
mathematics

Article

Nilpotent Fuzzy Subgroups

Elaheh Mohammadzadeh 1, Rajab Ali Borzooei 2,* ID

1 Department of Mathematics, Payame Noor University, Tehran 19395-3697, Iran; mohamadzadeh36@gmail.com
2 Department of Mathematics, Shahid Beheshti University, G. C., Tehran 19395-3697, Iran
* Correspondence: borzooei@sbu.ac.ir

Received: 18 December 2017; Accepted: 13 February 2018; Published: 19 February 2018

Abstract: In this paper, we introduce a new definition for nilpotent fuzzy subgroups, which is called
the good nilpotent fuzzy subgroup or briefly g-nilpotent fuzzy subgroup. In fact, we prove that this
definition is a good generalization of abstract nilpotent groups. For this, we show that a group G is
nilpotent if and only if any fuzzy subgroup of G is a g-nilpotent fuzzy subgroup of G. In particular,
we construct a nilpotent group via a g-nilpotent fuzzy subgroup. Finally, we characterize the elements
of any maximal normal abelian subgroup by using a g-nilpotent fuzzy subgroup.
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1. Introduction

Applying the concept of fuzzy sets of Zadeh [1] to group theory, Rosenfeld [2] introduced the notion
of a fuzzy subgroup as early as 1971. Within a few years, it caught the imagination of algebraists like
wildfire and there seems to be no end to its ramifications. With appropriate definitions in the fuzzy setting,
most of the elementary results of group theory have been superseded with a startling generalized effect
(see [3–5]). In [6] Dudek extended the concept of fuzzy sets to the set with one n-ary operation i.e., to the
set G with one operation on f : G −→ G, where n ≥ 2. Such defined groupoid will be denoted by (G, f ).
Moreover, he introduced the notion of a fuzzy subgroupoid of an n-ary groupoid. Specially, he proved
that if every fuzzy subgroupoid µ defined on (G, f ) has the finite image, then every descending chain of
subgroupoids of (G, f ) terminates at finite step. One of the important concept in the study of groups is
the notion of nilpotency. In [7] Kim proposed the notion of a nilpotent fuzzy subgroup. There, he attached
to a fuzzy subgroup an ascending series of subgroups of the underlying group to define nilpotency of the
fuzzy subgroup. With this definition, the nilpotence of a group can be completely characterized by the
nilpotence of its fuzzy subgroups. Then, in [8] Guptaa and Sarmahas, defined the commutator of a pair
of fuzzy subsets of a group to generate the descending central chain of fuzzy subgroups of a given fuzzy
subgroup and they proposed a new definition of a nilpotent fuzzy subgroup through its descending
central chain. Specially, They proved that every Abelian (see [9]) fuzzy subgroup is nilpotent. There are
many natural generalizations of the notion of a normal subgroup. One of them is subnormal subgroup.
The new methods are important to guarantee some properties of the fuzzy sets; for example, see [10].
In [3] Kurdachenko and et all formulated this concept for fuzzy subgroups to prove that if every fuzzy
subgroup of γ is subnormal in γ with defect at most d, then γ is nilpotent ([3] Corollary 4.6 ). Finally
in [11,12] Borzooei et. al. defind the notions of Engel fuzzy subgroups (subpolygroups) and investigated
some related results. Now, in this paper we define the ascending series differently with Kim’s definition.
We then propose a definition of a nilpotent fuzzy subgroup through its ascending central series and call it
g-nilpotent fuzzy subgroups. Also, we show that each g-nilpotent fuzzy subgroup is nilpotent. Moreover,
we get the main results of nilpotent fuzzy subgroups with our definition. Basically this definition help
us with the fuzzification of much more properties of nilpotent groups. Furthermore, we prove that for
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a fuzzy subgroup µ of G, {x ∈ G | µ([x, y1, ..., yn]) = µ(e) f or any y1, ..., yn ∈ G} is equal to the n−th
term of ascending series where [x, y1] = x−1y−1

1 xy1 and [x, y1, ..., yn] = [[x, y1, ..., yn−1], yn]. Therefore,
we have a complete analogy concept of nilpotent groups of an abstract group. Specially, we prove that a
finite maximal normal subgroup can control the g-nilpotent fuzzy subgroup and makes it finite.

2. Preliminary

Let G be any group and x, y ∈ G. Define the n-commutator [x,n y], for any n ∈ N and x, y ∈ G,
by [x,0 y] = x, [x,1 y] = x−1y−1xy and [x,n y] = [[x,n−1 y], y] also, for any y1, ..., yn ∈ G, [x, y1, ..., yn] =

[[x, y1, ..., yn−1], yn]. For any x, g ∈ G, we consider xg = g−1xg and [x, y] = [x,1 y].

Theorem 1. [13] Let G be a group and x, y, z ∈ G. Then
(1) [x, y] = [y, x]−1,
(2) [x.y, z] = [x, z]y.[y, z] and [x, y.z] = [x, z].[x, y]z,
(3) [x, y−1] = ([x, y]y

−1
)−1 and [x−1, y] = ([x, y]x

−1
)−1.

Note that xg = x.[x, g].

Definition 1. [13] Let X1, X2, ... be nonempty subsets of a group G. Define the commutator subgroup of X1 and
X2 by

[X1, X2] = 〈[x1, x2] | x1 ∈ X1, x2 ∈ X2〉.

More generally, define
[X1, ..., Xn] = [[X1, ..., Xn−1], Xn]

where n ≥ 2 and [X1] = 〈X1〉. Also recall that XX2
1 = 〈xx2

1 | x1 ∈ X1, x2 ∈ X2〉

Definition 2. [1] A fuzzy subset µ of X is a function µ : X → [0, 1].

Also, for fuzzy subsets µ1 and µ2 of X, then µ1 is smaller than µ2 and write µ1 ≤ µ2 iff for all x ∈ X,
we have µ1(x) ≤ µ2(x). Also, µ1 ∨ µ2 and µ1 ∧ µ2, for any µ1, µ2 are defined as follows:

(µ1 ∨ µ2)(x) = max{µ1(x), µ2(x)}, (µ1 ∧ µ2)(x) = min{µ1(x), µ2(x)}, for any x ∈ X.

Definition 3. [14] Let f be a function from X into Y, and µ be a fuzzy subset of X. Define the fuzzy subset f (µ)
of Y, for any y ∈ Y, by

( f (µ))(y) =


∨

x∈ f−1(y)

µ(x), f−1(y) 6= φ

0, otherwise

Definition 4. [2] Let µ be a fuzzy subset of a group G. Then µ is called a fuzzy subgroup of G if for any x, y ∈ G;
µ(xy) ≥ µ(x) ∧ µ(y), and µ(x−1) ≥ µ(x). A fuzzy subgroup µ of G is called normal if µ(xy) = µ(yx), for any
x, y in G. It is easy to prove that a fuzzy subgroup µ is normal if and only if µ(x) = µ(y−1xy), for any x, y ∈ G
(See [14]).

Theorem 2. [14] Let µ be a fuzzy subgroup of G. Then for any x, y ∈ G, µ(x) 6= µ(y), implies
µ(xy) = µ(x) ∧ µ(y). Moreover, for a normal subgroup N of G, fuzzy subset ξ of G

N as the following definition:

ξ(xN) =
∨

z∈xN
µ(z), f or any x ∈ G
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is a fuzzy subgroup of G
N .

Definition 5. [14] Let µ be a fuzzy subset of a semigroup G. Then Z(µ) is define as follows:

Z(µ) = {x ∈ G | µ(xy) = µ(yx) and µ(xyz) = µ(yxz), for any y, z ∈ G}

If Z(µ) = G, then µ is called a commutative fuzzy subset of G.

Note that since µ(xy) = µ(yx) then we have µ(xyz) = µ(x(yz)) = µ((yz)x) = µ(yzx).

Theorem 3. [14] Let µ be a fuzzy subset of a semigroup G. If Z(µ) is nonempty, then Z(µ) is a subsemigroup of
G. Moreover, if G is a group, then Z(µ) is a normal subgroup of G.

We recall the notion of the ascending central series of a fuzzy subgroup and a nilpotent fuzzy
subgroup of a group [14]. Let µ be a fuzzy subgroup of a group G and Z0(µ) = {e}. Clearly {e} is a
normal subgroup of G. Let π0 be the natural homomorphism of G onto G

Z0(µ)
. It is clear that π0 = I.

Suppose that Z1(µ) = π−1
0 (Z(π0(µ))). Since Z(π0(µ)) is a normal subgroup of G

Z0(µ)
, then it is clear

that Z1(µ) is a normal subgroup of G. Also we see that Z1(µ) = Z(µ). Now let π1 be the natural
homomorphism of G onto G

Z1(µ)
and Z2(µ) = π−1

1 (Z(π1(µ))). Since π1(µ) is a fuzzy subgroup of G
Z1(µ)

,

then Z(π1(µ)) is a normal subgroup of G
Z1(µ)

, which implies that Z2(µ) is a normal subgroup of G.

Similarly suppose that Zi(µ) has been defined and so Zi(µ) is a normal subgroup of G, for i ∈ N∪ {0}.
Let πi be the natural homomorphism of G onto G

Zi(µ)
and Zi+1(µ) = π−1

i (Z(πi(µ))). Then Zi+1(µ)

is a normal subgroup of G. Since 1 G
Zi(µ)

⊆ Z(πi(µ), then π−1
i (1 G

Zi(µ)
) ⊆ π−1

i (Z(πi(µ))). Therefore,

Ker(πi) = Zi(µ) ⊆ Zi+1(µ), for i = 0, 1, ....

Definition 6. [14] Let µ be a fuzzy subgroup of a group G. The ascending central series of µ is defined to be the
ascending chain of normal subgroups of G as follows:

Z0(µ) ⊆ Z1(µ) ⊆ Z2(µ)....

Now the fuzzy subgroup µ of G is called nilpotent if there exists a nonnegative integer m, such that
Zm(µ) = G. The smallest such integer is called the class of µ.

Theorem 4. [14] Let µ be a fuzzy subgroup of a group G, i ∈ N and x ∈ G. If xyx−1y−1 ∈ Zi−1(µ), for any
y ∈ G, then x ∈ Zi(µ). Moreover, if T = {x ∈ G | µ(xyx−1y−1) = µ(e), for any y ∈ G}, then T = Z(µ).

Let G be a group. We know that Z(G) is a normal subgroup of G. Let Z2(G) be the inverse image
of Z( G

Z(G)
), under the canonical projection G −→ G

Z(G)
. Then Z2(G) is normal in G and contains Z(G).

Continue this process by defining inductively, Z1(G) = Z(G) and Zi(G) is the inverse image of Z( G
Zi−1(G)

)

under the canonical projection G −→ G
Zi−1(G)

for any i ∈ N. Thus we obtain a sequence of normal
subgroups of G, called the ascending central series of G that is, {e} = Z0(G) ⊆ Z1(G) ⊆ Z2(G) ⊆ ....
The other definition is as follows [13]: Let G be a group and Z0(G) = {e}. It is clear that {e} is a normal
subgroup of G. Put Z1(G)

{e} = Z( G
{e} ). Then Z1(G) = Z(G) is a normal subgroup of G. Similarly for

any integer n > 1, put Zn(G)
Zn−1(G)

= Z( G
Zn−1(G)

). Then Zi(µ) is called the i-th center of group G. Moreover,
{e} = Z0(G) ⊆ Z1(G) ⊆ Z2(G) ⊆ ... is called upper central series of G. These two definitions are
equivalent since, π(Z2(G)) = π(π−1(Z( G

Z(G)
))) = Z( G

Z(G)
). Thus Z2(G)

Z(G)
= Z( G

Z(G)
). Similarly we get the

result for any n ∈ N.
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Theorem 5. [13] Let G be a group and n ∈ N. Then
(i) x ∈ Zn(G) if and only if for any yi ∈ G where 1 ≤ i ≤ n, [x, y1, ..., yn] = e,
(ii) [Zn(G), G] ⊆ Zn−1(G).
(iii) Class of nilpotent groups is closed with respect to subgroups and homomorphic images.

Notation. From now on, in this paper we let G be a group.

3. Good Nilpotent Fuzzy Subgroups

One of the important concept in the study of groups is the notion of nilpotency. It was introduced
for fuzzy subgroups, too (See [14]). Now, in this section we give a new definition of nilpotent fuzzy
subgroups which is similar to one in the abstract group theory. It is a good generation of the last one.
With this nilpotency we get some new main results.

Let µ be a fuzzy subgroup of G. Put Z0(µ) = {e}. Clearly Z0(µ) � G. Let Z1(µ) = {x ∈ G |
µ([x, y]) = µ(e), for any y ∈ G}. Now using Theorems 4, we have Z1(µ) = Z(µ) is a normal subgroup
of G. We define a subgroup Z2(µ) of G such that Z2(µ)

Z1(µ)
= Z( G

Z1(µ)
); Since Z1(µ)� G then Z1(µ)� Z2(µ).

We show that [Z2(µ), G] ⊆ Z1(µ). For this let x ∈ Z2(µ) and g ∈ G. Thus xZ1(µ) ∈ Z2(µ)
Z1(µ)

= Z( G
Z1(µ)

),
which implies that [xZ1(µ), gZ1(µ)] = Z1(µ) for any g ∈ G. Therefore [x, g] ∈ Z1(µ). Hence
[Z2(µ), G] ⊆ Z1(µ). Therefore xg = x[x, g] ∈ Z2(µ). Thus Z2(µ)� G. Similarly for k ≥ 2 we define a
normal subgroup Zk(µ) such that Zk(µ)

Zk−1(µ)
= Z( G

Zk−1(µ)
). It is clear that Z0(µ) ⊆ Z1(µ) ⊆ Z2(µ) ⊆ ....

Definition 7. A fuzzy subgroup µ of G is called a good nilpotent fuzzy subgroup of G or briefly g-nilpotent fuzzy
subgroup of G if there exists a none negative integer n, such that Zn(µ) = G. The smallest such integer is called
the class of µ.

Example 1. Let D3 = 〈a, b; a3 = b2 = e, ba = a2b〉 be the dihedral group with six element and t0, t1 ∈ [0, 1]
such that t0 > t1. Define a fuzzy subgroup µ of D3 as follows:

µ(x) =

{
t0 i f x ∈< a >

t1 i f x 6∈< a >

Then (D3\〈a〉)(D3\〈a〉) = 〈a〉, (〈a〉)(D3\〈a〉) = (D3\〈a〉), (D3\〈a〉)(〈a〉) = (D3\〈a〉) and (〈a〉)(〈a〉) = (〈a〉).
Now, we show that Z1(µ) = D3. If x ∈ 〈a〉 and y /∈ 〈a〉, then xy /∈ 〈a〉. Thus by the above relations, we have
[x, y] = x−1y−1xy = (yx)−1(xy) ∈ 〈a〉, which implies that µ[x, y] = t0 = µ(e). Similarly, for the cases x /∈ 〈a〉
and y ∈ 〈a〉 or x, y ∈ 〈a〉 or x, y /∈ 〈a〉, we have µ[x, y] = µ(e). Hence for any x, y ∈ D3, µ[x, y] = µ(e) and so by
Theorem 4, Z(µ) = D3. Now, since Z1(µ) = Z(µ), we get µ is g-nilpotent fuzzy subgroup.

In the following we see that for n ∈ N, each normal subgroup Zn(µ), in which is defined by
Zn+1(µ)

Zn(µ)
= Z( G

Zn(µ)
) is equal to {x ∈ G | µ([x, y1, ..., yn]) = µ(e), f or any y1, y2, ..., yn ∈ G}.

Lemma 1. Let µ be a fuzzy subgroup of G. Then for k ∈ N

Zk(µ) = {x ∈ G | µ([x, y1, ..., yk]) = µ(e), f or any y1, y2, ..., yk ∈ G}.
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Proof. We prove it by induction on k. If k = 1, then by definition of Z1(µ) we have Z1(µ) = {x ∈ G |
µ([x, y]) = µ(e) for any y ∈ G}. Now let k = n+ 1, and the result is true for k ≤ n. Then

x ∈ Zn+1(µ) ⇐⇒ xZn(µ) ∈
Zn+1(µ)

Zn(µ)
= Z(

G
Zn(µ)

)

⇐⇒ [xZn(µ), y1Zn(µ)] = Zn(µ), f or any y1 ∈ G

⇐⇒ [x, y1]Zn(µ) = Zn(µ), f or any y1 ∈ G

⇐⇒ [x, y1] ∈ Zn(µ), f or any y1 ∈ G

⇐⇒ µ([[x, y1], y2, ..., yn+1]) = µ(e), f or any y1, ..., yn+1 ∈ G.

This complete the proof.

Theorem 6. Any g-nilpotent fuzzy subgroup of G is a nilpotent fuzzy subgroup.

Proof. Let fuzzy subgroup µ of G be g-nilpotent. Since Z1(µ) = Z(µ) = Z1(µ), for n = 1, the proof is true.
Now let Zn+1(µ) = G. Then by Lemma 1, {x | µ([x, y1, ..., yn+1]) = µ(e) f or any y1, y2, ..., yn+1 ∈ G} = G.
We should prove that Zn+1(µ) = G. Let x ∈ G. Then µ([x, y1, ..., yn+1]) = µ(e), for any y1, ..., yn+1 ∈ G.
Therefore by Theorem 4, [x, y1, ..., yn] ∈ Z(µ). Consequently, by Theorem 4, [x, y1, ..., yn−1] ∈ Z2(µ).
Similarly, by using k-times Theorem 4, we have x ∈ Zn+1(µ) and so Zn+1(µ) = G. Therefore µ is a
nilpotent fuzzy subgroup of G.

Theorem 7. Let µ be a fuzzy subgroup of G. Then µ is commutative if and only if µ is g-nilpotent fuzzy subgroup
of class 1.

Proof. (⇒) Let µ be commutative. Then Z(µ) = G. Since Z1(µ) = Z(µ), then Z1(µ) = G which implies
that µ is g-nilpotent of class 1.
(⇐) If µ is g-nilpotent of class 1, then Z1(µ) = G. Hence Z1(µ) = Z(µ) = G. Therefore, µ

is commutative.

Notation. If µ is a fuzzy subgroup of G, then Zk−1(
G

Z(µ) ) means the (k− 1)-th center of G
Z(µ) ([15] ).

Next we see that a g-nilpotent fuzzy subgroup of G makes the g-nilpotent fuzzy subgroup of G
Z(µ) .

For this, we need the following two Lemmas.

Lemma 2. Let µ be a fuzzy subgroup of G. Then for any k ∈ N, Zk(µ)
Z(µ) = Zk−1(

G
Z(µ) ).

Proof. First we recall that for i ∈ N, x ∈ Zi(G) if and only if [x, y1, ..., yi] = e, for any y1, y2, ..., yi ∈ G
(See [13]). Hence

xZ(µ) ∈ Zk−1(
G

Z(µ)
) ⇐⇒ [xZ(µ), y1Z(µ), ..., yk−1Z(µ)] = Z(µ), f or any y1, ..., yk−1 ∈ G

⇐⇒ [x, y1, ..., yk−1]Z(µ) = Z(µ), f or any y1, ..., yk−1 ∈ G

⇐⇒ [x, y1, ..., yk−1] ∈ Z(µ), f or any y1, ..., yk−1 ∈ G

⇐⇒ µ[x, y1, ..., yk−1, yk] = µ(e), f or any yk ∈ G (by Theorem 4)

⇐⇒ x ∈ Zk(µ) (by Lemma 1)

⇐⇒ xZ(µ) ∈ Zk(µ)

Z(µ)
.
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Therefore Zk(µ)
Z(µ) = Zk−1(

G
Z(µ) ).

Lemma 3. Let µ be a fuzzy subgroup of G, H = G
Z(µ) , µ be a fuzzy subgroup of H and N = Z(µ). If H is

nilpotent, then H
N is nilpotent, too.

Proof. Let H be nilpotent of class n, that is Zn(H) = H. We will prove that there exist m ≤ n such that
Zm(

H
N ) = H

N . For this by Theorem 5, since H
N is a homomorphic image of H, we get H

N is nilpotent of class
at most m.

Theorem 8. Let µ be a fuzzy subgroup of G and µ be a fuzzy subgroup of G
Z(µ) . If µ is a g-nilpotent fuzzy subgroup

of class n, then µ is a g-nilpotent fuzzy subgroup of class m, where m ≤ n.

Proof. Let µ be a g-nilpotent fuzzy subgroup of class n. Then Zn(µ) = G. Now we show that there exists
m ≤ n, such that Zm(µ) =

G
Z(µ) . By Lemma 2, Zn(µ) = G⇐⇒ G

Z(µ) =
Zn(µ)
Z(µ) = Zn−1(

G
Z(µ) ) , and similarly

(put m instead of n and µ instead of µ),

Zm(µ) =
G

Z(µ)
⇐⇒ Zm−1(

G
Z(µ)

Z(µ)
) =

G
Z(µ)

Z(µ)

Consequently, it is enough to show that if Zn−1(
G

Z(µ) ) =
G

Z(µ) , then

Zm−1(

G
Z(µ)

Z(µ)
) =

G
Z(µ)

Z(µ)

It follows by Lemma 3 (put H = G
Z(µ) in Lemma 3).

We now consider homomorphic images and the homomorphic pre-image of g-nilpotent
fuzzy subgroups.

Theorem 9. Let H be a group, f : G −→ H be an epimorphism and µ be a fuzzy subgroup of G. If µ is a
g-nilpotent fuzzy subgroup, then f (µ) is a g-nilpotent fuzzy subgroup.

Proof. First, we show that f (Zi(µ)) ⊆ Zi( f (µ)), for any i ∈ N. Let i ∈ N. Then x ∈ f (Zi(µ)) implies that
x = f (u), for some u ∈ Zi(µ). Since f is epimorphism, hence for any y1, ..., yn ∈ H we get yi = f (vi) for
some vi ∈ G where 1 ≤ i ≤ n. Therefore [x, y1, ..., yn] = [ f (u), f (v1), ..., f (vn)] which implies that

( f (µ))([x, y1, ..., yn]) =
∨

f (z)=[x,y1,...,yn]

µ(z) =
∨

f (z)= f ([u,v1,...,vn])

µ(z)

Now, since u ∈ Zi(µ), by Lemma 1, we get µ([u, v1, ..., vn]) = µ(eG). Therefore,

( f (µ))([x, y1, ..., yn]) = µ(eG) = ( f (µ))(eH)

Hence by Lemma 1, x ∈ Zi( f (µ)). Consequently, f (Zi(µ)) ⊆ Zi( f (µ)). Hence if µ is g-nilpotent, then
there exists nonnegative integer n such that Zn(µ) = G which implies that f (Zn(µ)) = f (G). Therefore
Zn( f (µ)) = H which implies that f (µ) is g-nilpotent.

Theorem 10. Let H be a group, f : G −→ H be an epimorphism and ν be a fuzzy subgroup of H. Then ν is a
g-nilpotent fuzzy subgroup if and only if f−1(ν) is a g-nilpotent fuzzy subgroup.
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Proof. First, we show that Zi( f−1(ν)) = f−1(Zi(ν)), for any i ∈ N. Now, let i ∈ N. Then by Lemma 1,

x ∈ Zi( f−1(ν)) ⇐⇒ ( f−1(ν))([x, x1, ..., xi]) = ( f−1(ν))(e), f or any x1, x2, ..., xi ∈ G

⇐⇒ ν([ f (x), ..., f (xi)]) = ν(e), f or any x1, x2, ..., xi ∈ G

⇐⇒ f (x) ∈ Zi(ν),

⇐⇒ x ∈ f−1(Zi(ν)).

Hence ν is g-nilpotent if and only if there exists nonnegative integer n such that Zn(ν) = H if and
only if f−1(Zn(ν)) = f−1(H) if and only if Zn( f−1(ν)) = G if and only if, f−1(ν) is g-nilpotent.

Proposition 1. Let µ and ν be two fuzzy subgroups of G such that µ ⊆ ν and µ(e) = ν(e). Then Z(µ) ⊆ Z(ν).

Proof. Let x ∈ Z(µ). Then µ([x, y]) = µ(e), for any y ∈ G. Since

ν(e) = µ(e) = µ([x, y]) ≤ ν([x, y]) ≤ ν(e).

hence ν(e) = ν([x, y]) and so x ∈ Z(ν). Therefore Z(µ) ⊆ Z(ν).

Lemma 4. Let µ be a fuzzy subgroup of G and i > 1. Then for any y ∈ G, [x, y] ∈ Zi−1(µ) if and only if
x ∈ Zi(µ).

Proof. (=⇒) Let [x, y] ∈ Zi−1(µ). Then by Lemma 1, µ([[x, y], y1, ..., yi−1]) = µ(e) for any y, y1, ..., yi−1 ∈ G.
Hence x ∈ Zi(µ).
(⇐=) The proof is similar.

In the following we see a relation between nilpotency of a group and its fuzzy subgroups.

Theorem 11. G is nilpotent if and only if any fuzzy subgroup µ of G is a g-nilpotent fuzzy subgroup.

Proof. (=⇒) Let G be nilpotent of class n and µ be a fuzzy subgroup of G. Since Zn(G) = G, it is enough
to prove that for any nonnegative integer i, Zi(G) ⊆ Zi(µ). For i=0 or 1, the proof is clear. Let for
i > 1, Zi(G) ⊆ Zi(µ) and x ∈ Zi+1(G). Then for any y ∈ G, [x, y] ∈ Zi(G) ⊆ Zi(µ) and so by Lemma 4,
x ∈ Zi+1(µ). Hence Zi+1(G) ⊆ Zi+1(µ), for any i ≥ 0, and this implies that Zn(µ) = G. Therefore, µ is
g-nilpotent.
(⇐=) Let any fuzzy subgroups of G be g-nilpotent. Suppose that fuzzy set µ on G is defined as follows:

µ(x) =


1 i f x ∈ Z0(G)

1
i+1 i f x ∈ Zi(G)− Zi−1(G)

0 otherwise

We show that Zi(µ) ⊆ Zi(G), for any nonnegative integer i. For i = 0, the result is immediate. If
i = 1 and x ∈ Z1(µ), then µ([x, y]) = µ(e) = 1 for any y ∈ G. By definition of µ, [x, y] ∈ Z0(G) = {e}
and so x ∈ Z1(G). Now let Zi−1(µ) ⊆ Zi−1(G), for i ≥ 2. Then by Lemma 4, x ∈ Zi(µ) implies that
for any y ∈ G; [x, y] ∈ Zi−1(µ) ⊆ Zi−1(G). Hence, for any y, y1, ..., yi−1 ∈ G, [x, y, y1, ..., yi−1] = e which
implies that x ∈ Zi(G). Thus by induction on i, Zi(µ) ⊆ Zi(G), for any nonnegative integer i. Now since
Zi(G) ⊆ Zi(µ) for any nonnegative integer i, then Zi(µ) = Zi(G). Now by the hypotheses there exist
n ∈ N such that G = Zn(µ) = Zn(G). Hence, G is nilpotent.
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Theorem 12. Let fuzzy subgroups µ1 and µ2 of G be g-nilpotent fuzzy subgroups. Then the fuzzy set µ1 × µ2 of
G× G is a g-nilpotent fuzzy subgroup, too.

Proof. Let µ = µ1 × µ2. It is clear that µ is fuzzy subgroup of G. So we show that µ is g-nilpotent.
It is enough to show that Zn(µ1 × µ2) = G × G, for n ∈ N. Suppose that (x, y) ∈ G × G. Then
there exist n1, n2 ∈ N such that Zn1(µ1) = G and Zn2(µ2) = G. Hence for any x1..., xn, y1..., yn ∈ G,
µ1([x, x1..., xn]) = µ(e) and µ2([y, y1..., yn]) = µ(e) for n = max{n2, n1}. Then

(µ1 × µ2)([(x, y), ..., (xn, yn)]) = min{µ1[x, x1..., xn], µ2[y, y1..., yn]} = (µ1 × µ2)(e, e).

Therefore, Zn(µ1 × µ2) = G× G.

Definition 8. Let µ be a normal fuzzy subgroup of G. For any x, y ∈ G, define a binary relation on G as follows

x ∼ y⇐⇒ µ(xy−1) = µ(e)

Lemma 5. Binary relation ∼ in Definition 8, is a congruence relation.

Proof. The proof of reflexivity and symmetrically is clear. Hence, we prove the transitivity. Let x ∼ y
and y ∼ z, for x, y, z ∈ G. Then µ(xy−1) = µ(yz−1) = µ(e). Since µ is a fuzzy subgroup of G, then
µ(xz−1) ≥ min{µ(xy−1), µ(yz−1)} = µ(e). Hence µ(xz−1) = µ(e) and so x ∼ z. Therefore ∼ is an
equivalence relation. Now let x ∼ y and z ∈ G. Then µ((xz)(yz)−1) = µ(xy−1) = µ(e) and so xz ∼ yz.
Since µ is normal, we get µ((zx)(zy)−1) = µ((zy)−1(zx)) = µ(y−1x) = µ(xy−1) = µ(e) and so zx ∼ zy.
Therefore, ∼ is a congruence relation on G.

Notation. For the congruence relation in Definition 8, for any x ∈ G, the equivalence class containing
x is denoted by xµ, and G

µ = {xµ | x ∈ G}. It is easy to prove that G
µ by the operation (xµ).(yµ) = xyµ

for any xµ, yµ ∈ G
µ is a group, where eµ is unit of G

µ and (xµ)−1 = x−1µ, for any xµ ∈ G
µ .

Theorem 13. Let µ be a normal fuzzy subgroup of G. Then µ is a g-nilpotent fuzzy subgroup if and only if G
µ is a

nilpotent group.

Proof. (=⇒) Let µ be a g-nilpotent fuzzy subgroup of G. First we show that for any n ∈ N and
x1, ..., xn ∈ G, [x, x1, ..., xn]µ = [xµ, x1µ, ..., xnµ]. For n = 1, we have

[x, x1]µ = (x−1µ).((x1)
−1µ).(xµ).(x1µ) = [xµ, x1µ]

Now assume that it is true for n− 1. By hypotheses of induction, we have

[x, x1, ..., xn]µ = ([x, x1, ..., xn−1]
−1µ).(x−1

n µ).([x, x1, ..., xn−1]µ).(xnµ)

= ([xµ, x1µ..., xn−1µ]−1).(x−1
n µ).([xµ, x1µ..., xn−1µ]).(xnµ)

= [xµ, x1µ, ..., xnµ].

Therefore, if µ is a g-nilpotent fuzzy subgroup then there exist n ∈ N; Zn(µ) = G, which implies by
Lemma 1, that

{x ∈ G | µ[x, x1, ..., xn] = µ(e) f or any x1, x2, x3, ..., xn ∈ G} = G , (I)
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Also µ(x) = µ(e) if and only if x ∼ e if and only if xµ = eµ , (II). Thus, by (I) and (II) we have

G
µ

= {xµ | x ∈ G} = {xµ | µ[x, x1, ..., xn] = µ(e), ∀ x1, x2, x3, ..., xn ∈ G}

= {xµ | [xµ, x1µ, ..., xnµ] = eµ, ∀x1, x2, x3, ..., xn ∈ G} = Zn(
G
µ
)

Consequently G
µ is a nilpotent group of class n.

(⇐=) If G
µ is a nilpotent group of class n, then

G
µ

= Zn(
G
µ
) = {xµ | [xµ, x1µ, ..., xnµ] = eµ,∀ x1, x2, x3, ..., xn ∈ G}}

Thus for x ∈ G we have xµ ∈ G
µ . Therefore [xµ, x1µ, ..., xnµ] = eµ for any x1, x2, x3, ..., xn ∈ G which

implies by (II) that µ[x, x1, ..., xn] = µ(e). Thus, by Lemma 1, x ∈ Zn(µ). Thus G = Zn(µ) and so µ is
g-nilpotent.

Theorem 14. Let µ be a fuzzy subgroup of G and µ∗ = {x | µ(x) = µ(e)} be a normal subgroup of G. If G
µ∗

is a
nilpotent group, then µ is a g-nilpotent fuzzy subgroup.

Proof. Let G
µ∗

be a nilpotent group and π : G −→ G
µ∗

be the natural epimomorphism. Since

z ∈ π−1(π(x)) ⇐⇒ π(z) = π(x)⇐⇒ π(z−1x) = e⇐⇒ z−1x ∈ kerπ = µ∗

⇐⇒ µ(z−1x) = µ(e)⇐⇒ µ(z) = µ(x).

hence for any x ∈ G,

π−1(π(µ))(x) = π(µ)(π(x)) =
∨

z∈π−1(π(x))

µ(z) =
∨

µ(z)=µ(x)

µ(z) = µ(x),

and so π−1(π(µ)) = µ. Now since G
µ∗

is a nilpotent group and π(µ) is a fuzzy subgroup of G
µ∗

, then by

Theorem 11, π(µ) is g-nilpotent and by Theorem 10, π−1(π(µ)) = µ is g-nilpotent.

Example 2. In Example 1, µ(e) = t0 and so µ∗ = {x | µ(x) = µ(e)} = 〈a〉. Thus µ∗ is a normal subgroup of D3.
Also D3

µ∗
≈ Z2. Since Z2 is Abelian hence it is nilpotent and so by Theorem 14, µ is a g-nilpotent fuzzy subgroup.

Theorem 15. Let µ and ν be two fuzzy subgroups of G such that µ ⊆ ν and µ(e) = ν(e). If µ is a g-nilpotent
fuzzy subgroup of class m , then ν is a g-nilpotent fuzzy subgroup of class n, where n ≤ m.

Proof. Let µ and ν be two fuzzy subgroups of G where µ ⊆ ν and µ(e) = ν(e). First, we show that for
any i ∈ N, Zi(µ) ⊆ Zi(ν). By Theorem 1, for i = 1 the proof is clear. Let for i ≥ 2, Zi(µ) ⊆ Zi(ν) and
x ∈ Zi+1(µ). Then by Lemma 4, for any y ∈ G, [x, y] ∈ Zi(µ) ⊆ Zi(ν). Thus, by Lemma 4, x ∈ Zi+1(ν).
Hence Zi+1(µ) ⊆ Zi+1(ν). Now let µ be g-nilpotent of class m. Then G = Zm(µ) ⊆ Zm(ν) ⊆ G. Thus
G = Zm(ν), which implies that ν is g-nilpotent of class at most m.

Definition 9. [4] Let µ be a fuzzy set of a set S. Then the lower level subset is

µt = {x ∈ S; µ(x) ≤ t}, where t ∈ [0, 1].
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Now fuzzification of µt is the fuzzy set Aµt
defined by

Aµt
(x) =

{
µ(x) i f x ∈ µt
0 otherwise

Clearly, Aµt
⊆ µ and (Aµt

)t = µt.

Corollary 1. Let µ be a nilpotent fuzzy subgroup of G. Then Aµt
is nilpotent too.

Proof. Let µ be a nilpotent fuzzy subgroup of G, since Aµt
⊆ µ then by Theorem 15, Aµt

is nilpotent.

In the following we see that our definition for terms of Zk(µ), is equivalent to an important relation,
which will be used in the main Lemma 7.

Lemma 6. Let µ be a fuzzy subgroup of G. For k ≥ 2, Zk(µ)
Zk−1(µ)

= Z( G
Zk−1(µ)

) if and only if [Zk(µ), G] ⊆ Zk−1(µ).

Proof. (=⇒) Let for k ≥ 2, Zk(µ)
Zk−1(µ)

= Z( G
Zk−1(µ)

) and w ∈ [Zk(µ), G]. Then there exist x ∈ Zk(µ) and g ∈ G
such that w = [x, g]. Since

x ∈ Zk(µ) =⇒ xZk−1(µ) ∈
Zk(µ)

Zk−1(µ)
= Z(

G
Zk−1(µ)

)

=⇒ [xZk−1(µ), gZk−1(µ)] = Zk−1(µ), f or any g ∈ G

=⇒ [x, g]Zk−1(µ) = Zk−1(µ), f or any g ∈ G

=⇒ [x, g] ∈ Zk−1(µ).

hence w ∈ Zk−1(µ).
(⇐=) Let for k ≥ 2, [Zk(µ), G] ⊆ Zk−1(µ) and xZk−1(µ) ∈

Zk(µ)
Zk−1(µ)

. Hence x ∈ Zk(µ). Since [Zk(µ), G] ⊆
Zk−1(µ), for any g ∈ G, we have [x, g] ∈ Zk−1(µ) which implies that [xZk−1(µ), gZk−1(µ)] = Zk−1(µ) and
so xZk−1(µ) ∈ Z( G

Zk−1(µ)
). Hence Zk(µ)

Zk−1(µ)
⊆ Z( G

Zk−1(µ)
). Now, let xZk−1(µ) ∈ Z( G

Zk−1(µ)
). Then for any

g ∈ G we have, [xZk−1(µ), gZk−1(µ)] = Zk−1(µ) which implies that [x, g]Zk−1(µ) = Zk−1(µ) and so [x, g] ∈
Zk−1(µ). Now by Lemma 1, µ([x, g, y1, y2..., yk−1]) = µ(e), for any g, y1, y2..., yk−1 ∈ G. Hence x ∈ Zk(µ) and
this implies that xZk−1(µ) ∈

Zk(µ)
Zk−1(µ)

. So Zk(µ)
Zk−1(µ)

⊇ Z( G
Zk−1(µ)

). Therefore, Zk(µ)
Zk−1(µ)

= Z( G
Zk−1(µ)

).

Lemma 7. Let µ be a g-nilpotent fuzzy subgroup of G of class n ≥ 2 and N, be a nontrivial normal subgroup of G
(i.e 1 6= N �G). Then N ∩ Z(µ) 6= 1.

Proof. Since µ is g-nilpotent, so there exist n ≥ 2 such that Zn(µ) = G. Thus

1 = Z0(µ) ⊆ Z1(µ) ⊆ ... ⊆ Zn(µ) = G

Since N ∩ Zn(µ) = N ∩ G = N 6= 1, then there is j ∈ N such that N ∩ Zj(µ) 6= 1. Let i be the smallest
index such that N ∩ Zi(µ) 6= 1 ( so N ∩ Zi−1(µ) = 1). Then we claim that [N ∩ Zi(µ), G] ⊆ N. For this
let w ∈ [N ∩ Zi(µ), G]. Then there exists x ∈ N ∩ Zi(µ) and g ∈ G such that w = [x, g] = x−1g−1xg.
Since N � G, then w = x−1xg ∈ N. Thus [N ∩ Zi(µ), G] ⊆ N. Also since x ∈ N ∩ Zi(µ), by Lemma 6,
[x, g] ∈ [Zi(µ), G] ⊆ Zi−1(µ). Thus [N ∩ Zi(µ), G] ⊆ Zi−1(µ). Hence [N ∩ Zi(µ), G] ⊆ N ∩ Zi−1(µ) = 1.
Therefore N ∩ Zi(µ) ≤ Z(G) ≤ Z(µ) and so N ∩ Zi(µ) ≤ N ∩ Z(µ) = 1 . Hence N ∩ Zi(µ) = 1 which is a
contradiction. Consequently N ∩ Z(µ) 6= 1.
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The following theorem shows that for a g-nilpotent fuzzy subgroup µ each minimal normal subgroup
of G is contained in Z(µ).

Theorem 16. Let µ be a g-nilpotent fuzzy subgroup of G of class n ≥ 2. If N is a minimal normal subgroup of G,
then N ≤ Z(µ).

Proof. Since N and Z(µ) are normal subgroups of G, we get N ∩ Z(µ)� G. Now since N is a minimal
normal subgroup of G, N ∩ Z(µ) ≤ N and by Lemma 7, 1 6= N ∩ Z(µ). we get N ∩ Z(µ) = N. Therefore
N ≤ Z(µ).

Theorem 17. Let µ be a g-nilpotent fuzzy subgroup of G and A be a maximal normal Abelian subgroup of G.
If µ(x) = µ(e) for any x ∈ A, and µ(x) 6= µ(e) for any x ∈ G− A, then

A = CG(A) = {x ∈ G | [x, a] = e, f or any a ∈ A}.

Proof. First, we prove that CG(A)� G. For this, let x ∈ CG(A) and g ∈ G. Then for all a ∈ A we have
[xg, a] = [x, ag−1

]g. Since A is Abelian, then ag−1
= a. Hence x ∈ CG(A) implies that [xg, a] = [x, ag−1

]g =

[x, a]g = e and so xg ∈ CG(A). Thus CG(A)� G. Suppose A ( CG(A). Then 1 6= CG(A)
A � G

A . Let µ be

the fuzzy subgroup of G
A . Then by Lemma 7, CG(A)

A ∩ Z(µ) 6= 1. So there exists A 6= gA ∈ CG(A)
A ∩ Z(µ).

Hence g ∈ CG(A) and µ[gA, xA] = µ(eA) for any x ∈ G . Thus by Theorem 2,
∨

a∈A
µ([g, x]a) = µ(e).

Now if for some a ∈ A, µ([g, x]) = µ(a), then by definition of µ, [g, x] ∈ A and if for any a ∈ A,
µ([g, x]) 6= µ(a), then by Theorem 2,

∨
a∈A

µ([g, x]a) =
∨

a∈A
(µ([g, x]) ∧ µ(a)) = µ([g, x]). Thus [g, x] ∈ A.

Now let B = 〈A, g〉. Then A ( B � G(B � G since A � G, and for x ∈ G we have gx = g[g, x] ∈ B ).
Moreover, since g ∈ CG(A), then B is Abelian. Therefore, B is a normal Abelian subgroup of G, which is
a contradiction. Thus A = CG(A).

Now we show that with some conditions every g-nilpotent fuzzy subgroup is finite.

Corollary 2. Let µ be a g-nilpotent fuzzy subgroup of G and A be a finite maximal normal Abelian subgroup of G.
If µ(x) = µ(e) for any x ∈ A, and µ(x) 6= µ(e) for any x ∈ G− A, then µ is finite, too.

Proof. Since A � G, for g ∈ G and x ∈ A we have xg ∈ A. Now let

θ : G −→ Aut(A)

g −→ θg : A −→ A

x −→ xg.

We prove that θ is a homomorphism. Let g1, g2 ∈ G. Then θ(g1g2) = θg1g2 . Thus for x ∈ A,

(θ(g1g2))(x) = (θg1g2)(x) = xg1g2 = xg1 .xg2 = (θ(g1))(x).(θ(g2))(x).

But Ker(θ) = {g ∈ G | θ(g) = I}, in which I is the identity homomorphism. Thus for any
x ∈ A, (θ(g))(x) = I(x) which implies that xg = x. Hence g ∈ CG(A). Therefore, Ker(θ) = CG(A).
By Theorem 17, A = CG(A). Thus G

Ker(θ) = G
A is embeded in Aut(A). Now since A and so Aut(A) are

finite we get G is finite which implies that µ is finite.
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4. Conclusions

By the notion of a g-nilpotent fuzzy subgroup we can investigate on fuzzification of nilpotent
groups. Moreover, since this is similar to group theory, definition, it is much easier than before to study
the properties of nilpotent fuzzy groups. Moreover, if we accept the definition of a g-nilpotent fuzzy
subgroup, then one can verify, as we have done in Theorem 16, that for a g-nilpotent fuzzy subgroup µ

each minimal normal subgroup of G is contained in the center of µ. We hope that these results inspire
other papers on nilpotent fuzzy subgroups.
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