + 2, for i = n
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For s ≥ 2 and 1 ≤ m ≤ b n−1
2 c. We have the following labeling of vertices and edges along with

their weights:

f (xj
i) =

{
ns− n + 1, if 1 ≤ i < n, (s is even)

ns− n, if 1 ≤ i < n, (s is odd)

f (yj
i) =

{
ns, if 1 ≤ i < n, (s is even)

ns + 1, if 1 ≤ i < n, (s is odd)

f (xj
i x

j
i+m) =

{
ns− n− 2 + i, if 1 ≤ i < n, (s is even)

ns− n + i, if 1 ≤ i < n, (s is odd)

f (xj
i y

j
i) =

{
ns− n− 1 + i, if 1 ≤ i < n, (s is even)

ns− n + 1 + i, if 1 ≤ i < n, (s is odd)

f (yj
iy

j
i+1) =

{
ns− n + i, if 1 ≤ i < n, (s is even)

ns− n− 2 + i, if 1 ≤ i < n, (s is odd)

For 1 ≤ i < n, s ≥ 2 we have

wt(xj
i x

j
i+m) = 3ns− 3n + i, wt(xj

i y
j
i) = 3ns− 2n + i, wt(yj

iy
j
i+1) = 3ns− n + i,

It is a matter of routine checking that there are no two edges of the same weight.
So, f is an edge irregular reflexive labeling of (sP(nj, m)) for 1 ≤ m ≤ b n−1

2 .c and for n ≥ 3.
Which completes the proof.

Theorem 3. Let (sP(n, n
2 )), s ≥ 1 be isomorphic copies of the Generalized Petersen graphs with n even, and

n = 4, 6, 8. Then

res(s(P(n,
n
2
))) =

{ ⌈ 5ns
6
⌉
, for

⌈ 5ns
2
⌉
6≡ 2, 3(mod 6)⌈ 5ns

6
⌉
+ 1, for

⌈ 5ns
2
⌉
≡ 2, 3(mod 6)

Proof. For m = n
2 , (sP(n, n

2 )) has 5ns
2 edges. From Lemma 1, we get

res(s(P(n,
n
2
))) ≥

{ ⌈ 5ns
6
⌉
, for

⌈ 5ns
2
⌉
6≡ 2, 3(mod 6)⌈ 5ns

6
⌉
+ 1, for

⌈ 5ns
2
⌉
≡ 2, 3(mod 6)

Next, we will show that

res(s(P(n,
n
2
))) ≤

{ ⌈ 5ns
6
⌉
, for

⌈ 5ns
2
⌉
6≡ 2, 3(mod 6)⌈ 5ns

6
⌉
+ 1, for

⌈ 5ns
2
⌉
≡ 2, 3(mod 6)

For n = 4, 6, 8 and j = 1 we have the following labeling and weights of vertices and edges
as follows:

f (x1
i ) = 0, f (x1

i x1
i+ n

2
) = i,

wt(x1
i x1

i+ n
2
) = i, wt(x1

i y1
i ) =

n
2 + i

For n = 4 and j = 1

f (y1
i ) =

{
2, for i = 1, 2

4, for i = 3, 4
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f (x1
i y1

i ) =

{
i, for i = 1, 2

4− i, for i = 3, 4

f (y1
i y1

i+1) =

{
n− 1, for i = 1, 2

n− 2, for i = 3, 4

wt(x1
i x1

i+ n
2
) = i, wt(x1

i y1
i ) = 2 + i

wt(y1
i y1

i+1) =


2n− 1, for i = 1

2n− 3 + i, for i = 2, 3

2n, for i = 4

For n = 6 and j = 1

f (y1
i ) =


2, for i = 1

4, for i = 2, 3

6, for i = 4, 5, 6

f (x1
i y1

i ) =


2, for i = 1

1, for i = 2

i− n
2 , for i = 3, 4, 5, 6

f (y1
i y1

i+1) =


n
2 + 2− i, for i = 1, 3

i− n
2 + 1, for i = 2, 4, 5

n− 1, for i = 6

wt(y1
i y1

i+1) =


n + 3 + i, for i = 1, 2

n + 4 + i, for i = 3, 4, 5
3n
2 + 4, for i = 6

For n = 8 and j = 1

f (y1
i ) =


4, for i = 1, 2

6, for i = 3, 4

8, for i = 5, 6, 7, 8

f (x1
i y1

i ) =


1, for i = 1, 3

2, for i = 2, 4

i− n
2 , for i = 5, 6, 7, 8

f (y1
i y1

i+1) =

{ n
2 + 2− i, for 1 ≤ i ≤ n

2

i− n
2 + 1, for n

2 + 1 ≤ i ≤ n

wt(y1
i y1

i+1) =


n + 3 + i, for i = 1, 2

n + 4 + i, for i = 3, 4, 5
3n
2 + 5, for i = 6
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For j ≥ 2 and n = 4 we define a f -labeling on vertices and edges of (s(P(4, 2))) as follows:

f (xj
i) =


⌈ 5n(s−1)

6
⌉
, if 1 ≤ i < 4, s ≡ 1, 2(mod 3)⌈ 5n(s−1)

6
⌉
+ 1, if 1 ≤ i < 4, s ≡ 0(mod 3)

f (yj
i) =


⌈ 5n(s−1)

6
⌉
+ 1, if 1 ≤ i < 4, s ≡ 2(mod 3)⌈ 5n(s−1)

6
⌉
, if 1 ≤ i < 4, s ≡ 0, 1(mod 3)

f (xj
i x

j
i+ n

2
) =


⌈ 5n(s−1)

6
⌉
− 2 + i, if 1 ≤ i < 2, s ≡ 2(mod 3)⌈ 5n(s−1)

6
⌉
− 3 + i, if 1 ≤ i < 2, s ≡ 0(mod 3)⌈ 5n(s−1)

6
⌉
+ i, if 1 ≤ i < 2, j ≡ 1(mod 3)

f (xj
i y

j
i) =


⌈ 5n(s−1)

6
⌉
− 4 + i, if 1 ≤ i < 4, s ≡ 2(mod 3)⌈ 5n(s−1)

6
⌉
− 3 + i, if 1 ≤ i < 4, s ≡ 0(mod 3)⌈ 5n(s−1)

6
⌉
− 2 + i, if 1 ≤ i < 4, s ≡ 1(mod 3)

f (yj
iy

j
i+1) =


⌈ 5n(s−1)

6
⌉
− 4 + i, if 1 ≤ i < 4, s ≡ 2(mod 3)⌈ 5n(s−1)

6
⌉
− 1 + i, if 1 ≤ i < 4, s ≡ 0(mod 3)⌈ 5n(s−1)

6
⌉
− 2 + i, if 1 ≤ i < 4, s ≡ 1(mod 3)

wt(xj
i x

j
i+ n

2
) =


⌈ 5n(s−1)

2
⌉
− 2 + i, if 1 ≤ i < 2, s ≡ 2(mod 3)⌈ 5n(s−1)

2
⌉
+ i, if 1 ≤ i < 2, s ≡ 1(mod 3)⌈ 5n(s−1)

2
⌉
− 1 + i, if 1 ≤ i < 2, s ≡ 0(mod 3)

wt(xj
i y

j
i) =


⌈ 5n(s−1)

2
⌉
− 2 + i + ns, if 1 ≤ i < 4, s ≡ 0(mod 3)⌈ 5n(s−1)

2
⌉
+ i + ns, if 1 ≤ i < 4, s ≡ 1(mod 3)⌈ 5n(s−1)

2
⌉
− 1 + i + ns, if 1 ≤ i < 4, s ≡ 2(mod 3)

wt(yj
iy

j
i+1) =


⌈ 5n(s−1)

2
⌉
− 4 + i + 2ns, if 1 ≤ i < 4, s ≡ 0(mod 3)⌈ 5n(s−1)

2
⌉
− 2 + i + 2ns, if 1 ≤ i < 4, s ≡ 1, 2(mod 3)

For j ≥ 2 and n = 6 we define a f -labeling on vertices and edges of (s(P(6, 3))) as follow:

f (xj
i) =


⌈ 5n(s−1)

6
⌉
+ 1, if 1 ≤ i < 6, s ≡ 0, 2, 4(mod 6)⌈ 5n(s−1)

6
⌉
, if 1 ≤ i < 6, s ≡ 1, 3, 5(mod 6)

f (yj
i) =

{ ⌈ 5ns
6
⌉
, if 1 ≤ i < 6, s ≡ 0, 2, 4(mod 6)⌈ 5ns

6
⌉
+ 1, if 1 ≤ i < 6, s ≡ 1, 3, 5(mod 6)

f (xj
i x

j
i+ n

2
) =


⌈ 5n(s−1)

6
⌉
− 2 + i, if 1 ≤ i < 3, (s is even)⌈ 5n(s−1)

6
⌉
+ i, if 1 ≤ i < 3, (s is odd)

f (xj
i y

j
i) =

{ ⌈ 5n(s−1)
6

⌉
− 3 + i, if 1 ≤ i < 6,

f (yj
iy

j
i+1) =


⌈ 5n(s−1)

6
⌉
− 1 + i, if 1 ≤ i < 6, s ≡ 0(mod 2)⌈ 5n(s−1)

6
⌉
− 3 + i, if 1 ≤ i < 6, s ≡ 1(mod 2)
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wt(xj
i x

j
i+ n

2
) =

{ ⌈ 5n(s−1)
2

⌉
+ i, if 1 ≤ i < 3

wt(xj
i y

j
i) =


⌈ 5n(s−1)

2
⌉
− 3 + i + 5ns

6 , if 1 ≤ i < 6, s ≡ 2(mod 6)⌈ 5n(s−1)
2

⌉
− 2 + i + 5ns

6 , if 1 ≤ i < 6, s ≡ 0, 1, 3, 4, 5(mod 6)

wt(yj
iy

j
i+1) =

{ ⌈ 5n(s−1)
2

⌉
− 1 + i + 5ns

3 , if 1 ≤ i < 6

For j ≥ 2 and n = 8 we define a f -labeling on vertices and edges of (s(P(8, 4))) as follows:

f (xj
i) =


⌈ 5n(s−1)

6
⌉
+ 1, if 1 ≤ i < 8, s ≡ 0, 2(mod 6)⌈ 5n(s−1)

6
⌉
, if 1 ≤ i < 8, s ≡ 1, 3, 4, 5(mod 6)

f (yj
i) =

{ ⌈ 5ns
6
⌉
, if 1 ≤ i < 8, s ≡ 2, 3, 4, 5(mod 6)⌈ 5ns

6
⌉
+ 1, if 1 ≤ i < 8, s ≡ 0, 1(mod 6)

f (xj
i x

j
i+ n

2
) =


⌈ 5n(s−1)

6
⌉
− 2 + i, if 1 ≤ i < 4, (s is even)⌈ 5n(s−1)

6
⌉
+ i, if 1 ≤ i < 4, (s is odd)

f (xj
i y

j
i) =


⌈ 5n(s−1)

6
⌉
− 5 + i, if 1 ≤ i < 8, s ≡ 2(mod 6)⌈ 5n(s−1)

6
⌉
− 4 + i, if 1 ≤ i < 8, s ≡ 0, 1, 3, 4, 5(mod 6)

f (yj
iy

j
i+1) =


⌈ 5n(s−1)

6
⌉
− 3 + i, if 1 ≤ i < 8, s ≡ 2, 5(mod 6)⌈ 5n(s−1)

6
⌉
− 2 + i, if 1 ≤ i < 8, s ≡ 0, 3(mod 6)⌈ 5n(s−1)

6
⌉
− 2 + i, if 1 ≤ i < 8, s ≡ 1, 4(mod 6)

wt(xj
i x

j
i+ n

2
) =



⌈ 5n(s−1)
2

⌉
− 1 + i, if 1 ≤ i < 4, s ≡ 2(mod 6)

⌈ 5n(s−1)
2

⌉
− 2 + i, if 1 ≤ i < 4, s ≡ 3(mod 6)

⌈ 5n(s−1)
2

⌉
+ i, if 1 ≤ i < 4, s ≡ 0, 1, 4(mod 6)

⌈ 5n(s−1)
2

⌉
− 3 + i, if 1 ≤ i < 4, s ≡ 5(mod 6)

wt(xj
i y

j
i) =


⌈ 5n(s−1)

2
⌉
− 4 + i +

⌈ 5ns
6
⌉
, if 1 ≤ i < 8, s ≡ 2, 3, 4, 5(mod 6)⌈ 5n(s−1)

2
⌉
− 2 + i +

⌈ 5ns
6
⌉
, if 1 ≤ i < 8, s ≡ 0(mod 6)⌈ 5n(s−1)

2
⌉
− 3 + i +

⌈ 5ns
6
⌉
, if 1 ≤ i < 8, s ≡ 1(mod 6)

wt(yj
iy

j
i+1) =



⌈ 5n(s−1)
2

⌉
− 3 + i +

⌈ 5ns
3
⌉
, if 1 ≤ i < 8 s ≡ 2, 5(mod 6)⌈ 5n(s−1)

2
⌉
− 2 + i +

⌈ 5ns
3
⌉
, if 1 ≤ i < 8 s ≡ 1, 3(mod 6)⌈ 5n(s−1)

2
⌉
− 4 + i +

⌈ 5ns
3
⌉
, if 1 ≤ i < 8 s ≡ 4(mod 6)⌈ 5n(s−1)

2
⌉
+ i +

⌈ 5ns
3
⌉
, if 1 ≤ i < 8 s ≡ 0(mod 6)

It is easy to check that there are no two edges of the same weight.
So, f is an edge irregular reflexive labeling of (sP(n, n

2 )) for m = n
2 . and for n = 4.6, 8 Which

completes the proof.
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5. Conclusions

In this paper, we give detailed information about the Generalized Petersen graphs and their
importance in different areas of science. We also give details about the application of graph labeling
in computer science and data processing. More preciously, we have determined the edge irregular
reflexive labeling for disjoint union of s isomorphic copies of generalizes Petersen graphs P(n, m) for
s ≥ 1, n ≥ 3 and 1 ≤ m < n

2 . and (P(n, m)) for n = 4, 6, 8 with m = n
2 . We tried to find the edge

irregular reflexive labeling for disjoint union of s isomorphic copies of Generalized Petersen graphs
(P(n, m)) for n ≥ 10 with m = n

2 and n even but so far without success. So we conclude the paper
with the following open problem.

6. Open Problem

Find the edge irregular reflexive labeling for disjoint union of s isomorphic copies of Generalized
Petersen graphs (P(n, n

2 )) for n even and n ≥ 10.
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10. Ivančo, J.; Jendrol’, S. Total edge irregularity strength of trees. Discuss. Math. Graph Theory 2006, 26, 449–456.

[CrossRef]
11. Zhang, X.; Ibrahim, M.; Bokhary, S.A.H.; Siddiqui, M.K. Edge Irregular Reflexive Labeling for the Disjoint

Union of Gear Graphs and Prism Graphs. Mathematics 2018, 6, 142. [CrossRef]
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