

Article

On the Generalization of a Class of Harmonic Univalent Functions Defined by Differential Operator

Aqeel Ketab AL-khafaji 1,2,*, Waggas Galib Atshan 3 and Salwa Salman Abed 2

- Department of Mathematics, College of Education for Pure Sciences, University of Babylon, Babylon 51002, Iraq
- Department of Mathematics, College of Education for Pure Sciences—Ibn Al-Haytham, The University of Baghdad, Baghdad 10071, Iraq; salwaalbundi@yahoo.com
- Department of Mathematics, College of Computer Science & Information Technology, The University of Al-Qadisiyah, Al Diwaniyah 58002, Iraq; waggashnd@gmail.com
- * Correspondence: aqeelketab@gmail.com

Received: 30 October 2018; Accepted: 27 November 2018; Published: 7 December 2018

Abstract: In this article, a new class of harmonic univalent functions, defined by the differential operator, is introduced. Some geometric properties, like, coefficient estimates, extreme points, convex combination and convolution (Hadamard product) are obtained.

Keywords: harmonic univalent function; coefficient inequality; extreme points; convex combination; Hadamard product

1. Introduction

A continuous function f=u+iv is a complex-valued harmonic function in a complex domain $\mathbb C$ if both u and v are real harmonic. In any simply connected domain $\mathcal B\subset\mathbb C$, we can write $f=h+\overline g$, where h and g are analytic in $\mathcal B$. We call h and g are analytic part and co-analytic part of f respectively. Clunie and Sheil-Small [1] observed that a necessary and sufficient condition for the harmonic functions $f=h+\overline g$ to be locally univalent and sense-preserving in $\mathcal B$ is that |h'(z)|>|g'(z)|, $(z\in\mathcal B)$.

Denote by S_H the family of harmonic functions $f=h+\overline{g}$, which are univalent and sense-preserving in the open unit disc $U=\{z\in\mathbb{C}:|z|<1\}$ where h and g are analytic in \mathcal{B} and f is normalized by $f(0)=h(0)=f_z(0)-1=0$. Then for $f=h+\overline{g}\in S_H$, we may express the analytic functions h and g as

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n, \ g(z) = \sum_{n=1}^{\infty} b_n z^n, \ |b_1| < 1.$$
 (1)

Note that S_H reduces to the class of normalized analytic univalent functions if the co-analytic part of its members equals to zero.

Also, denote by $S_{\overline{H}}$ the subclass of S_H consisting of all functions $f_k(z) = h(z) + \overline{g_k(z)}$, where h and g are given by

$$h(z) = z - \sum_{n=2}^{\infty} |a_n| z^n \text{ and } g_k(z) = (-1)^k \sum_{n=1}^{\infty} |b_n| z^n, |b_1| < 1.$$
 (2)

In 1984 Clunie and Sheil-Small [1] investigated the class S_H , as well as its geometric subclass and obtained some coefficient bounds. Many authors have studied the family of harmonic univalent function (see References [2–7]).

Mathematics **2018**, 6, 312

In 2016 Makinde [8] introduced the differential operator F^k such that

$$F^{k}f(z) = z + \sum_{n=2}^{\infty} C_{nk}z^{n},$$
(3)

where

$$C_{nk} = \frac{n!}{|n-k|!}, F^k f(z) = z^k \left[z^{-(k-1)} + \sum_{n=2}^{\infty} C_{nk} z^n \right], k \in \mathbb{N}_0 = \mathbb{N} \cup \{0\},$$

and

$$F^{0}f(z) = f(z), F^{1}f(z) = z + \sum_{n=2}^{\infty} C_{n1}z^{n}.$$

Thus, it implies that $F^k f(z)$ is identically the same as f(z) when k = 0. Also, it reduced the first differential coefficient of the Salagean differential operator when k = 1.

For $f = h + \overline{g}$ given by Equation (1), Sharma and Ravindar [9] considered the differential operator which defined by Equation (3) of f as

$$F^{k}f(z) = F^{k}h(z) + (-1)^{k}\overline{F^{k}g(z)}, k \in \mathbb{N}_{0} = \mathbb{N} \cup \{0\}, z \in \mathbb{C},$$
(4)

where

$$F^k h(z) = z + \sum_{n=2}^{\infty} C_{nk} a_n z^n$$
, $F^k g(z) = \sum_{n=1}^{\infty} C_{nk} b_n z^n$ and $C_{nk} = \frac{n!}{|n-k|!}$.

In this paper, motivated by study in [9], a new class $A_H(k,\alpha,\gamma)$ ($k \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, $0 \le \gamma \le 1$, $0 \le \alpha < 1$,) of harmonic univalent functions in $U = \{z \in \mathbb{C} : |z| < 1\}$ is introduced and studied. Furthermore, coefficient conditions, distortion bounds, extreme points, convex combination and radii of convexity for this class are obtained.

2. Main Results

2.1. The Class $A_H(k,\alpha,\gamma)$

Definition 1. Let $f(z) = h(z) + \overline{g(z)}$ be a harmonic function, where h(z) and g(z) are given by Equation (1). Then $f(z) \in A_H(k, \alpha, \gamma)$ it satisfies

$$Re\left\{\frac{F^{k+1}f(z)}{(1-\gamma)z+\gamma F^k f(z)}\right\} > \alpha,\tag{5}$$

for $k \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, $0 \le \gamma \le 1$, $0 \le \alpha < 1$, $z \in U$, and $F^k f(z)$ defined by Equation (4)

Let $A_{\overline{H}}(k, \alpha, \gamma)$ be the subclass of $A_H(k, \alpha, \gamma)$, where $A_{\overline{H}}(k, \alpha, \gamma) = S_{\overline{H}} \cap A_H(k, \alpha, \gamma)$.

Remark 1. The class $A_{\overline{H}}(k, \alpha, \gamma)$ reduces to the class $B_{\overline{H}}(k, \alpha)$ [9], when $\gamma = 1$.

Here, we give a sufficient condition for a function f to be in the class $A_H(k, \alpha, \gamma)$.

Theorem 1. Let $f(z) = h(z) + \overline{g(z)}$ where h(z) and g(z) were given by (1). If

$$\sum_{n=2}^{\infty} \varnothing(n,k,\alpha,\gamma)|a_n| + \sum_{n=1}^{\infty} \psi(n,k,\alpha,\gamma)|b_n| \le 1,$$
(6)

Mathematics 2018, 6, 312 3 of 9

where

$$\varnothing(n,k,\alpha,\gamma) = \frac{(|n-k| - \alpha\gamma)C_{nk}}{(1-\alpha)}$$

$$\psi(n,k,\alpha,\gamma) = \frac{(|n-k| + \alpha\gamma)C_{nk}}{(1-\alpha)}$$

$$(k \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, \ 0 \le \gamma \le 1, \ 0 \le \alpha < 1, \ n \in \mathbb{N}),$$

then f(z) is harmonic univalent and sense-preserving in U and $f(z) \in A_H(k, \alpha, \gamma)$.

Proof. Firstly, to show that f(z) is harmonic univalent in U, suppose that $z_1, z_2 \in U$ for $\lfloor z_1 \rfloor \leq \lfloor z_2 \rfloor < 1$, we have by inequality so that $z_1 \neq z_2$, then

$$\begin{split} \left| \frac{f(z_1) - f(z_2)}{h(z_1) - h(z_2)} \right| \\ & \geq 1 - \left| \frac{g(z_1) - g(z_2)}{h(z_1) - h(z_2)} \right| = 1 - \left| \frac{\sum_{n=1}^{\infty} b_n \left(z_1^n - z_2^n \right)}{(z_1 - z_2) - \sum_{n=2}^{\infty} a_n \left(z_1^n - z_2^n \right)} \right| \\ & \geq 1 - \frac{\sum_{n=1}^{\infty} n |b_n|}{1 - \sum_{n=2}^{\infty} n |a_n|} \geq 1 - \frac{\sum_{n=1}^{\infty} \frac{(|n-k| + \alpha \gamma) C_{nk}}{(1-\alpha)} |b_n|}{1 - \sum_{n=2}^{\infty} \frac{(|n-k| - \alpha \gamma) C_{nk}}{(1-\alpha)} |a_n|} \geq 0. \end{split}$$

Thus f is a univalent function in U.

Note that f is sense-preserving in U. This is because

$$|h'(z)| \ge 1 - \sum_{n=2}^{\infty} n|a_n||z|^{n-1} > 1 - \sum_{n=2}^{\infty} n|a_n| \ge 1 - \sum_{n=2}^{\infty} \frac{(|n-k|-\alpha\gamma)C_{nk}}{(1-\alpha)}|a_n|$$

$$\ge \sum_{n=1}^{\infty} \frac{(|n-k|+\alpha\gamma)C_{nk}}{(1-\alpha)}|b_n| \ge \sum_{n=1}^{\infty} n|b_n| \ge \sum_{n=1}^{\infty} n|b_n||z|^{n-1} \ge |g'(z)|.$$

According to the condition of Equation (5), we only need to show that if Equation (6) holds, then

$$Re\left\{\frac{F^{k+1}f(z)}{(1-\gamma)z+\gamma F^kf(z)}\right\} = Re\left(w = \frac{A(z)}{B(z)}\right) > \alpha$$

where $z = re^{i\theta}$, $0 \le \theta \le 2\pi$, $0 \le r < 1$ and $0 \le \alpha < 1$.

Note that $A(z) = F^{k+1}f(z)$ and $B(z) = (1 - \gamma)z + \gamma F^k f(z)$.

Using the fact that $Re(w) > \alpha$ if and only if $|w - (1 + \alpha)| \le |w + (1 - \alpha)|$, it suffices to show that

$$|A(z) - (1+\alpha)B(z)| - |A(z) + (1-\alpha)B(z)| \le 0 \tag{7}$$

Substituting for A(z) and B(z) in $|A(z) - (1 + \alpha)B(z)|$, we obtain

$$|A(z) - (1+\alpha)B(z)| = \left| F^{k+1}f(z) - (1+\alpha) \left[(1-\gamma)z + \gamma F^{k}f(z) \right] \right|$$

$$= \left| \left[z + \sum_{n=2}^{\infty} C_{n(k+1)} a_{n} z^{n} + (-1)^{(k+1)} \sum_{n=1}^{\infty} C_{n(k+1)} \overline{b_{n} z^{n}} \right] - (1+\alpha) \left[(1-\gamma)z + \gamma z + \gamma \sum_{n=2}^{\infty} C_{nk} a_{n} z^{n} + \gamma (-1)^{k} \sum_{n=1}^{\infty} C_{nk} \overline{b_{n} z^{n}} \right] \right|$$

$$\leq \alpha |z| + \sum_{n=2}^{\infty} |(\gamma(1+\alpha)) - |n-k| |C_{nk}|a_{n}| |z|^{n}$$

$$+ \sum_{n=1}^{\infty} |(\gamma(1+\alpha)) + |n-k| |C_{nk}|a_{n}| |\overline{z}|^{n}.$$
(8)

Mathematics 2018, 6, 312 4 of 9

Now, substituting for A(z) and B(z) in $|A(z) + (1 - \alpha)B(z)|$, we obtain

$$|A(z) + (1 - \alpha)B(z)| = \left| F^{k+1}f(z) + (1 - \alpha) \left[(1 - \gamma)z + \gamma F^{k}f(z) \right] \right|$$

$$= \left| \left[z + \sum_{n=2}^{\infty} C_{n(k+1)}a_{n}z^{n} + (-1)^{(k+1)} \sum_{n=1}^{\infty} C_{n(k+1)}\overline{b_{n}z^{n}} \right] + (1 - \alpha) \left[(1 - \gamma)z + \gamma z + \gamma \sum_{n=2}^{\infty} C_{nk}a_{n}z^{n} + \gamma (-1)^{k} \sum_{n=1}^{\infty} C_{nk}\overline{b_{n}z^{n}} \right] \right|$$

$$\geq (2 - \alpha)|z| - \sum_{n=2}^{\infty} |(\gamma(\alpha - 1)) - |n - k||C_{nk}|a_{n}||z|^{n}$$

$$- \sum_{n=1}^{\infty} ||n - k| - (\gamma(1 - \alpha))|C_{nk}|a_{n}||\overline{z}|^{n}.$$
(9)

Substituting for Equations (8) and (9) in the inequality we obtain

$$\begin{split} &|A(z)-(1+\alpha)B(z)|-|A(z)+(1-\alpha)B(z)|\\ &\leq \alpha|z|+\sum_{n=2}^{\infty}|(\gamma(1+\alpha))-|n-k||C_{nk}|a_n||z|^n\\ &+\sum_{n=1}^{\infty}|(\gamma(1+\alpha))+|n-k||C_{nk}|b_n||\overline{z}|^n\\ &+(\alpha-2)|Z|+\sum_{n=2}^{\infty}|(\gamma(\alpha-1))-|n-k||C_{nk}|a_n||z|^n\\ &+\sum_{n=1}^{\infty}||n-k|-(\gamma(1-\alpha))|C_{nk}|b_n||\overline{z}|^n.\\ &=2\sum_{n=2}^{\infty}(|n-k|-\alpha\gamma)C_{nk}|a_n|+2\sum_{n=1}^{\infty}(|n-k|+\alpha\gamma)C_{nk}|b_n|-2(1-\alpha)\\ &<0. \text{ (by hypothesis)}. \end{split}$$

Therefore, we have

$$\sum_{n=2}^{\infty} (|n-k| - \alpha \gamma) C_{nk} |a_n| + \sum_{n=1}^{\infty} (|n-k| + \alpha \gamma) C_{nk} |b_n| \le (1-\alpha).$$

The harmonic univalent function

$$f(z) = z + \sum_{n=2}^{\infty} \frac{1}{\varnothing(n, k, \alpha, \gamma)} \mathcal{X}_n z^n + \sum_{n=1}^{\infty} \frac{1}{\psi(n, k, \alpha, \gamma)} \overline{\mathcal{Y}_n z^n},$$
 (10)

where $k \in \mathbb{N}_0$ and $\sum_{k=2}^{\infty} |\mathcal{X}_n| + \sum_{k=1}^{\infty} |\mathcal{Y}_n| = 1$, shows that the coefficient bound given by Equation (6) is sharp. Since

$$\begin{split} &\sum_{n=2}^{\infty} \varnothing(n,k,\alpha,\gamma)|a_n| + \sum_{n=1}^{\infty} \psi(n,k,\alpha,\gamma)|b_n| \\ &= \sum_{n=2}^{\infty} \varnothing(n,k,\alpha,\gamma) \frac{1}{\varnothing(n,k,\alpha,\gamma)} |\mathcal{X}_n| + \sum_{n=1}^{\infty} \psi(n,k,\alpha,\gamma) \frac{1}{\psi(n,k,\alpha,\gamma)} |\mathcal{Y}_n| \\ &= \sum_{n=2}^{\infty} |\mathcal{X}_n| + \sum_{n=1}^{\infty} |\mathcal{Y}_n| = 1. \end{split}$$

Now, we show that the condition of Equation (6) is also necessary for functions $f_k = h + \overline{g_k}$, where h and g_n are given by Equation (6).

Theorem 2. Let $f_k = h + \overline{g_k}$ be given by Equation (6). Then $f_k(z) \in A_{\overline{H}}(k, \alpha, \gamma)$ if and only if the coefficient in condition of Equation (6) holds.

Mathematics 2018, 6, 312 5 of 9

Proof. We only need to prove the "only if" part of the theorem because of $A_{\overline{H}}(k,\alpha,\gamma) \subset A_H(k,\alpha,\gamma)$. Then by Equation (5), we have

$$Re\left\{\frac{F^{k+1}f(z)}{(1-\gamma)z+\gamma F^k f(z)}\right\} > \alpha$$

or, equivalently

$$Re\left[\frac{z - \sum_{n=2}^{\infty} C_{n(k+1)} |a_n| z^n + (-1)^{2k+1} \sum_{n=1}^{\infty} C_{n(k+1)} |b_n| \overline{z}^n}{-\alpha \left\{ (1-\gamma)z + \gamma z + \gamma \sum_{n=2}^{\infty} C_{nk} |a_n| z^n + \gamma (-1)^{2k} \sum_{n=1}^{\infty} C_{nk} |b_n| \overline{z}^n \right\}}{(1-\gamma)z + \gamma z - \gamma \sum_{n=2}^{\infty} C_{nk} |a_n| z^n + \gamma (-1)^{2k} \sum_{n=1}^{\infty} C_{nk} |b_n| \overline{z}^n}\right] \ge 0$$
(11)

We observe that the above-required condition of Equation (11) must behold for all values of z in U. If we choose z to be real and $z \to 1^-$, we get

$$\frac{(1-\alpha) - \sum_{n=2}^{\infty} (|n-k| - \alpha\gamma) C_{nk} |a_n|}{+ \sum_{n=1}^{\infty} (|n-k| + \alpha\gamma) C_{nk} |b_n|} \\
\frac{1 - \gamma \sum_{n=2}^{\infty} C_{nk} |a_n| z^{n-1} + \gamma \sum_{n=1}^{\infty} C_{nk} |b_n| \overline{z}^{n-1}}{1 - \gamma \sum_{n=2}^{\infty} C_{nk} |a_n| z^{n-1} + \gamma \sum_{n=1}^{\infty} C_{nk} |b_n| \overline{z}^{n-1}} \ge 0$$
(12)

If the condition (6) does not hold, then the numerator in Equation (12) is negative for r sufficiently closed to 1. Hence there exist $z_0 = r_0$ in (0,1) for which the quotient in Equation (12) is negative, therefore there is a contradicts the required condition for $f_k \in A_{\overline{H}}(k,\alpha,\gamma)$.

2.2. Extreme Points

Here, we determine the extreme points of the closed convex hull of $A_{\overline{H}}(k,\alpha,\gamma)$, denoted by $clcoA_{\overline{H}}(k,\alpha,\gamma)$.

Theorem 3. Let f_k given by (1.2). Then $f_k \in A_{\overline{H}}(k, \alpha, \gamma)$ if and only if

$$f_k(z) = \sum_{n=1}^{\infty} (\mathcal{X}_n h_n + \mathcal{Y}_n g_{kn})$$

where

$$h_1(z) = z, h_n(z) = z - \frac{1}{\varnothing(n, k, \alpha, \gamma)} z^n, n = 2, 3, \dots,$$

 $g_{kn}(z) = z + (-1)^k \frac{1}{\psi(n, k, \alpha, \gamma)} \overline{z}^n, n = 1, 2, \dots,$

and

$$\mathcal{X}_n \geq 0$$
, $\mathcal{Y}_n \geq 0$, $\mathcal{X}_1 = 1 - \sum_{n=2}^{\infty} (\mathcal{X}_n + \mathcal{Y}_n) \geq 0$

In particular the extreme points of $A_{\overline{H}}(k, \alpha, \gamma)$ are $\{h_n\}$ and $\{g_{kn}\}$.

Proof. Suppose

$$f_{k}(z) = \sum_{n=1}^{\infty} (\mathcal{X}_{n}h_{n} + \mathcal{Y}_{n}g_{kn})$$

$$= \sum_{n=1}^{\infty} (\mathcal{X}_{n}h_{n} + \mathcal{Y}_{n}g_{kn})z - \sum_{n=2}^{\infty} \frac{1}{\varnothing(n,k,\alpha,\gamma)} \mathcal{X}_{n}z^{n} + (-1)^{k} \sum_{n=1}^{\infty} \frac{1}{\psi(n,k,\alpha,\gamma)} \mathcal{Y}_{n}\overline{z}^{n}$$

$$= z - \sum_{n=2}^{\infty} \frac{1}{\varnothing(n,k,\alpha,\gamma)} \mathcal{X}_{n}z^{n} + (-1)^{k-1} \sum_{n=1}^{\infty} \frac{1}{\psi(n,k,\alpha,\gamma)} \mathcal{Y}_{n}\overline{z}^{n}$$

Mathematics 2018, 6, 312 6 of 9

Then

$$\begin{split} &\sum_{n=2}^{\infty} \varnothing(n,k,\alpha,\gamma) |a_n| + \sum_{n=1}^{\infty} \psi(n,k,\alpha,\gamma) |b_n| \\ &= \sum_{k=2}^{\infty} \varnothing(n,k,\alpha,\gamma) \left(\frac{1}{\varnothing(n,k,\alpha,\gamma)} \mathcal{X}_n \right) + \sum_{k=1}^{\infty} \psi(n,k,\alpha,\gamma) \left(\frac{1}{\psi(n,k,\alpha,\gamma)} \mathcal{Y}_n \right) \\ &= \sum_{n=2}^{\infty} \mathcal{X}_n + \sum_{n=1}^{\infty} \mathcal{Y}_n = 1 - \mathcal{X}_1 \le 1 \; . \end{split}$$

Therefore $f_k(z) \in clcoA_{\overline{H}}(k, \alpha, \gamma)$.

Conversely, if $f_k(z) \in clcoA_{\overline{H}}(k, \alpha, \gamma)$. Then

Set
$$\mathcal{X}_n = \varnothing(n,k,\alpha,\gamma)|a_n|$$
, $(n=2,3,\ldots)$ and $\mathcal{Y}_n = \psi(n,k,\alpha,\gamma)|b_n|$, $(n=1,2,\ldots)$ and $\mathcal{X}_1 = 1 - \sum_{n=2}^{\infty} \mathcal{X}_n + \sum_{n=1}^{\infty} \mathcal{Y}_n$

The required representation is obtained as

$$f_{k}(z) = z - \sum_{n=2}^{\infty} |a_{n}| z^{n} + (-1)^{k} \sum_{n=1}^{\infty} |b_{n}| \overline{z}^{n}$$

$$= z - \sum_{n=2}^{\infty} \frac{1}{\varnothing(n,k,\alpha,\gamma)} \mathcal{X}_{n} z^{n} + (-1)^{k} \sum_{n=1}^{\infty} \frac{1}{\psi(n,k,\alpha,\gamma)} \mathcal{Y}_{n} \overline{z}^{n}$$

$$= z - \sum_{n=2}^{\infty} [z - h_{n}(z)] \mathcal{X}_{n} + \sum_{n=1}^{\infty} [z - g_{kn}(z)] \mathcal{Y}_{n}$$

$$= \left[1 - \sum_{n=2}^{\infty} \mathcal{X}_{n} - \sum_{n=1}^{\infty} \mathcal{Y}_{n}\right] z + \sum_{n=2}^{\infty} h_{n}(z) \mathcal{X}_{n} + \sum_{n=1}^{\infty} g_{kn}(z) \mathcal{Y}_{n} = \sum_{n=1}^{\infty} (\mathcal{X}_{n} h_{n} + \mathcal{Y}_{n} g_{kn})$$

2.3. Convex Combination

Here, we show that the class $A_{\overline{H}}(k,\alpha,\gamma)$ is closed under convex combination of its members. Let the function $f_{k,i}(z)$ be defined, for $i=1,2,\ldots,m$ by

$$f_{k,i}(z) = z - \sum_{n=2}^{\infty} |a_{n,i}| z^n + (-1)^k \sum_{n=1}^{\infty} |b_{n,i}| \overline{z}^n$$
(13)

Theorem 4. Let the functions $f_{k,i}(z)$, defined by Equation (13) be in the class $A_{\overline{H}}(k,\alpha,\gamma)$, for every $i=1,2,\ldots,m$. Then the functions $c_i(z)$ defined by

$$c_i(z) = \sum_{i=1}^{\infty} t_i f_{k,i}(z), \ 0 \le t_i \le 1$$

are also in the class $A_{\overline{H}}(k, \alpha, \gamma)$, where $\sum_{i=1}^{\infty} t_i = 1$.

Proof. According to the definition of $c_i(z)$, we can write

$$c_i(z) = z - \sum_{n=2}^{\infty} \left(\sum_{i=1}^{\infty} t_i |a_{n,i}| \right) z^n + (-1)^k \sum_{n=1}^{\infty} \left(\sum_{i=1}^{\infty} t_i |b_{n,i}| \right) \overline{z}^n$$

Mathematics **2018**, 6, 312

Further, since $f_{k,i}(z)$ are in $A_{\overline{H}}(k,\alpha,\gamma)$ for every $i=1,2,\ldots,m$, then by Theorem 2, we obtain

$$\begin{split} &\sum_{k=2}^{\infty} \varnothing(n,k,\alpha,\gamma) \left(\sum_{i=1}^{\infty} t_i |a_{n,i}| \right) + \sum_{k=1}^{\infty} \psi(n,k,\alpha,\gamma) \left(\sum_{i=1}^{\infty} t_i |b_{n,i}| \right) \\ &= \sum_{i=1}^{\infty} t_i \left(\sum_{k=2}^{\infty} \varnothing(n,k,\alpha,\gamma) |a_{n,i}| + \sum_{k=1}^{\infty} \psi(n,k,\alpha,\gamma) |b_{n,i}| \right) \leq \sum_{i=1}^{\infty} t_i = 1, \end{split}$$

which is required coefficient condition. \Box

2.4. Convolution (Hadamard Product) Property

Here, we show that the class $A_{\overline{H}}(k, \alpha, \gamma)$ is closed under convolution.

The convolution of two harmonic functions

$$f_k(z) = z - \sum_{n=2}^{\infty} |a_n| z^n + (-1)^k \sum_{n=1}^{\infty} |b_n| \overline{z}^n,$$
(14)

and

$$Q_n(z) = z - \sum_{n=2}^{\infty} |L_n| z^n + (-1)^k \sum_{n=1}^{\infty} |M_n| \overline{z}^n$$
(15)

is defined as

$$(f_n * Q_n)(z) = f_n(z) * Q_n(z)$$

$$= z - \sum_{n=2}^{\infty} |a_n L_n| z^n + (-1)^k \sum_{n=1}^{\infty} |b_n M_n| \overline{z}^n$$
(16)

Using Equations (12)–(14), we prove the following theorem.

Theorem 5. For $0 \le \mu \le \alpha < 1$, $k \in \mathbb{N}_0$, let $f_n \in A_{\overline{H}}(k, \alpha, \gamma)$ and $Q_n \in A_{\overline{H}}(k, \mu, \gamma)$. Then

$$f_n * Q_n \in A_{\overline{H}}(k, \alpha, \gamma) \subset A_{\overline{H}}(k, \mu, \gamma).$$

Proof. Let

$$f_k(z) = z - \sum_{n=2}^{\infty} |a_n| z^n + (-1)^k \sum_{n=1}^{\infty} |b_n| \overline{z}^n$$

be in the class $A_{\overline{H}}(k, \alpha, \gamma)$ and

$$Q_n(z) = z - \sum_{n=2}^{\infty} |L_n| z^n + (-1)^k \sum_{n=1}^{\infty} |M_n| \overline{z}^n,$$

be in $A_{\overline{H}}(k, \mu, \gamma)$.

Then the convolution $f_n * Q_n$ is given by Equation (16), we want to show that the coefficients of $f_n * Q_n$ satisfy the required condition given in Theorem 1.

For $Q_n \in A_{\overline{H}}(k, \mu, \gamma)$, we note that $|L_n| < 1$ and $|M_n| < 1$. Now consider convolution functions $f_n * Q_n$ as follows:

$$\begin{split} &\sum_{k=2}^{\infty} \varnothing(n,k,\mu,\gamma)|a_n||L_n| + \sum_{k=1}^{\infty} \psi(n,k,\mu,\gamma)|b_n||M_n| \\ &\leq \sum_{k=2}^{\infty} \varnothing(n,k,\mu,\gamma)|a_n| + \sum_{k=1}^{\infty} \psi(n,k,\mu,\gamma)|b_n| \leq 1. \end{split}$$

Since $0 \le \mu \le \alpha < 1$ and $f_n \in A_{\overline{H}}(k, \alpha, \gamma)$. Therefore $f_n * Q_n \in A_{\overline{H}}(k, \alpha, \gamma) \subset A_{\overline{H}}(k, \mu, \gamma)$. \square

Mathematics 2018, 6, 312 8 of 9

2.5. Integral Operator

Here, we examine the closure property of the class $A_{\overline{H}}(k,\alpha,\gamma)$ under the generalized Bernardi-Libera-Livingston integral operator (see References [10,11]) $\mathcal{L}_u(f)$ which is defined by,

$$\mathcal{L}_{u}(f) = \frac{u+1}{z^{u}} \int_{0}^{z} t^{u-1} f(t) dt, \ u > -1.$$
 (17)

Theorem 6. Let $f_k(z) \in A_{\overline{H}}(k, \alpha, \gamma)$. Then

$$\mathcal{L}_u(f_k(z)) \in A_{\overline{H}}(k,\alpha,\gamma)$$

Proof. From definition of $\mathcal{L}_u(f_k(z))$ given by Equation (17), it follows that

$$\mathcal{L}_{u}(f_{k}(z)) = \frac{u+1}{z^{u}} \int_{0}^{z} t^{u-1} \left(t - \sum_{n=2}^{\infty} |a_{n}| t^{n} + (-1)^{k} \sum_{n=1}^{\infty} |b_{n}| \bar{t}^{n} \right) dt$$

$$= z - \sum_{n=2}^{\infty} \frac{u+1}{u+n} |a_{n}| z^{n} + (-1)^{k} \sum_{n=1}^{\infty} \frac{u+1}{u+n} |b_{n}| z^{n}$$

$$= z - \sum_{n=2}^{\infty} G_{n} z^{n} + (-1)^{n-1} \sum_{n=1}^{\infty} L_{n} z^{n}$$

where

$$G_n = \frac{u+1}{u+n}|a_n|$$
, and $L_n = \frac{u+1}{u+n}|b_n|$

Hence

$$\begin{split} &\sum_{k=2}^{\infty} \varnothing(n,k,\alpha,\gamma) \frac{u+1}{u+n} |a_n| + \sum_{k=1}^{\infty} \psi(n,k,\alpha,\gamma) \frac{u+1}{u+n} |b_n| \\ &\leq \sum_{n=2}^{\infty} \varnothing(n,k,\alpha,\gamma) |a_n| + \sum_{n=1}^{\infty} \psi(n,k,\alpha,\gamma) |b_n| \leq 1. \end{split}$$

by Theorem 2.

Therefore, we have $\mathcal{L}_u(f_k(z)) \in A_{\overline{H}}(k,\alpha,\gamma)$. \square

Author Contributions: Conceptualization, methodology, validation, formal analysis, investigation, writing—original draft preparation, writing—review and editing, A.K.A.-k.; visualization and supervision, W.G.A.; project administration and supervision, S.S.A.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Clunie, J.; Sheil, S.T. Harmonic Univalent functions. *Ann. Acad. Sci. Fenn. Ser. A I. Math.* **1984**, 9, 3–25. [CrossRef]
- 2. Bernardi, S.D. Convex and Starlike Univalent Function. Trans. Am. Math. Soc. 1969, 135, 429–446. [CrossRef]
- 3. Dixit, K.K.; Pathak, A.L.; Porwal, S.; Agarwal, R. On a Subclass of Harmonic Univalent functions defined by Convolution and Integral Convolution. *Int. J. Pure Appl. Math.* **2011**, *63*, 255–264.
- 4. Bhaya, E.S.; Kareem, M.A. Whitney multi approximation. J. Univ. Babylon Pure Appl. Sci. 2016, 7, 2395–2399.
- 5. Bhaya, E.S.; Almurieb, H.A. Neural network trigonometric approximation. *J. Univ. Babylon Pure Appl. Sci.* **2018**, *7*, 385–403. [CrossRef]
- 6. Makinde, D.O.; Afolabi, A.O. On a Subclass of Harmonic Univalent Functions. *Trans. J. Sci. Technol.* **2012**, 2 1–11
- 7. Porwal, S.; Shivam, K. A New subclass of Harmonic Univalent functions defined by derivative operator. *Electron. J. Math. Anal. Appl.* **2017**, *5*, 122–134.

Mathematics **2018**, 6, 312

- 8. Makinde, D.O. On a new Differential Operator. *Theor. Math. Appl.* **2016**, *6*, 71–74.
- 9. Sharma, R.B.; Ravindar, B. On a subclass of harmonic univalent functions. *J. Phys. Conf. Ser.* **2018**, 1000, 012115. [CrossRef]
- 10. Bharavi, S.R.; Haripriya, M. On a class of α -convex functions subordinate to a shell-shaped region. *J. Anal.* **2017**, 25, 99–105.
- 11. Libera, R.J. Some Classes of Regular Univalent Functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).