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Abstract: In this article, three numerical iterative schemes, namely: Jacobi, Gauss—Seidel and
Successive over-relaxation (SOR) have been proposed to solve a fuzzy system of linear equations
(FSLEs). The convergence properties of these iterative schemes have been discussed. To display the
validity of these iterative schemes, an illustrative example with known exact solution is considered.
Numerical results show that the SOR iterative method with w = 1.3 provides more efficient results in
comparison with other iterative techniques.
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1. Introduction

The subject of Fuzzy System of Linear Equations (FSLEs) with a crisp real coefficient matrix and
with a vector of fuzzy triangular numbers on the right-hand side arise in many branches of science
and technology such as economics, statistics, telecommunications, image processing, physics and even
social sciences. In 1965, Zadeh [1] introduced and investigated the concept of fuzzy numbers that can
be used to generalize crisp mathematical concept to fuzzy sets.

There is a vast literature on the investigation of solutions for fuzzy linear systems. Early work in
the literature deals with linear equation systems whose coefficient matrix is crisp and the right hand
vector is fuzzy. That is known as FSLEs and was first proposed by Friedman et al. [2]. For computing a
solution, they used the embedding method and replaced the original fuzzy #n x # linear system by a
2n x 2n crisp linear system. Later, several authors studied FSLEs. Allahviranloo [3,4] used the Jacobi,
Gauss-Seidel and Successive over-relaxation (SOR) iterative techniques to solve FSLEs. Dehghan and
Hashemi [5] investigated the existence of a solution provided that the coefficient matrix is strictly
diagonally dominant matrix with positive diagonal entries and then applied several iterative methods
for solving FSLEs. Ezzati [6] developed a new method for solving FSLEs by using embedding method
and replaced an n x n FSLEs by two n X n crisp linear system. Furthermore, Muzziolia et al. [7]
discussed FSLEs in the form of Ajx +b; = Apx + by with A;, Aj being square matrices of fuzzy
coefficients and by, by fuzzy number vectors. Abbasbandy and Jafarian [8] proposed the steepest
descent method for solving FSLEs. Ineirat [9] investigated the numerical handling of the fuzzy linear
system of equations (FSLEs) and fully fuzzy linear system of equations (FFSLESs).

Generally, FSLEs is handled under two main headings: square (n x n) and nonsquare (m x n)
forms. Most of the works in the literature dealwith square form. For example, Asady et al. [10],
extended the model of Friedman for n x n fuzzy linear system to solve general m x n rectangular
fuzzy linear system for xn, where the coefficients matrix is crisp and the right-hand side column is a
fuzzy number vector. They replaced the original fuzzy linear system m X n by a crisp linear system
2m x 2n. Moreover, they investigated the conditions for the existence of a fuzzy solution.

Fuzzy elements of this system can be taken as triangular, trapezoidal or generalized fuzzy
numbers in general or parametric form. While triangular fuzzy numbers are widely used in earlier
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works, trapezoidal fuzzy numbers have neglected for along time. Besides, there exist lots of works
using the parametric and level cut representation of fuzzy numbers.

The paper is organized as follows: In Section 2, a fuzzy linear system of equations is introduced.
In Section 3, we present the Jacobi, Gauss—Seidel and SOR iterative methods for solving FSLEs with
convergence theorems. The proposed algorithms are implemented using a numerical example with
known exact solutions in Section 4. Conclusions are drawn in Section 5.

2. Fuzzy Linear System

Definition 1. In Reference [11]: An arbitrary fuzzy number in parametric form is represented by an ordered

pair of functions (v(r),v(r)), 0 < r < 1, which satisfy the following requirements:

(1) o(r) is a bounded left-continuous non-decreasing function over [0, 1.
2 ofr
3 v

) is a bounded left-continuous non-increasing function over [0, 1.
y<o(r),0 <r <1

Definition 2. In Reference [12]: For arbitrary fuzzy numbers u and vthe quantity

D(u,v) = sup {max{|u’ — o', [@ 7|}
0<r<1

is called the Hausdorff distance between u and v.
Definition 3. In Reference [13]: The n X n linear system

apxy +apxy+ ...+ apxp =b
Ap1X1 +dpxo+ ... 4+ ayxy =b

)

ap1X1 +apX2 + ... +anuxy = by

where the coefficients matrix A = (ai]- ), 1 < i, j < misacrispnxn matrix and each

b; € ElL1<i<n, is fuzzy number, is called FSLEs.

Definition 4. In Reference [13]: A fuzzy number vector X = (x1, Xa, ..., X,)" given by
xi = (xi(r),xi(r)),1 <i<n, 0<r<1iscalled (in parametric form) a solution of the FSLEs (1) if

@

Following Friedman [2] we introduce the notations below:
_ L\t
x = (x1,Xp, ... %0, —X7,—X3,... — Xp)
_ N\t
b= (b by by, b1, =bs,... ~ by)
S = (s,-]-), 1<1i, j<2n, wheres; aredetermined as follows:

aij 2 0 = sij = aij, Sitn,jyn = Aijs
aij <0 = sjjin = —ajj, Siyn; = —4ij.

®)
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and any s;; which is not determined by Equation (3) is zero. Using matrix notation, we have
SX =10 4)

The structure of S implies that Sij > 0 and thus

B C
(2 %)

where B contains the positive elements of A, C contains the absolute value of the negative elements of
Aand A = B — C. An example in the work of Friedman [2] shows that the matrix S may be singular
even if A is nonsingular.

Theorem 1. In Reference [2]: The matrix S is nonsingular matrixif and only if the matrices A = B — C and
B + C are both nonsingular.

Proof. By subtracting the jth column of S, from its (n + j)th column for 1 < j < n we obtain

B C B C-B
S(c B>_><C B—C)Sl'

Next, we adding the (1 + i) throw of S to its ith row for 1 < i < n then we obtain

o _(B c-B\_ (B+cC 0\ _g
1"\c B-cC C B-C | %
Clearly, |S| = |S1]| = |S2| = |[B+C||B—C| = |B+C||A]|.
Therefore

|S| # 0if and only if [A| # 0and |B+ C| # 0,
These concludes the proof. [

Corollary 1. In Reference [2]: If a crisp linear system does not have a unique solution, the associated
fuzzy linear system does not have one either.

Definition 5. In Reference [14]: If X = (ﬂ,&,...&, —X1, —Tz,...,—fn)T is a solution of
system (4) and for each 1 < i < n, when the inequalities x; < X; hold, then the solution
X = (x1,%0,...%0, — X1, —X2,..., —E)T is called a strong solution of the system (4) .

Definition 6. In Reference [14]: If X = (x1,X,...%s, —¥1, —JE,...,—E)T is a solution of
system (4) and for some i € [l,n], when the inequality x; > X; hold, then the solution
X = (x1,%,...%0, —X1,—X2,..., —E)T is called a weak solution of the system (4).

B

C B
strong solution if and only if (B4 C) ™" (Q - 5) <0.

Theorem 2. In Reference [14]: Let S = < > be a nonsingular matrix. Then the system (4) has a

Theorem 3. In Reference [14]: The FSLEs (1) has a unique strong solution if and only if the following
conditions hold:

(1)  The matrices

A = B — Cand B + C are both invertible matrices.
@ (B+0) " (b-b) <0,
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3. Iterative Schemes

In this section we will present the following iterative schemes for solving FSLEs.

3.1. The Jacobi and Gauss—Seidel Iterative Schemes

An iterative technique for solving an n x n linear system AX = b involves a process of converting
the system AX = b into an equivalent system X = TX + C. After selecting an initial approximation
X0, a sequence { X} is generated by computing

xXk=Tx"14+C k=1
Definition 7. In Reference [4]: A square matrix A is called diagonally dominant matrix

n
i fayl = Ll

j=12,...,n

n
, j=12,...,n. A is called strictly diagonally dominant if |ai]-| > ) ’aij
i=1,i#j

7

Next, we are going to present the following theorems.

Theorem 4. In Reference [3]: Let the matrix A in Equation (1) be strictly diagonally dominant then both the
Jacobi and the Gauss—Seidel iterative techniques converge to A~'Y for any X°.

Theorem 5. In Reference [3]: The matrix A in Equation (1) is strictly diagonally dominant if and only if
matrix S is strictly diagonally dominant.

Proof. For more details see [3].
From [3], without loss of generality, suppose that s; > 0 for all i = 1,2,...,2n.
Let S = D + L + U where

D; 0
0 D

U S

D =
0 U

Ly 0
L: =
A

(D1);; =sii >0, I=1,2,...,nand assume S; = D; + L1 4 U;. In the Jacobi method, from the
structure of SX = Y we have

Dy 0 X n L+ Sz X|_|Y
0 D X S» L+ U X| |Y
then -
X =D;'Y - D/ YL + Up)X — Dy !S:X, ©)
X =D;'Y—D;}(Ly + U1)X — D; 'S, X.
Thus, the Jacobi iterative technique will be
XM =Dty — DLy + Uy )X - Dflszyk, @)
X = DY - DMLy 4+ U)X = DS, XK, k=0,1,...

N
The elements of Xkt1 = (K’”’l, XkH) are

k+1 1 L k L
()= |y ()= X sixi(r) = X sing X (r) |,
ii i j=1,j#i ] =1 ]
—k+1 1 |— L —k L
X; ( ) = 3 z(r) - X Szjx‘(r) Y si n+jx (1’) ’
i D 4 j
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The result in the matrix form of the Jacobi iterative technique is X**! = PX* + C where

p_ | ~Dr'(Li+U) -D;'S, _ | D'y X
-D;'s, Dy YL+ ) | DY |’ X |
For the Gauss—Seidel method, we have:
D1+ L 0 X n U S X! |Y ®)
Sy D+ Ly X 0 u X| |Y
then o
X =(D1+L1) 'Y = (D1 + L) ' WhX — (D1 + L)' X, o)
X =(Dy+Ly) 'Y = (D1 +Ly) 'UhX — (D1 + L1) 'S, X.
Thus, the Gauss—Seidel iterative technique becomes
X1 = (Dy + L) 'Y — (D1 + Ly) U7X — (Dy + Ll)_lszyk, (10)
X = (D) + L) 'Y — (Dy + L) UPIRS = (Dy+ Ly) T 'SoxE, k=0,1,...

—kIn
So the elements of Xk+1 = (Kkﬂ, Xk+l> are

i

—1 n n
k k ]
B (r) = & y(r)— % Si,j&]-+1 (r— X Si,j&}“(r) -0 5i,n+jx;‘<(r)] ,
4 j=1 j=i+1 j=1
i—1 n n
) = L |wilr) — L osiy@i(r) — X sixi(r) -
i K ] .= ] i
. j=1 j=i+1 =1
k=0,12,..., i==1,2,...,n

Sl‘,ﬂﬂ*]‘gﬁ'( (7’)‘| 7

This results in the matrix form of the Gauss—Seidel iterative technique as

Xkl =pxk+C
*(D1+L1)711U1 —(Ds +L1)71152
—(D1+L1)"°S2 —(Di1+Ly) Uy

(Dl + L1)

P:
(D1 +Ly)

= y X -

7

,11
_1?

< <

O

From Theorems 4 and 5, both Jacobi and Gauss-Seidel iterative schemes converge to the unique
solution X = A~1Y, for any X, where X € R*" and (X, X) € E". For a given tolerance € > 0 the
decision to stop is

‘ ’Yk—i_] . Yk’ ’

<]

ka+1 _XkH

<E€,
]

<e, k=0,1,...

3.2. Successive over-Relaxation (SOR) Iterative Method
In this section we turn next to a modification of the Gauss—Seidel iteration which known as SOR

iterative method. By multiplying system (8) by D! gives,

DU S,
0 D'y

-1
D;ly

+ (11)

Dy

X
X 1

S, I+ D;'Ly X

I+D;1L1 0 ][X

Let Dy 'Uy = Uy, Dy 'Ly = Ly then
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I+L; 0 X U S || X D'y
L g - = 12
S, I+1,4 [X 1o U X DY (12)
Hence
(I+L)X =D -1 X - S$X,(I+ L)X =D Y - U)X — $,X (13)
for some parameter w :
(I+wL))X = wD Y — [(1 - w)] +wl]X — wSX, (14)

(I+wL))X = wD™Y — [(1 — w) + wl]X — wSX.

If w = 1, then clearly X is just the Gauss-Seidel solution (13). Then the SOR iterative method
takes the form:

X1 = (I + wLy) 'wD 1Y — (I + wly) (1 — w)I + wly] XF — (I + wly) 'wS, X,

= - = (15)
X = (14 wly) 'wD Y — (I +wLy) " [(1 = )] + wlh] X" — (I + wly) 'wSXE.

Consequently, this results in the matrix form of the SOR iterative method as
XK+ = PXX 4 C where

—(I4wLy) (1 — w)I + wly] —(I4wL1) *wS,
—(I4wLi) 'wS, —(I+wL) (1 —w)+wly] |’

(I+ wLy) 'wD™!

(I4+wLy) *wD™!

P:

For 0 < w < 1 this method is called the successive under-relaxation method that can be used to
achieve convergence for systems that are not convergent by the Gauss—-Seidel method.

For w > 1 the method is called the SOR method that can be used to accelerate of convergence of
linear systems that are already convergent by the Gauss—Seidel method.

Theorem 6. In Reference [4]: If S is a positive definite matrix and 0 < w < 2 then the SOR method converges
for any choice of initial approximate vector X°.

4. Numerical Example and Results

To demonstrate the efficiency and accuracy of the proposed iterative techniques, we consider the
following numerical example with known exact solution.

Example 1. Consider the 6 X 6 non-symmetric fuzzy linear system

9x1+ 2xp — x3+ x4+ x5 — 2x¢ = (—53+8r, —25—20r)
—x1+10xp + 2x3+ x4 — x5 — x¢ = (—13+9r, 18 —22r)
x1+ 3xp + 93— x4+ x5+ 2x¢ = (18+17r,73 — 38r)
2x1 — X3 + x3+10x4 —2x5+ 3x = (31+ 167,61 — 14r)
X1+ x— x3+ 2x4+7x5— x¢ = (344 8r,58 —16r)
3x1+ 2x+ x3+x4— x5+ 10x¢ = (51 + 267,99 — 22r)

(16)
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The extended 12 x 12 matrix is

9 2 0 1 1 o 0 O -1 0 0 =2
o 10 2 1 0 O -1 0 O 0 -1 -1
13 9 o0 1 2 o0 O 0 -1 0 O
2 0 1 10 0 3 0O -1 0 0 =2
1 1 0o 2 7 0 0 0 -1 0 0 -1
5_ 3 2 1 10 10 0 0 0 0 -1 0
0o 0 -1 0 0 2 9 2 0 1 1 0
-1 0 o0 0 -1 -1 0 10 2 1 0 O
o o o0 -1 0 O 1 3 9 o0 1 2
o -1 o 0 -2 0 2 0 1 10 0 3
o o -1 0 0 -1 1 1 0 7 0
o o o o0 -1 0 3 2 1 0 10
X=51ly=
[ 01136 —00220 00041 00050 —00148 —0.0020 —0.0088 —00046 00100 00011 —0005 00167 |r .. o
0.0007 01034 —0.0206 —0.0117 00020 0009 00073 —0.0065 0.0010 —0.0057 0.0116  0.0122 s 9§
—0.0041 —0.0267 01184 00080 —0.0130 —0.0266 —0.0023 0.0044 —0.0035 00133 —0.0045 —0.0081 18+ 170
—00126 00090 —0.0075 01023 00022 —0.0258 —0.0006 0.0081 —0.0023 —0.0071 0.0272  0.0012 314 16r
—0.0130 —0.0136 00037 —0.0253 01450 00042 —0.0049 —0.0064 0.0150  0.0028 —0.0100 0.0067 8
—0.0330 —0.0130 —0.0067 —0.0069 0.0041  0.046 0.0002 00001 —0.0023 —0.0023 0.0114 —0.0063 51426
~0.0088 —00046 00100 00011 —00050 00167 01136 00220 00041 00050 —0.0148 00020 | | ° " 251‘
0.0073 —0.0065 0.0010 —0.0057 00116 00122 00007 01034 —0.0206 —0.0117 0.0020  0.0096 18 2r
0.0023  0.0044 —0.0035 00133 —0.0045 —0.0081 -—0.0041 —0.0267 01184 00080 —0.0130 —0.0266 7 8
—0.0006 0.0081 —0.0023 —0.0071 00272 00012 —00126 00090 —0.0075 01023  0.0022 —0.0258 61 14r
—0.0049 —0.0064 00150 0.0028 —0.0100 00067 —0.0130 —0.0136 0.0037 —0.0253 01450  0.0042 5 16
00002  0.0001 —0.0023 —0.0023 00114 —0.0063 —0.0330 —0.0130 —0.0067 —0.0069 0.0041  0.1046 9 22;

The exact solution is
x1 = (xq(r), 7 (r)) = (—412+0.12r, —2.88 — 1.12r),

xy = (x2(r),%2(r)) = (—0.25+0.25r, 1.25 — 1.25r),

x3 = (x3(r),%3(r)) = (0.78 + 1.22r, 5.22 — 3.22r),
xg = (x4(r),%5(r)) = (3.6 +0.4r, 4.4 —04r),

x5 = (x5(r), ¥5(r)) = (6.66 + 0.34r, 834 — 1.34r),

xe = (x6(r), % (r)) = (6.78 +2.22r, 10.22 — 1.22r).

The exact and approximate solution using the Jacobi, Gauss-Seidel and the SOR iterative schemes
are shown in Figures 1-3 respectively. The Hausdoeff distance of solutions with e = 10~2 in the Jacobi
method is 0.4091 x 1073 in the Gauss-Seidel method is 0.4335 x 10~% and in the SOR method with
w =13 is5.5611 x 10~*.



Mathematics 2018, 6, 19 80f9

0.9

0.8—

07—

0.6—

05—

r - Membership Value

04—

03—

0.2~

01—

=)

12

Figure 1. The Hausdorff distance of solutions with ¢ = 1073, in the Jacobi method is 0.4091 x 1073.
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Figure 2. The Hausdorff distance of solutions with e = 1073 in the Gauss-Seidel method is 0.4335 x 1074,
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Figure 3. The Hausdorff distance of solutions with ¢ = 1073 in successive over-relaxation (SOR)
method with w = 1.3is 5.5611 x 1074
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5. Conclusions

In this article the Jacobi, Gauss—Seidel and SOR iterative methods have been used to solve the
FSLEs where the coefficient matrix arrays are crisp numbers, the right-hand side column is an arbitrary
fuzzy vector and the unknowns are fuzzy numbers. The numerical results have shown to be in a
close agreement with the analytical ones. Moreover, Figures 1-3 containing the Hausdorff distance
of solutions show clearly that the SOR iterative method is more efficient in comparison with other
iterative techniques.
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