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Abstract: In this article, three numerical iterative schemes, namely: Jacobi, Gauss–Seidel and
Successive over-relaxation (SOR) have been proposed to solve a fuzzy system of linear equations
(FSLEs). The convergence properties of these iterative schemes have been discussed. To display the
validity of these iterative schemes, an illustrative example with known exact solution is considered.
Numerical results show that the SOR iterative method with ω = 1.3 provides more efficient results in
comparison with other iterative techniques.
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1. Introduction

The subject of Fuzzy System of Linear Equations (FSLEs) with a crisp real coefficient matrix and
with a vector of fuzzy triangular numbers on the right-hand side arise in many branches of science
and technology such as economics, statistics, telecommunications, image processing, physics and even
social sciences. In 1965, Zadeh [1] introduced and investigated the concept of fuzzy numbers that can
be used to generalize crisp mathematical concept to fuzzy sets.

There is a vast literature on the investigation of solutions for fuzzy linear systems. Early work in
the literature deals with linear equation systems whose coefficient matrix is crisp and the right hand
vector is fuzzy. That is known as FSLEs and was first proposed by Friedman et al. [2]. For computing a
solution, they used the embedding method and replaced the original fuzzy n× n linear system by a
2n× 2n crisp linear system. Later, several authors studied FSLEs. Allahviranloo [3,4] used the Jacobi,
Gauss–Seidel and Successive over-relaxation (SOR) iterative techniques to solve FSLEs. Dehghan and
Hashemi [5] investigated the existence of a solution provided that the coefficient matrix is strictly
diagonally dominant matrix with positive diagonal entries and then applied several iterative methods
for solving FSLEs. Ezzati [6] developed a new method for solving FSLEs by using embedding method
and replaced an n × n FSLEs by two n × n crisp linear system. Furthermore, Muzziolia et al. [7]
discussed FSLEs in the form of A1x + b1 = A2x + b2 with A1, A2 being square matrices of fuzzy
coefficients and b1, b2 fuzzy number vectors. Abbasbandy and Jafarian [8] proposed the steepest
descent method for solving FSLEs. Ineirat [9] investigated the numerical handling of the fuzzy linear
system of equations (FSLEs) and fully fuzzy linear system of equations (FFSLEs).

Generally, FSLEs is handled under two main headings: square (n× n) and nonsquare (m× n)
forms. Most of the works in the literature dealwith square form. For example, Asady et al. [10],
extended the model of Friedman for n× n fuzzy linear system to solve general m× n rectangular
fuzzy linear system for ×n, where the coefficients matrix is crisp and the right-hand side column is a
fuzzy number vector. They replaced the original fuzzy linear system m× n by a crisp linear system
2m× 2n. Moreover, they investigated the conditions for the existence of a fuzzy solution.

Fuzzy elements of this system can be taken as triangular, trapezoidal or generalized fuzzy
numbers in general or parametric form. While triangular fuzzy numbers are widely used in earlier
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works, trapezoidal fuzzy numbers have neglected for along time. Besides, there exist lots of works
using the parametric and level cut representation of fuzzy numbers.

The paper is organized as follows: In Section 2, a fuzzy linear system of equations is introduced.
In Section 3, we present the Jacobi, Gauss–Seidel and SOR iterative methods for solving FSLEs with
convergence theorems. The proposed algorithms are implemented using a numerical example with
known exact solutions in Section 4. Conclusions are drawn in Section 5.

2. Fuzzy Linear System

Definition 1. In Reference [11]: An arbitrary fuzzy number in parametric form is represented by an ordered
pair of functions (v(r), v(r)), 0 ≤ r ≤ 1, which satisfy the following requirements:

(1) v(r) is a bounded left-continuous non-decreasing function over [0, 1].

(2) v(r) is a bounded left-continuous non-increasing function over [0, 1].

(3) v(r) ≤ v(r); 0 ≤ r ≤ 1.

Definition 2. In Reference [12]: For arbitrary fuzzy numbers u and vthe quantity

D(u, v) = sup
0≤r≤1

{max{|ur − vr|, |ur − vr|}}

is called the Hausdorff distance between u and v.

Definition 3. In Reference [13]: The n × n linear system

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

. . . .

. . . .

. . . .
an1x1 + an2x2 + . . . +annxn = bn

(1)

where the coefficients matrix A =
(
aij
)
, 1 ≤ i, j ≤ n is a crisp n × n matrix and each

bi ∈ E1, 1 ≤ i ≤ n, is fuzzy number, is called FSLEs.

Definition 4. In Reference [13]: A fuzzy number vector X = (x1, x2, . . . , xn)
t given by

xi =
(

xi(r), xi(r)
)
, 1 ≤ i ≤ n, 0 ≤ r ≤ 1 is called (in parametric form) a solution of the FSLEs (1) if

n
∑

j=1
aijxj =

n
∑

j=1
aijxj = bi,

n
∑

j=1
aijxj =

n
∑

j=1
aijxj = bi.

(2)

Following Friedman [2] we introduce the notations below:

x =
(

x1, x2, . . . xn,−x1,−x2, . . .− xn
)t

b =
(

b1, b2, . . . bn,−b1,−b2, . . .− bn

)t

S =
(
sij
)
, 1 ≤ i, j ≤ 2n, where sij are determined as follows:

aij ≥ 0⇒ sij = aij, si+n,j+n = aij,
aij < 0⇒ si,j+n = −aij, si+n,j = −aij.

(3)
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and any sij which is not determined by Equation (3) is zero. Using matrix notation, we have

SX = b (4)

The structure of S implies that sij ≥ 0 and thus

S =

(
B C
C B

)
(5)

where B contains the positive elements of A , C contains the absolute value of the negative elements of
A and A = B− C. An example in the work of Friedman [2] shows that the matrix S may be singular
even if A is nonsingular.

Theorem 1. In Reference [2]: The matrix S is nonsingular matrixif and only if the matrices A = B− C and
B + C are both nonsingular.

Proof. By subtracting the jth column of S, from its (n + j)th column for 1 ≤ j ≤ n we obtain

S =

(
B
C

C
B

)
→
(

B
C

C− B
B− C

)
= S1.

Next, we adding the (n + i) throw of S to its ith row for 1 ≤ i ≤ n then we obtain

S1 =

(
B
C

C− B
B− C

)
→
(

B + C
C

0
B− C

)
= S2.

Clearly, |S| = |S1| = |S2| = |B + C||B− C| = |B + C||A|.
Therefore
|S| 6= 0 if and only if |A| 6= 0 and |B + C| 6= 0,
These concludes the proof. �

Corollary 1. In Reference [2]: If a crisp linear system does not have a unique solution, the associated
fuzzy linear system does not have one either.

Definition 5. In Reference [14]: If X =
(

x1, x2, . . . xn,−x1,−x2, . . . ,−xn
)T is a solution of

system (4) and for each 1 ≤ i ≤ n, when the inequalities xi ≤ xi hold, then the solution

X =
(

x1, x2, . . . xn,−x1,−x2, . . . ,−xn
)T is called a strong solution of the system (4) .

Definition 6. In Reference [14]: If X =
(

x1, x2, . . . xn,−x1,−x2, . . . ,−xn
)T is a solution of

system (4) and for some i ∈ [1, n], when the inequality xi ≥ xi hold, then the solution

X =
(

x1, x2, . . . xn,−x1,−x2, . . . ,−xn
)T is called a weak solution of the system (4).

Theorem 2. In Reference [14]: Let S =

(
B C
C B

)
be a nonsingular matrix. Then the system (4) has a

strong solution if and only if (B + C)−1
(

b− b
)
≤ 0.

Theorem 3. In Reference [14]: The FSLEs (1) has a unique strong solution if and only if the following
conditions hold:

(1) The matrices

A = B− C and B + C are both invertible matrices.
(2) (B + C)−1

(
b− b

)
≤ 0.
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3. Iterative Schemes

In this section we will present the following iterative schemes for solving FSLEs.

3.1. The Jacobi and Gauss–Seidel Iterative Schemes

An iterative technique for solving an n× n linear system AX = b involves a process of converting
the system AX = b into an equivalent system X = TX + C. After selecting an initial approximation
X0, a sequence {Xk} is generated by computing

Xk = TXk−1 + C k ≥ 1.

Definition 7. In Reference [4]: A square matrix A is called diagonally dominant matrix

if
∣∣aij
∣∣ ≥ n

∑
i=1,i 6=j

∣∣aij
∣∣, j = 1, 2, . . . , n. A is called strictly diagonally dominant if

∣∣aij
∣∣ > n

∑
i=1,i 6=j

∣∣aij
∣∣,

j = 1, 2, . . . , n.

Next, we are going to present the following theorems.

Theorem 4. In Reference [3]: Let the matrix A in Equation (1) be strictly diagonally dominant then both the
Jacobi and the Gauss–Seidel iterative techniques converge to A−1Y for any X0.

Theorem 5. In Reference [3]: The matrix A in Equation (1) is strictly diagonally dominant if and only if
matrix S is strictly diagonally dominant.

Proof. For more details see [3].
From [3], without loss of generality, suppose that sii > 0 for all i = 1, 2, . . . , 2n.

Let S = D + L + U where

D =

[
D1 0
0 D1

]
, L =

[
L1 0
S2 L1

]
, U =

[
U1 S2

0 U1

]

(D1)ii = sii > 0, I = 1, 2, . . . , n, and assume S1 = D1 + L1 + U1. In the Jacobi method, from the
structure of SX = Y we have[

D1 0
0 D1

][
X
X

]
+

[
L1 + U1 S2

S2 L1 + U1

][
X
X

]
=

[
Y
Y

]

then
X = D−1

1 Y− D−1
1 (L1 + U1)X− D−1

1 S2X,
X = D−1

1 Y− D−1
1 (L1 + U1)X− D−1

1 S2X.
(6)

Thus, the Jacobi iterative technique will be

Xk+1 = D−1
1 Y− D−1

1 (L1 + U1)Xk − D−1
1 S2Xk,

Xk+1
= D−1

1 Y− D−1
1 (L1 + U1)Xk − D−1

1 S2Xk, k = 0, 1, . . .
(7)

The elements of Xk+1 =
(

Xk+1, Xk+1
)t

are

xk+1
i (r) = 1

si,i

[
y

i
(r)−

n
∑

j=1,j 6=i
si,jxk

j (r)−
n
∑

j=1
si,n+jxk

j (r)

]
,

xk+1
i (r) = 1

si,i

[
yi(r)−

n
∑

j=1,j 6=i
si,jxk

j (r)−
n
∑

j=1
si,n+jxk

j (r)

]
,

k = 0, 1, 2, . . . , i = 1, 2, . . . , n.
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The result in the matrix form of the Jacobi iterative technique is Xk+1 = PXk + C where

P =

[
−D−1

1 (L1 + U1) −D−1
1 S2

−D−1
1 S2 −D−1

1 (L1 + U1)

]
, C =

[
D−1

1 Y
D−1

1 Y

]
, X =

[
X
X

]
.

For the Gauss–Seidel method, we have:[
D1 + L1 0

S2 D1 + L1

][
X
X

]
+

[
U1 S2

0 U1

][
X
X

]
=

[
Y
Y

]
(8)

then
X = (D1 + L1)

−1Y− (D1 + L1)
−1U1X− (D1 + L1)

−1S2X,
X = (D1 + L1)

−1Y− (D1 + L1)
−1U1X− (D1 + L1)

−1S2X.
(9)

Thus, the Gauss–Seidel iterative technique becomes

Xk+1 = (D1 + L1)
−1Y− (D1 + L1)

−1U−1
1 Xk − (D1 + L1)

−1S2Xk,

Xk+1
= (D1 + L1)

−1Y− (D1 + L1)
−1U−1

1 Xk − (D1 + L1)
−1S2Xk, k = 0, 1, . . .

(10)

So the elements of Xk+1 =
(

Xk+1, Xk+1
)t

are

xk+1
i (r) = 1

si,i

[
y

i
(r)−

i−1
∑

j=1
si,jxk+1

j (r)−
n
∑

j=i+1
si,jxk

j (r)−
n
∑

j=1
si,n+jxk

j (r)

]
,

xk+1
i (r) = 1

si,i

[
yi(r)−

i−1
∑

j=1
si,jxk

j (r)−
n
∑

j=i+1
si,jxk

j (r)−
n
∑

j=1
si,n+jxk

j (r)

]
,

k = 0, 1, 2, . . . , i == 1, 2, . . . , n.

This results in the matrix form of the Gauss–Seidel iterative technique as

Xk+1 = PXk + C

P =

[
−(D1 + L1)

−1U1 −(D1 + L1)
−1S2

−(D1 + L1)
−1S2 −(D1 + L1)

−1U1

]
, C =

[
(D1 + L1)

−1Y
(D1 + L1)

−1Y

]
, X =

[
X
X

]
.

�

From Theorems 4 and 5, both Jacobi and Gauss–Seidel iterative schemes converge to the unique
solution X = A−1Y, for any X0, where X ∈ R2n and

(
X, X

)
∈ En. For a given tolerance ε > 0 the

decision to stop is ∣∣∣∣∣∣Xk+1 − Xk
∣∣∣∣∣∣∣∣∣∣∣∣Xk+1

∣∣∣∣∣∣ < ε ,

∣∣∣∣∣∣Xk+1 − Xk
∣∣∣∣∣∣∣∣∣∣∣∣Xk+1

∣∣∣∣∣∣ < ε , k = 0, 1, . . .

3.2. Successive over-Relaxation (SOR) Iterative Method

In this section we turn next to a modification of the Gauss–Seidel iteration which known as SOR
iterative method. By multiplying system (8) by D−1 gives,[

I + D−1
1 L1 0

S2 I + D−1
1 L1

][
X
X

]
+

[
D−1

1 U1 S2

0 D−1
1 U1

][
X
X

]
=

[
D−1

1 Y
D−1

1 Y

]
(11)

Let D−1
1 U1 = U1,D−1

1 L1 = L1 then



Mathematics 2018, 6, 19 6 of 9

[
I + L1 0

S2 I + L1

][
X
X

]
+

[
U1 S2

0 U1

][
X
X

]
=

[
D−1

1 Y
D−1

1 Y

]
(12)

Hence
(I + L1)X = D−1Y−U1X− S2X,(I + L1)X = D−1Y−U1X− S2X (13)

for some parameter ω :

(I + ωL1)X = ωD−1Y− [(1−ω)I + ωU1]X−ωS2X,
(I + ωL1)X = ωD−1Y− [(1−ω)I + ωU1]X−ωS2X.

(14)

If ω = 1, then clearly X is just the Gauss–Seidel solution (13). Then the SOR iterative method
takes the form:

Xk+1 = (I + ωL1)
−1ωD−1Y− (I + ωL1)

−1[(1−ω)I + ωU1]Xk − (I + ωL1)
−1ωS2Xk,

Xk+1
= (I + ωL1)

−1ωD−1Y− (I + ωL1)
−1[(1−ω)I + ωU1]X

k − (I + ωL1)
−1ωS2Xk.

(15)

Consequently, this results in the matrix form of the SOR iterative method as
XK+1 = PXK + C where

P =

[
−(I + ωL1)

−1[(1−ω)I + ωU1] −(I + ωL1)
−1ωS2

−(I + ωL1)
−1ωS2 −(I + ωL1)

−1[(1−ω)I + ωU1]

]
,

C =

[
(I + ωL1)

−1ωD−1

(I + ωL1)
−1ωD−1

]
.

For 0 < ω < 1 this method is called the successive under-relaxation method that can be used to
achieve convergence for systems that are not convergent by the Gauss–Seidel method.

For ω > 1 the method is called the SOR method that can be used to accelerate of convergence of
linear systems that are already convergent by the Gauss–Seidel method.

Theorem 6. In Reference [4]: If S is a positive definite matrix and 0 < ω < 2 then the SOR method converges
for any choice of initial approximate vector X0.

4. Numerical Example and Results

To demonstrate the efficiency and accuracy of the proposed iterative techniques, we consider the
following numerical example with known exact solution.

Example 1. Consider the 6× 6 non-symmetric fuzzy linear system

9x1 + 2x2 − x3 + x4 + x5 − 2x6 = (−53 + 8r,−25− 20r)
−x1 + 10x2 + 2x3 + x4 − x5 − x6 = (−13 + 9r, 18− 22r)
x1 + 3x2 + 9x3 − x4 + x5 + 2x6 = (18 + 17r, 73− 38r)

2x1 − x2 + x3 + 10x4 − 2x5 + 3x6 = (31 + 16r, 61− 14r)
x1 + x2 − x3 + 2x4 + 7x5 − x6 = (34 + 8r, 58− 16r)
3x1 + 2x2 + x3 + x4 − x5 + 10x6 = (51 + 26r, 99− 22r)

(16)
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The extended 12× 12 matrix is

S =



9 2 0 1 1 0 0 0 −1 0 0 −2
0 10 2 1 0 0 −1 0 0 0 −1 −1
1 3 9 0 1 2 0 0 0 −1 0 0
2 0 1 10 0 3 0 −1 0 0 −2 0
1 1 0 2 7 0 0 0 −1 0 0 −1
3 2 1 1 0 10 0 0 0 0 −1 0
0 0 −1 0 0 −2 9 2 0 1 1 0
−1 0 0 0 −1 −1 0 10 2 1 0 0

0 0 0 −1 0 0 1 3 9 0 1 2
0 −1 0 0 −2 0 2 0 1 10 0 3
0 0 −1 0 0 −1 1 1 0 2 7 0
0 0 0 0 −1 0 3 2 1 1 0 10


X = S−1Y =

0.1136 −0.0220 0.0041 −0.0050 −0.0148 −0.0020 −0.0088 −0.0046 0.0100 0.0011 −0.0050 0.0167
0.0007 0.1034 −0.0206 −0.0117 0.0020 0.0096 0.0073 −0.0065 0.0010 −0.0057 0.0116 0.0122
−0.0041 −0.0267 0.1184 0.0080 −0.0130 −0.0266 −0.0023 0.0044 −0.0035 0.0133 −0.0045 −0.0081
−0.0126 0.0090 −0.0075 0.1023 0.0022 −0.0258 −0.0006 0.0081 −0.0023 −0.0071 0.0272 0.0012
−0.0130 −0.0136 0.0037 −0.0253 0.1450 0.0042 −0.0049 −0.0064 0.0150 0.0028 −0.0100 0.0067
−0.0330 −0.0130 −0.0067 −0.0069 0.0041 0.1046 0.0002 0.0001 −0.0023 −0.0023 0.0114 −0.0063
−0.0088 −0.0046 0.0100 0.0011 −0.0050 0.0167 0.1136 −0.0220 0.0041 −0.0050 −0.0148 −0.0020
0.0073 −0.0065 0.0010 −0.0057 0.0116 0.0122 0.0007 0.1034 −0.0206 −0.0117 0.0020 0.0096
0.0023 0.0044 −0.0035 0.0133 −0.0045 −0.0081 −0.0041 −0.0267 0.1184 0.0080 −0.0130 −0.0266
−0.0006 0.0081 −0.0023 −0.0071 0.0272 0.0012 −0.0126 0.0090 −0.0075 0.1023 0.0022 −0.0258
−0.0049 −0.0064 0.0150 0.0028 −0.0100 0.0067 −0.0130 −0.0136 0.0037 −0.0253 0.1450 0.0042
0.0002 0.0001 −0.0023 −0.0023 0.0114 −0.0063 −0.0330 −0.0130 −0.0067 −0.0069 0.0041 0.1046





−53 + 8r
−13 + 9r
18 + 17r
31 + 16r
34 + 8r

51 + 26r
−25− 20r

18− 22r
73− 38r
61− 14r
58− 16r
99− 22r


The exact solution is

x1 =
(

x1(r), x1(r)
)
= (−4.12 + 0.12r, −2.88− 1.12r),

x2 =
(

x2(r), x2(r)
)
= (−0.25 + 0.25r, 1.25− 1.25r),

x3 =
(

x3(r), x3(r)
)
= (0.78 + 1.22r, 5.22− 3.22r),

x4 =
(

x4(r), x4(r)
)
= (3.6 + 0.4r, 4.4− 0.4r),

x5 =
(

x5(r), x5(r)
)
= (6.66 + 0.34r, 8.34− 1.34r),

x6 =
(

x6(r), x6(r)
)
= (6.78 + 2.22r, 10.22− 1.22r).

The exact and approximate solution using the Jacobi, Gauss–Seidel and the SOR iterative schemes
are shown in Figures 1–3 respectively. The Hausdoeff distance of solutions with ε = 10−3 in the Jacobi
method is 0.4091 × 10−3 in the Gauss–Seidel method is 0.4335 × 10−4 and in the SOR method with
ω = 1.3 is 5.5611 × 10−4.
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method with ω = 1.3 is 5.5611 × 10−4.
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5. Conclusions

In this article the Jacobi, Gauss–Seidel and SOR iterative methods have been used to solve the
FSLEs where the coefficient matrix arrays are crisp numbers, the right-hand side column is an arbitrary
fuzzy vector and the unknowns are fuzzy numbers. The numerical results have shown to be in a
close agreement with the analytical ones. Moreover, Figures 1–3 containing the Hausdorff distance
of solutions show clearly that the SOR iterative method is more efficient in comparison with other
iterative techniques.
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