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Abstract: In this article, a new class of harmonic univalent functions, defined by the differential
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1. Introduction

A continuous function f = u + iv is a complex-valued harmonic function in a complex domain C
if both u and v are real harmonic. In any simply connected domain B ⊂ C, we can write f = h + g,
where h and g are analytic in B. We call h and g are analytic part and co-analytic part of f respectively.
Clunie and Sheil-Small [1] observed that a necessary and sufficient condition for the harmonic functions
f = h + g to be locally univalent and sense-preserving in B is that |h′(z)| > |g′(z)|, (z ∈ B).

Denote by SH the family of harmonic functions f = h + g, which are univalent and
sense-preserving in the open unit disc U = {z ∈ C : |z| < 1} where h and g are analytic in B and f is
normalized by f (0) = h(0) = fz(0)− 1 = 0. Then for f = h + g ∈ SH , we may express the analytic
functions h and g as

h(z) = z +
∞

∑
n=2

anzn, g(z) =
∞

∑
n=1

bnzn, |b1| < 1. (1)

Note that SH reduces to the class of normalized analytic univalent functions if the co-analytic part
of its members equals to zero.

Also, denote by SH the subclass of SH consisting of all functions fk(z) = h(z) + gk(z), where h
and g are given by

h(z) = z−
∞

∑
n=2
|an|zn and gk(z) = (−1)k

∞

∑
n=1
|bn|zn, |b1| < 1. (2)

In 1984 Clunie and Sheil-Small [1] investigated the class SH , as well as its geometric subclass
and obtained some coefficient bounds. Many authors have studied the family of harmonic univalent
function (see References [2–7]).
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In 2016 Makinde [8] introduced the differential operator Fk such that

Fk f (z) = z +
∞

∑
n=2

Cnkzn, (3)

where

Cnk =
n!

|n− k|! , Fk f (z) = zk

[
z−(k−1) +

∞

∑
n=2

Cnkzn

]
, k ∈ N0 = N∪ {0},

and

F0 f (z) = f (z), F1 f (z) = z +
∞

∑
n=2

Cn1zn.

Thus, it implies that Fk f (z) is identically the same as f (z) when k = 0. Also, it reduced the first
differential coefficient of the Salagean differential operator when k = 1.

For f = h + g given by Equation (1), Sharma and Ravindar [9] considered the differential operator
which defined by Equation (3) of f as

Fk f (z) = Fkh(z) + (−1)kFkg(z), k ∈ N0 = N∪ {0}, z ∈ C, (4)

where

Fkh(z) = z +
∞

∑
n=2

Cnkanzn, Fkg(z) =
∞

∑
n=1

Cnkbnzn and Cnk =
n!

|n− k|! .

In this paper, motivated by study in [9], a new class AH(k, α, γ)( k ∈ N0 = N∪ {0}, 0 ≤ γ ≤ 1,
0 ≤ α < 1, ) of harmonic univalent functions in U = {z ∈ C : |z| < 1} is introduced and studied.
Furthermore, coefficient conditions, distortion bounds, extreme points, convex combination and radii of
convexity for this class are obtained.

2. Main Results

2.1. The Class AH(k, α, γ)

Definition 1. Let f (z) = h(z) + g(z) be a harmonic f unction, where h(z) and g(z) are given by Equation
(1). Then f (z) ∈ AH(k, α, γ) it satisfies

Re

{
Fk+1 f (z)

(1− γ)z + γFk f (z)

}
> α, (5)

fork ∈ N0 = N∪ {0}, 0 ≤ γ ≤ 1, 0 ≤ α < 1, z ∈ U, and Fk f (z) defined by Equation (4)

Let AH(k, α, γ) be the subclass of AH(k, α, γ), where AH(k, α, γ) = SH ∩ AH(k, α, γ).

Remark 1. The class AH(k, α, γ) reduces to the class BH(k, α) [9], when γ = 1.

Here, we give a sufficient condition for a function f to be in the class AH(k, α, γ).

Theorem 1. Let f (z) = h(z) + g(z) where h(z) and g(z) were given by (1). If

∞

∑
n=2

∅(n, k, α, γ)|an|+
∞

∑
n=1

ψ(n, k, α, γ)|bn| ≤ 1, (6)
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where

∅(n, k, α, γ) =
(|n− k| − αγ)Cnk

(1− α)

ψ(n, k, α, γ) =
(|n− k|+ αγ)Cnk

(1− α)

( k ∈ N0 = N∪ {0}, 0 ≤ γ ≤ 1, 0 ≤ α < 1, n ∈ N),

then f (z) is harmonic univalent and sense-preserving in U and f (z) ∈ AH(k, α, γ).

Proof. Firstly, to show that f (z) is harmonic univalent in U, suppose that z1, z2 ∈ U for bz1c ≤ bz2c < 1,
we have by inequality so that z1 6= z2, then∣∣∣ f (z1)− f (z2)

h(z1)−h(z2)

∣∣∣
≥ 1−

∣∣∣ g(z1)−g(z2)
h(z1)−h(z2)

∣∣∣ = 1−
∣∣∣∣ ∑∞

n=1 bn(zn
1−zn

2)
(z1−z2)−∑∞

n=2 an(zn
1−zn

2)

∣∣∣∣
≥ 1− ∑∞

n=1 n|bn |
1−∑∞

n=2 n|an | ≥ 1−
∑∞

n=1
(|n−k|+αγ)Cnk

(1−α)
|bn |

1−∑∞
n=2

(|n−k|−αγ)Cnk
(1−α)

|an |
≥ 0.

Thus f is a univalent function in U.
Note that f is sense-preserving in U. This is because

|h′(z)| ≥ 1−
∞
∑

n=2
n|an||z|n−1 > 1−

∞
∑

n=2
n|an| ≥ 1−

∞
∑

n=2

(|n−k|−αγ)Cnk
(1−α) |an|

≥
∞
∑

n=1

(|n−k|+αγ)Cnk
(1−α) |bn| ≥

∞
∑

n=1
n|bn| ≥

∞
∑

n=1
n|bn||z|n−1 ≥ |g′(z)|.

According to the condition of Equation (5), we only need to show that if Equation (6) holds, then

Re

{
Fk+1 f (z)

(1− γ)z + γFk f (z)

}
= Re

(
w =

A(z)
B(z)

)
> α

where z = reiθ , 0 ≤ θ ≤ 2π, 0 ≤ r < 1 and 0 ≤ α < 1.
Note that A(z) = Fk+1 f (z) and B(z) = (1− γ)z + γFk f (z).
Using the fact that Re(w) > α if and only if |w− (1 + α)| ≤ |w + (1− α)|, it suffices to show that

|A(z)− (1 + α)B(z)| − |A(z) + (1− α)B(z)| ≤ 0 (7)

Substituting for A(z) and B(z) in |A(z)− (1 + α)B(z)|, we obtain

|A(z)− (1 + α)B(z)| =
∣∣∣Fk+1 f (z)− (1 + α)

[
(1− γ)z + γFk f (z)

]∣∣∣
=

∣∣∣∣[z +
∞
∑

n=2
Cn(k+1)anzn + (−1)(k+1) ∞

∑
n=1

Cn(k+1)bnzn
]

−(1 + α)

[
(1− γ)z + γz + γ

∞
∑

n=2
Cnkanzn + γ(−1)k ∞

∑
n=1

Cnkbnzn
]∣∣∣∣

≤ α|z|+
∞
∑

n=2
|(γ(1 + α))− |n− k||Cnk|an||z|n

+
∞
∑

n=1
|(γ(1 + α)) + |n− k||Cnk|an||z|n.

(8)
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Now, substituting for A(z) and B(z) in |A(z) + (1− α)B(z)|, we obtain

|A(z) + (1− α)B(z)| =
∣∣∣Fk+1 f (z) + (1− α)

[
(1− γ)z + γFk f (z)

]∣∣∣
=

∣∣∣∣[z +
∞
∑

n=2
Cn(k+1)anzn + (−1)(k+1) ∞

∑
n=1

Cn(k+1)bnzn
]

+(1− α)

[
(1− γ)z + γz + γ

∞
∑

n=2
Cnkanzn + γ(−1)k ∞

∑
n=1

Cnkbnzn
]∣∣∣∣

≥ (2− α)|z| −
∞
∑

n=2
|(γ(α− 1 ))− |n− k||Cnk|an||z|n

−
∞
∑

n=1
||n− k| − (γ(1− α))|Cnk|an||z|n.

(9)

Substituting for Equations (8) and (9) in the inequality we obtain

|A(z)− (1 + α)B(z)| − |A(z) + (1− α)B(z)|
≤ α|z|+

∞
∑

n=2
|(γ(1 + α))− |n− k||Cnk|an||z|n

+
∞
∑

n=1
|(γ(1 + α)) + |n− k||Cnk|bn||z|n

+(α− 2)|Z|+
∞
∑

n=2
|(γ(α− 1 ))− |n− k||Cnk|an||z|n

+
∞
∑

n=1
||n− k| − (γ(1− α))|Cnk|bn||z|n.

= 2
∞
∑

n=2
(|n− k| − αγ)Cnk|an|+ 2

∞
∑

n=1
(|n− k|+ αγ)Cnk|bn| − 2(1− α)

≤ 0. (by hypothesis).

Therefore, we have

∞

∑
n=2

(|n− k| − αγ)Cnk|an|+
∞

∑
n=1

(|n− k|+ αγ)Cnk|bn| ≤ (1− α).

�

The harmonic univalent function

f (z) = z +
∞

∑
n=2

1
∅(n, k, α, γ)

Xnzn +
∞

∑
n=1

1
ψ(n, k, α, γ)

Ynzn, (10)

where k ∈ N0 and ∑∞
k=2|Xn|+ ∑∞

k=1|Yn| = 1, shows that the coefficient bound given by Equation (6)
is sharp. Since

∞
∑

n=2
∅(n, k, α, γ)|an|+

∞
∑

n=1
ψ(n, k, α, γ)|bn|

=
∞
∑

n=2
∅(n, k, α, γ) 1

∅(n,k,α,γ) |Xn| +
∞
∑

n=1
ψ(n, k, α, γ) 1

ψ(n,k,α,γ) |Yn|

=
∞
∑

n=2
|Xn|+

∞
∑

n=1
|Yn| = 1.

Now, we show that the condition of Equation (6) is also necessary for functions fk = h + gk, where
h and gn are given by Equation (6).

Theorem 2. Let fk = h + gk be given by Equation (6). Then fk(z) ∈ AH(k, α, γ) if and only if the coefficient
in condition of Equation (6) holds.
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Proof. We only need to prove the “only if” part of the theorem because of AH(k, α, γ) ⊂ AH(k, α, γ).
Then by Equation (5), we have

Re

{
Fk+1 f (z)

(1− γ)z + γFk f (z)

}
> α

or, equivalently

Re


z−∑∞

n=2 Cn(k+1)|an|zn + (−1)2k+1 ∑∞
n=1 Cn(k+1)|bn|zn

−α
{
(1− γ)z + γz + γ ∑∞

n=2 Cnk|an|zn + γ(−1)2k ∑∞
n=1 Cnk|bn|zn

}
(1− γ)z + γz− γ ∑∞

n=2 Cnk|an|zn + γ(−1)2k ∑∞
n=1 Cnk|bn|zn

 ≥ 0 (11)

We observe that the above-required condition of Equation (11) must behold for all values of z in U.
If we choose z to be real and z→ 1−, we get

(1− α)−∑∞
n=2(|n− k| − αγ)Cnk|an|

+∑∞
n=1(|n− k|+ αγ)Cnk|bn|

1− γ ∑∞
n=2 Cnk|an|zn−1 + γ ∑∞

n=1 Cnk|bn|zn−1 ≥ 0 (12)

If the condition (6) does not hold, then the numerator in Equation (12) is negative for r sufficiently
closed to 1. Hence there exist z0 = r0 in (0, 1) for which the quotient in Equation (12) is negative,
therefore there is a contradicts the required condition for fk ∈ AH(k, α, γ). �

2.2. Extreme Points

Here, we determine the extreme points of the closed convex hull of AH(k, α, γ), denoted by
clcoAH(k, α, γ).

Theorem 3. Let fk given by (1.2). Then fk ∈ AH(k, α, γ) i f and only i f

fk(z) =
∞

∑
n=1

(Xnhn + Yngkn)

where
h1(z) = z, hn(z) = z− 1

∅(n, k, α, γ)
zn, n = 2, 3, . . . ,

gkn(z) = z + (−1)k 1
ψ(n, k, α, γ)

zn, n = 1, 2, . . . ,

and

Xn ≥ 0, Yn ≥ 0, X1 = 1−
∞

∑
n=2

(Xn + Yn) ≥ 0

In particular the extreme points of AH(k, α, γ) are {hn} and {gkn}.

Proof. Suppose

fk(z) =
∞
∑

n=1
(Xnhn + Yngkn)

=
∞
∑

n=1
(Xnhn + Yngkn)z−

∞
∑

n=2

1
∅(n,k,α,γ)Xnzn + (−1)k ∞

∑
n=1

1
ψ(n,k,α,γ)Ynzn

= z−
∞
∑

n=2

1
∅(n,k,α,γ)Xnzn + (−1)k−1 ∞

∑
n=1

1
ψ(n,k,α,γ)Ynzn
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Then
∞
∑

n=2
∅(n, k, α, γ)|an|+

∞
∑

n=1
ψ(n, k, α, γ)|bn|

=
∞
∑

k=2
∅(n, k, α, γ)

(
1

∅(n,k,α,γ)Xn

)
+

∞
∑

k=1
ψ(n, k, α, γ)

(
1

ψ(n,k,α,γ)Yn

)
=

∞
∑

n=2
Xn +

∞
∑

n=1
Yn = 1−X1 ≤ 1 .

Therefore fk(z) ∈ clcoAH(k, α, γ).
Conversely, if fk(z) ∈ clcoAH(k, α, γ). Then

Set Xn = ∅(n, k, α, γ)|an| , (n = 2, 3, . . .) and Yn = ψ(n, k, α, γ)|bn|,
(n = 1, 2, . . . ) and X1 = 1−

∞
∑

n=2
Xn +

∞
∑

n=1
Yn

The required representation is obtained as

fk(z) = z−
∞
∑

n=2
|an|zn + (−1)k ∞

∑
n=1
|bn|zn

= z−
∞
∑

n=2

1
∅(n,k,α,γ)Xnzn + (−1)k ∞

∑
n=1

1
ψ(n,k,α,γ)Ynzn

= z−
∞
∑

n=2
[z− hn(z)]Xn +

∞
∑

n=1
[z− gkn(z)]Yn

=

[
1−

∞
∑

n=2
Xn −

∞
∑

n=1
Yn

]
z +

∞
∑

n=2
hn(z)Xn +

∞
∑

n=1
gkn(z) Yn =

∞
∑

n=1
(Xnhn + Yngkn)

�

2.3. Convex Combination

Here, we show that the class AH(k, α, γ) is closed under convex combination of its members.
Let the function fk,i(z) be defined, for i = 1, 2, . . . , m by

fk,i(z) = z−
∞

∑
n=2
|an,i|zn + (−1)k

∞

∑
n=1
|bn,i|zn (13)

Theorem 4. Let the functions fk,i(z), defined by Equation (13) be in the class AH(k, α, γ), for every
i = 1, 2, . . . , m. Then the functions ci(z) defined by

ci(z) =
∞

∑
i=1

ti fk,i(z), 0 ≤ ti ≤ 1

are also in the class AH(k, α, γ), where ∑∞
i=1 ti = 1.

Proof. According to the definition of ci(z), we can write

ci(z) = z−
∞

∑
n=2

(
∞

∑
i=1

ti|an,i|
)

zn + (−1)k
∞

∑
n=1

(
∞

∑
i=1

ti |bn,i|
)

zn
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Further, since fk,i(z) are in AH(k, α, γ) for every i = 1, 2, . . . , m, then by Theorem 2, we obtain

∞
∑

k=2
∅(n, k, α, γ)

(
∞
∑

i=1
ti|an,i|

)
+

∞
∑

k=1
ψ(n, k, α, γ)

(
∞
∑

i=1
ti |bn,i|

)
=

∞
∑

i=1
ti

(
∞
∑

k=2
∅(n, k, α, γ)|an,i|+

∞
∑

k=1
ψ(n, k, α, γ)|bn,i|

)
≤

∞
∑

i=1
ti = 1,

which is required coefficient condition. �

2.4. Convolution (Hadamard Product) Property

Here, we show that the class AH(k, α, γ) is closed under convolution.
The convolution of two harmonic functions

fk(z) = z−
∞

∑
n=2
|an|zn + (−1)k

∞

∑
n=1
|bn|zn, (14)

and

Qn(z) = z−
∞

∑
n=2
|Ln|zn + (−1)k

∞

∑
n=1
|Mn|zn (15)

is defined as
( fn ∗Qn)(z) = fn(z) ∗Qn(z)

= z−
∞
∑

n=2
|anLn|zn + (−1)k ∞

∑
n=1
|bn Mn|zn (16)

Using Equations (12)–(14), we prove the following theorem.

Theorem 5. For 0 ≤ µ ≤ α < 1, k ∈ N0, let fn ∈ AH(k, α, γ) and Qn ∈ AH(k, µ, γ). Then

fn ∗Qn ∈AH(k, α, γ) ⊂ AH(k, µ, γ).

Proof. Let

fk(z) = z−
∞

∑
n=2
|an|zn + (−1)k

∞

∑
n=1
|bn|zn

be in the class AH(k, α, γ) and

Qn(z) = z−
∞

∑
n=2
|Ln|zn + (−1)k

∞

∑
n=1
|Mn|zn,

be in AH(k, µ, γ).
Then the convolution fn ∗Qn is given by Equation (16), we want to show that the coefficients of

fn ∗Qn satisfy the required condition given in Theorem 1.
For Qn ∈ AH(k, µ, γ), we note that |Ln| < 1 and |Mn| < 1. Now consider convolution functions

fn ∗Qn as follows:
∞
∑

k=2
∅(n, k, µ, γ)|an||Ln|+

∞
∑

k=1
ψ(n, k, µ, γ)|bn||Mn|

≤
∞
∑

k=2
∅(n, k, µ, γ)|an|+

∞
∑

k=1
ψ(n, k, µ, γ)|bn| ≤ 1.

Since 0 ≤ µ ≤ α < 1 and fn ∈ AH(k, α, γ). Therefore fn ∗Qn ∈ AH(k, α, γ) ⊂ AH(k, µ, γ). �
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2.5. Integral Operator

Here, we examine the closure property of the class AH(k, α, γ) under the generalized
Bernardi-Libera-Livingston integral operator (see References [10,11]) Lu( f ) which is defined by,

Lu( f ) =
u + 1

zu

∫ z

0
tu−1 f (t)dt, u > −1. (17)

Theorem 6. Let fk(z) ∈ AH(k, α, γ). Then

Lu( fk(z)) ∈AH(k, α, γ)

Proof. From definition of Lu( fk(z)) given by Equation (17), it follows that

Lu( fk(z)) = u+1
zu

∫ z
0 tu−1

(
t−

∞
∑

n=2
|an|tn + (−1)k ∞

∑
n=1
|bn|tn

)
dt

= z−
∞
∑

n=2

u+1
u+n |an|zn + (−1)k ∞

∑
n=1

u+1
u+n |bn|zn

= z−
∞
∑

n=2
Gnzn + (−1)n−1 ∞

∑
n=1

Lnzn

where
Gn = u+1

u+n |an|, and
Ln = u+1

u+n |bn|

Hence
∞
∑

k=2
∅(n, k, α, γ) u+1

u+n |an|+
∞
∑

k=1
ψ(n, k, α, γ) u+1

u+n |bn|

≤
∞
∑

n=2
∅(n, k, α, γ)|an|+

∞
∑

n=1
ψ(n, k, α, γ)|bn| ≤ 1.

by Theorem 2.
Therefore, we have Lu( fk(z)) ∈ AH(k, α, γ). �
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