Next Article in Journal
Bi-Additive s-Functional Inequalities and Quasi-∗-Multipliers on Banach Algebras
Previous Article in Journal
Common Coincidence Points and Common Fixed Points in Fuzzy Semi-Metric Spaces
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

C*-Ternary Biderivations and C*-Ternary Bihomomorphisms

Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
Mathematics 2018, 6(3), 30; https://doi.org/10.3390/math6030030
Submission received: 4 January 2018 / Revised: 14 February 2018 / Accepted: 14 February 2018 / Published: 26 February 2018

Abstract

:
In this paper, we investigate C * -ternary biderivations and C * -ternary bihomomorphism in C * -ternary algebras, associated with bi-additive s-functional inequalities.

1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam [1] concerning the stability of group homomorphisms.
The functional equation f ( x + y ) = f ( x ) + f ( y ) is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping. Hyers [2] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [3] for additive mappings and by Rassias [4] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [5] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias’ approach.
Gilányi [6] showed that if f satisfies the functional inequality
2 f ( x ) + 2 f ( y ) f ( x y ) f ( x + y )
then f satisfies the Jordan-von Neumann functional equation
2 f ( x ) + 2 f ( y ) = f ( x + y ) + f ( x y ) .
See also [7]. Fechner [8] and Gilányi [9] proved the Hyers-Ulam stability of the functional inequality (1).
Park [10,11] defined additive ρ -functional inequalities and proved the Hyers-Ulam stability of the additive ρ -functional inequalities in Banach spaces and non-Archimedean Banach spaces. The stability problems of various functional equations and functional inequalities have been extensively investigated by a number of authors (see [12,13,14,15,16,17,18,19,20]).
A C * -ternary algebra is a complex Banach space A, equipped with a ternary product ( x , y , z ) [ x , y , z ] of A 3 into A, which is C -linear in the outer variables, conjugate C -linear in the middle variable, and associative in the sense that [ x , y , [ z , w , v ] ] = [ x , [ w , z , y ] , v ] = [ [ x , y , z ] , w , v ] , and satisfies [ x , y , z ] x · y · z and [ x , x , x ] = x 3 (see [21]).
If a C * -ternary algebra ( A , [ · , · , · ] ) has an identity, i.e., an element e A such that x = [ x , e , e ] = [ e , e , x ] for all x A , then it is routine to verify that A, endowed with x y : = [ x , e , y ] and x * : = [ e , x , e ] , is a unital C * -algebra. Conversely, if ( A , ) is a unital C * -algebra, then [ x , y , z ] : = x y * z makes A into a C * -ternary algebra.
Let A and B be C * -ternary algebras. A C -linear mapping H : A B is called a C * -ternary homomorphism if
H ( [ x , y , z ] ) = [ H ( x ) , H ( y ) , H ( z ) ]
for all x , y , z A . A C -linear mapping δ : A A is called a C * -ternary derivation if
δ ( [ x , y , z ] ) = [ δ ( x ) , y , z ] + [ x , δ ( y ) , z ] + [ x , y , δ ( z ) ]
for all x , y , z A (see [22,23]).
Bae and Park [24] defined C * -ternary bihomomorphisms and C * -ternary biderivations in C * -ternary algebras.
Definition 1.
[24] Let A and B be C * -ternary algebras. A C -bilinear mapping H : A × A B is called a C * -ternary bihomomorphism if
H ( [ x , y , z ] , w ) = [ H ( x , w ) , H ( y , w ) , H ( z , w ) ] , H ( x , [ y , z , w ] ) = [ H ( x , y ) , H ( x , z ) , H ( x , w ) ]
for all x , y , z , w A . A C -bilinear mapping δ : A × A A is called a C * -ternary biderivation if
δ ( [ x , y , z ] , w ) = [ δ ( x , w ) , y , z ] + [ x , δ ( y , w ) , z ] + [ x , y , δ ( z , w ) ] , δ ( x , [ y , z , w ] ) = [ δ ( x , y ) , z , w ] + [ y , δ ( x , z ) , w ] + [ y , z , δ ( x , w ) ]
for all x , y , z , w A .
Replacing w by 2 w in (2), we get
2 H ( [ x , y , z ] , w ) = H ( [ x , y , z ] , 2 w ) = [ H ( x , 2 w ) , H ( y , 2 w ) , H ( z , 2 w ) ] = 8 [ H ( x , w ) , H ( y , w ) , H ( z , w ) ] = 8 H ( [ x , y , z ] , w )
and so H ( [ x , y , z ] , w ) = 0 for all x , y , z , w A .
Replacing w by i w in (3), we get
i δ ( [ x , y , z ] , w ) = δ ( [ x , y , z ] , i w ) = [ δ ( x , i w ) , y , z ] + [ x , δ ( y , i w ) , z ] + [ x , y , δ ( z , i w ) ] = i [ δ ( x , w ) , y , z ] i [ x , δ ( y , w ) , z ] + i [ x , y , δ ( z , w ) ] i δ ( [ x , y , z ] , w )
for all x , y , z , w A .
Now we correct the above definition as follows.
Definition 2.
Let A and B be C * -ternary algebras. A C -bilinear mapping H : A × A B is called a C * -ternary bihomomorphism if
H ( [ x , y , z ] , [ w , w , w ] ) = [ H ( x , w ) , H ( y , w ) , H ( z , w ) ] , H ( [ x , x , x ] , [ y , z , w ] ) = [ H ( x , y ) , H ( x , z ) , H ( x , w ) ]
for all x , y , z , w A . A C -bilinear mapping δ : A × A A is called a C * -ternary biderivation if
δ ( [ x , y , z ] , w ) = [ δ ( x , w ) , y , z ] + [ x , δ ( y , w * ) , z ] + [ x , y , δ ( z , w ) ] , δ ( x , [ y , z , w ] ) = [ δ ( x , y ) , z , w ] + [ y , δ ( x * , z ) , w ] + [ y , z , δ ( x , w ) ]
for all x , y , z , w A .
In this paper, we prove the Hyers-Ulam stability of C * -ternary bihomomorphisms and C * -ternary bi-derivations in C * -ternary algebras.
This paper is organized as follows: In Section 2 and Section 3, we correct and prove the results on C * -ternary bihomomorphisms and C * -ternary derivations in C * -ternary algebras, given in [24]. In Section 4 and Section 5, we investigate C * -ternary biderivations and C * -ternary bihomomorphisms in C * -ternary algebras associated with the following bi-additive s-functional inequalities
f ( x + y , z w ) + f ( x y , z + w ) 2 f ( x , z ) + 2 f ( y , w ) s 2 f x + y 2 , z w + 2 f x y 2 , z + w 2 f ( x , z ) + 2 f ( y , w ) ,
2 f x + y 2 , z w + 2 f x y 2 , z + w 2 f ( x , z ) + 2 f ( y , w ) s f ( x + y , z w ) + f ( x y , z + w ) 2 f ( x , z ) + 2 f ( y , w ) ,
where s is a fixed nonzero complex number with | s | < 1 .
Throughout this paper, let X be a complex normed space and Y a complex Banach space. Assume that s is a fixed nonzero complex number with | s | < 1 .

2. C * -Ternary Bihomomorphisms in C * -Ternary Algebras

In this section, we correct and prove the results on C * -ternary bihomomorphisms in C * -ternary algebras, given in [24].
Throughout this paper, assume that A and B are C * -ternary algebras.
Lemma 1.
([24], Lemmas 2.1 and 2.2) Let f : X × X Y be a mapping such that
f ( λ ( x + y ) , μ ( z w ) ) + f ( λ ( x y ) , μ ( z + w ) ) = 2 λ μ f ( x , z ) 2 λ μ f ( y , w )
for all λ , μ T 1 : = { ξ C : | ξ | = 1 } and all x , y , z , w V . Then f : X × X Y is C -bilinear.
For a given mapping f : A × A B , we define
D λ , μ f ( x , y , z , w ) : = f ( λ ( x + y ) , μ ( z w ) ) + f ( λ ( x y ) , μ ( z + w ) ) 2 λ μ f ( x , z ) + 2 λ μ f ( y , w )
for all λ , μ T 1 and all x , y , z , w A .
We prove the Hyers-Ulam stability of C * -ternary bihomomorphisms in C * -ternary algebras.
Theorem 1.
Let r < 2 and θ be nonnegative real numbers, and let f : A × A B be a mapping satisfying f ( 0 , 0 ) = 0 and
D λ , μ f ( x , y , z , w ) θ ( x r + y r + z r + w r ) ,
f ( [ x , y , z ] , [ w , w , w ] ) [ f ( x , w ) , f ( y , w ) , f ( z , w ) ] + f ( [ x , x , x ] , [ y , z , w ] ) [ f ( x , y ) , f ( x , z ) , f ( x , w ) ] θ ( x r + y r + z r + w r )
for all λ , μ T 1 and all x , y , z , w A . Then there exists a unique C * -ternary bi-homomorphism H : A × A B such that
f ( x , z ) H ( x , z ) 6 θ 4 2 r ( x r + z r )
for all x , z A .
Proof. 
By the same reasoning as in the proof of ([24] Theorem 2.3), there exists a unique C -bilinear mapping H : A × A B satisfying (8). The C -bilinear mapping H : A × A B is defined by
H ( x , z ) = lim n 1 4 n f ( 2 n x , 2 n z )
for all x , z A .
It follows from (7) that
H ( [ x , y , z ] , [ w , w , w ] ) [ H ( x , w ) , H ( y , w ) , H ( z , w ) ] + H ( [ x , x , x ] , [ y , z , w ] ) [ H ( x , y ) , H ( x , z ) , H ( x , w ) ] = lim n 1 64 n f ( 8 n [ x , y , z ] , 8 n [ w , w , w ] ) [ f ( 2 n x , 2 n w ) , f ( 2 n y , 2 n w ) , f ( 2 n z , 2 n w ) ] + lim n 1 64 n f ( 8 n [ x , x , x ] , 8 n [ y , z , w ] ) [ f ( 2 n x , 2 n y ) , f ( 2 n x , 2 n z ) , f ( 2 n x , 2 n w ) ] lim n 2 r n 64 n θ ( x r + y r + z r + w r ) = 0
for all x , y , z , w A . So
H ( [ x , y , z ] , [ w , w , w ] ) = [ H ( x , w ) , H ( y , w ) , H ( z , w ) ] , H ( [ x , x , x ] , [ y , z , w ] ) = [ H ( x , y ) , H ( x , z ) , H ( x , w ) ]
for all x , y , z , w A , as desired. ☐
Similarly, we can obtain the following.
Theorem 2.
Let r > 6 and θ be nonnegative real numbers, and let f : A × A B be a mapping satisfying f ( 0 , 0 ) = 0 , (6) and (7). Then there exists a unique C * -ternary bihomomorphism H : A × A B such that
f ( x , z ) H ( x , z ) 6 θ 2 r 4 ( x r + z r )
for all x , z A .
Proof. 
By the same reasoning as in the proof of ([24] Theorem 2.5), there exists a unique C -bilinear mapping H : A × A B satisfying (9). The C -bilinear mapping H : A × A B is defined by
H ( x , z ) = lim n 4 n f x 2 n , z 2 n
for all x , z A .
It follows from (7) that
H ( [ x , y , z ] , [ w , w , w ] ) [ H ( x , w ) , H ( y , w ) , H ( z , w ) ] + H ( [ x , x , x ] , [ y , z , w ] ) [ H ( x , y ) , H ( x , z ) , H ( x , w ) ] = lim n 64 n f [ x , y , z ] 8 n , [ w , w , w ] 8 n f x 2 n , w 2 n , f y 2 n , w 2 n , f z 2 n , w 2 n + lim n 64 n f [ x , x , x ] 8 n , [ y , z , w ] 8 n f x 2 n , y 2 n , f x 2 n , z 2 n , f x 2 n , w 2 n lim n 64 n 2 r n θ ( x r + y r + z r + w r ) = 0
for all x , y , z , w A . So
H ( [ x , y , z ] , [ w , w , w ] ) = [ H ( x , w ) , H ( y , w ) , H ( z , w ) ] , H ( [ x , x , x ] , [ y , z , w ] ) = [ H ( x , y ) , H ( x , z ) , H ( x , w ) ]
for all x , y , z , w A , as desired. ☐
Theorem 3.
Let r < 1 2 and θ be nonnegative real numbers, and let f : A × A B be a mapping satisfying f ( 0 , 0 ) = 0 and
D λ , μ f ( x , y , z , w ) θ · x r · y r · z r · w r ,
f ( [ x , y , z ] , [ w , w , w ] ) [ f ( x , w ) , f ( y , w ) , f ( z , w ) ] + f ( [ x , x , x ] , [ y , z , w ] ) [ f ( x , y ) , f ( x , z ) , f ( x , w ) ] θ · x r · y r · z r · w r
for all λ , μ T 1 and all x , y , z , w A . Then there exists a unique C * -ternary bihomomorphism H : A × A B such that
f ( x , z ) H ( x , z ) 2 θ 4 16 r ( x r + z r )
for all x , z A .
Proof. 
By the same reasoning as in the proof of ([24] Theorem 2.6), there exists a unique C -bilinear mapping H : A × A B satisfying (12). The C -bilinear mapping H : A × A B is defined by
H ( x , z ) = lim n 1 4 n f 2 n x , 2 n z
for all x , z A .
The rest of the proof is similar to the proof of Theorem 1. ☐
Theorem 4.
Let r > 3 2 and θ be nonnegative real numbers, and let f : A × A B be a mapping satisfying f ( 0 , 0 ) = 0 , (10) and (11). Then there exists a unique C * -ternary bihomomorphism H : A × A B such that
f ( x , z ) H ( x , z ) 2 θ 16 r 4 ( x r + z r )
for all x , z A .
Proof. 
By the same reasoning as in the proof of ([24] Theorem 2.7), there exists a unique C -bilinear mapping H : A × A B satisfying (13). The C -bilinear mapping H : A × A B is defined by
H ( x , z ) = lim n 4 n f x 2 n , z 2 n
for all x , z A .
The rest of the proof is similar to the proof of Theorem 1. ☐

3. C * -Ternary Biderivations on C * -Ternary Algebras

In this section, we correct and prove the results on C * -ternary biderivations on C * -ternary algebras, given in [24].
Throughout this paper, assume that A is a C * -ternary algebra.
Theorem 5.
Let r < 2 and θ be nonnegative real numbers, and let f : A × A A be a mapping satisfying f ( 0 , 0 ) = 0 and
D λ , μ f ( x , y , z , w ) θ ( x r + y r + z r + w r ) ,
f ( [ x , y , z ] , w ) [ f ( x , w ) , y , z ] [ x , f ( y , w * ) , z ] [ x , y , f ( z , w ) ] + f ( x , [ y , z , w ] ) [ f ( x , y ) , z , w ] [ y , f ( x * , z ) , w ] [ y , z , f ( x , w ) ] θ ( x r + y r + z r + w r )
for all λ , μ T 1 and all x , y , z , w A . Then there exists a unique C * -ternary biderivation δ : A × A A such that
f ( x , z ) δ ( x , z ) 6 θ 4 2 r ( x r + z r )
for all x , z A .
Proof. 
By the same reasoning as in the proof of ([24] Theorems 2.3 and 3.1), there exists a unique C -bilinear mapping δ : A × A A satisfying (16). The C -bilinear mapping δ : A × A A is defined by
δ ( x , z ) = lim n 1 4 n f ( 2 n x , 2 n z )
for all x , z A .
It follows from (15) that
δ ( [ x , y , z ] , w ) [ δ ( x , w ) , y , z ] [ x , δ ( y , w * ) , z ] [ x , y , δ ( z , w ) ] + δ ( x , [ y , z , w ] ) [ δ ( x , y ) , z , w ] [ y , δ ( x * , z ) , w ] [ y , z , δ ( x , w ) ] = lim n 1 16 n ( f ( 8 n [ x , y , z ] , 2 n w ) [ f ( 2 n x , 2 n w ) , 2 n y , 2 n w ] [ 2 n x , f ( 2 n y , 2 n w * ) , 2 n z ] [ 2 n x , 2 n y , f ( 2 n z , 2 n w ) ] ) + lim n 1 16 n ( f ( 2 n x , 8 n [ y , z , w ] ) [ f ( 2 n x , 2 n y ) , 2 n z , 2 n w ] [ 2 n y , f ( 2 n x * , 2 n z ) , 2 n w ] [ 2 n y , 2 n z , f ( 2 n x , 2 n w ) ] ) lim n 2 r n 16 n θ ( x r + y r + z r + w r ) = 0
for all x , y , z , w A . So
δ ( [ x , y , z ] , w ) = [ δ ( x , w ) , y , z ] + [ x , δ ( y , w * ) , z ] + [ x , y , δ ( z , w ) ] , δ ( x , [ y , z , w ] ) = [ δ ( x , y ) , z , w ] + [ y , δ ( x * , z ) , w ] + [ y , z , δ ( x , w ) ]
for all x , y , z , w A , as desired. ☐
Similarly, we can obtain the following.
Theorem 6.
Let r > 4 and θ be nonnegative real numbers, and let f : A × A A be a mapping satisfying f ( 0 , 0 ) = 0 , (14) and (15). Then there exists a unique C * -ternary biderivation δ : A × A A such that
f ( x , z ) δ ( x , z ) 6 θ 2 r 4 ( x r + z r )
for all x , z A .
Proof. 
By the same reasoning as in the proof of ([24] Theorem 2.5), there exists a unique C -bilinear mapping δ : A × A A satisfying (17). The C -bilinear mapping δ : A × A A is defined by
δ ( x , z ) = lim n 4 n f x 2 n , z 2 n
for all x , z A .
It follows from (15) that
δ ( [ x , y , z ] , w ) [ δ ( x , w ) , y , z ] [ x , δ ( y , w * ) , z ] [ x , y , δ ( z , w ) ] + δ ( x , [ y , z , w ] ) [ δ ( x , y ) , z , w ] [ y , δ ( x * , z ) , w ] [ y , z , δ ( x , w ) ] = lim n 16 n f [ x , y , z ] 8 n , w 2 n f x 2 n , w 2 n , y 2 n , w 2 n x 2 n , f y 2 n , w * 2 n , z 2 n x 2 n , y 2 n , f z 2 n , w 2 n + lim n 16 n f x 2 n , [ y , z , w ] 8 n f x 2 n , y 2 n , z 2 n , w 2 n y 2 n , f x * 2 n , z 2 n , w 2 n y 2 n , z 2 n , f x 2 n , w 2 n lim n 16 n 2 r n θ ( x r + y r + z r + w r ) = 0
for all x , y , z , w A . So
δ ( [ x , y , z ] , w ) = [ δ ( x , w ) , y , z ] + [ x , δ ( y , w * ) , z ] + [ x , y , δ ( z , w ) ] , δ ( x , [ y , z , w ] ) = [ δ ( x , y ) , z , w ] + [ y , δ ( x * , z ) , w ] + [ y , z , δ ( x , w ) ]
for all x , y , z , w A , as desired. ☐
Theorem 7.
Let r < 1 2 and θ be nonnegative real numbers, and let f : A × A A be a mapping satisfying f ( 0 , 0 ) = 0 and
D λ , μ f ( x , y , z , w ) θ · x r · y r · z r · w r ,
f ( [ x , y , z ] , w ) [ f ( x , w ) , y , z ] [ x , f ( y , w * ) , z ] [ x , y , f ( z , w ) ] + f ( x , [ y , z , w ] ) [ f ( x , y ) , z , w ] [ y , f ( x * , z ) , w ] [ y , z , f ( x , w ) ] θ · x r · y r · z r · w r
for all λ , μ T 1 and all x , y , z , w A . Then there exists a unique C * -ternary biderivation δ : A × A A such that
f ( x , z ) δ ( x , z ) 2 θ 4 16 r ( x r + z r )
for all x , z A .
Proof. 
By the same reasoning as in the proof of ([24] Theorem 2.6), there exists a unique C -bilinear mapping δ : A × A A satisfying (20). The C -bilinear mapping δ : A × A A is defined by
δ ( x , z ) = lim n 1 4 n f 2 n x , 2 n z
for all x , z A .
The rest of the proof is similar to the proof of Theorem 5. ☐
Theorem 8.
Let r > 3 2 and θ be nonnegative real numbers, and let f : A × A A be a mapping satisfying f ( 0 , 0 ) = 0 , (18) and (19) . Then there exists a unique C * -ternary biderivation δ : A × A A such that
f ( x , z ) δ ( x , z ) 2 θ 16 r 4 ( x r + z r )
for all x , z A .
Proof. 
By the same reasoning as in the proof of ([24] Theorem 2.7), there exists a unique C -bilinear mapping δ : A × A A satisfying (21). The C -bilinear mapping δ : A × A A is defined by
δ ( x , z ) = lim n 4 n f x 2 n , z 2 n
for all x , z A .
The rest of the proof is similar to the proof of Theorem 5. ☐

4. C * -Ternary Biderivations on C * -Ternary Algebras Associated with the Bi-Additive Functional Inequalities (4) and (5)

In [25], Park introduced and investigated the bi-additive s-functional inequalities (4) and (5) in complex Banach spaces.
Theorem 9.
([25] Theorem 2.2) Let r > 1 and θ be nonnegative real numbers and let f : X 2 Y be a mapping satisfying f ( x , 0 ) = f ( 0 , z ) = 0 and
f ( x + y , z w ) + f ( x y , z + w ) 2 f ( x , z ) + 2 f ( y , w ) s 2 f x + y 2 , z w + 2 f x y 2 , z + w 2 f ( x , z ) + 2 f ( y , w ) + θ ( x r + y r ) ( z r + w r )
for all x , y , z , w X . Then there exists a unique bi-additive mapping A : X 2 Y such that
f ( x , z ) A ( x , z ) 2 θ 2 r 2 x r z r
for all x , z X .
Theorem 10.
([25] Theorem 2.3) Let r < 1 and θ be nonnegative real numbers and let f : X 2 Y be a mapping satisfying (22) and f ( x , 0 ) = f ( 0 , z ) = 0 for all x , z X . Then there exists a unique bi-additive mapping A : X 2 Y such that
f ( x , z ) A ( x , z ) 2 θ 2 2 r x r z r
for all x , z X .
Theorem 11.
([25] Theorem 3.2) Let r > 1 and θ be nonnegative real numbers and let f : X 2 Y be a mapping satisfying f ( x , 0 ) = f ( 0 , z ) = 0 and
2 f x + y 2 , z w + 2 f x y 2 , z + w 2 f ( x , z ) + 2 f ( y , w ) s f ( x + y , z w ) + f ( x y , z + w ) 2 f ( x , z ) + 2 f ( y , w ) + θ ( x r + y r ) ( z r + w r )
for all x , y , z , w X . Then there exists a unique bi-additive mapping A : X 2 Y such that
f ( x , z ) A ( x , z ) 2 r 1 θ 2 r 2 x r z r
for all x , z X .
Theorem 12.
([25] Theorem 3.3) Let r < 1 and θ be nonnegative real numbers and let f : X 2 Y be a mapping satisfying (25) and f ( x , 0 ) = f ( 0 , z ) = 0 for all x , z X . Then there exists a unique bi-additive mapping A : X 2 Y such that
f ( x , z ) A ( x , z ) θ 2 ( 2 2 r ) x r z r
for all x , z X .
Now, we investigate C * -ternary biderivations on C * -ternary algebras associated with the bi-additive s-functional inequalities (4) and (5).
From now on, assume that A is a C * -ternary algebra.
Theorem 13.
Let r > 2 and θ be nonnegative real numbers, and let f : A 2 A be a mapping satisfying f ( x , 0 ) = f ( 0 , z ) = 0 and
f ( λ ( x + y ) , μ ( z w ) ) + f ( λ ( x y ) , μ ( z + w ) ) 2 λ μ f ( x , z ) + 2 λ μ f ( y , w ) s 2 f x + y 2 , z w + 2 f x y 2 , z + w 2 f ( x , z ) + 2 f ( y , w ) + θ ( x r + y r ) ( z r + w r )
for all λ , μ T 1 and all x , y , z , w A . Then there exists a unique C -bilinear mapping D : A 2 A such that
f ( x , z ) D ( x , z ) 2 θ 2 r 2 x r z r
for all x , z A .
If, in addition, the mapping f : A 2 A satisfies f ( 2 x , z ) = 2 f ( x , z ) and
f ( [ x , y , z ] , w ) [ f ( x , w ) , y , z ] [ x , f ( y , w * ) , z ] [ x , y , f ( z , w ) ] θ ( x r + y r ) ( z r + z r ) ,
f ( x , [ y , z , w ] ) [ f ( x , y ) , z , w ] [ y , f ( x * , z , w ] [ y , z , f ( x , w ) ] θ ( x r + y r ) ( z r + w r )
for all x , y , z , w A , then the mapping f : A 2 A is a C * -ternary biderivation.
Proof. 
Let λ = μ = 1 in (28). By Theorem 9, there is a unique bi-additive mapping D : A 2 A satisfying (29) defined by
D ( x , z ) : = lim n 2 n f x 2 n , z
for all x , z A .
Letting y = w = 0 in (28), we get f ( λ x , μ z ) = λ μ f ( x , z ) for all x , z A and all λ , μ T 1 . By Lemma 1, the bi-additive mapping D : A 2 A is C -bilinear.
If f ( 2 x , z ) = 2 f ( x , z ) for all x , z A , then we can easily show that D ( x , z ) = f ( x , z ) for all x , z A .
It follows from (30) that
D ( [ x , y , z ] , w ) [ D ( x , w ) , y , z ] [ x , D ( y , w * ) , z ] [ x , y , D ( z , w ) ] = lim n 16 n f [ x , y , z ] 8 n , w 2 n f x 2 n , w 2 n , y 2 n , z 2 n x 2 n , f y 2 n , w * 2 n , z 2 n x 2 n , y 2 n , f z 2 n , w 2 n lim n 16 n θ 4 r n ( x r + y r ) ( z r + w r ) = 0
for all x , y , z , w A . Thus
D ( [ x , y , z ] , w ) = [ D ( x , w ) , y , z ] + [ x , D ( y , w * ) , z ] + [ x , y , D ( z , w ) ]
for all x , y , z , w A .
Similarly, one can show that
D ( x , [ y , z , w ] ) = [ D ( x , y ) , z , w ] [ y , D ( x * , z , w ] [ y , z , D ( x , w ) ]
for all x , y , z , w A . Hence the mapping f : A 2 A is a C * -ternary biderivation. ☐
Theorem 14.
Let r < 1 and θ be nonnegative real numbers, and let f : A 2 A be a mapping satisfying (28) and f ( x , 0 ) = f ( 0 , z ) = 0 for all x , z A . Then there exists a unique C -bilinear mapping D : A 2 A such that
f ( x , z ) D ( x , z ) 2 θ 2 2 r x r z r
for all x , z A .
If, in addition, the mapping f : A 2 A satisfies (30), (31) and f ( 2 x , z ) = 2 f ( x , z ) for all x , z A , then the mapping f : A 2 A is a C * -ternary biderivation.
Proof. 
The proof is similar to the proof of Theorem 13. ☐
Similarly, we can obtain the following results.
Theorem 15.
Let r > 2 and θ be nonnegative real numbers, and let f : A 2 A be a mapping satisfying f ( x , 0 ) = f ( 0 , z ) = 0 and
2 f λ x + y 2 , μ ( z w ) + 2 f λ x y 2 , μ ( z + w ) 2 λ μ f ( x , z ) + 2 λ μ f ( y , w ) s f ( x + y , z w ) + f ( x y , z + w ) 2 f ( x , z ) + 2 f ( y , w ) + θ ( x r + y r ) ( z r + w r )
for all λ , μ T 1 and all x , y , z , w A . Then there exists a unique C -bilinear mapping D : A 2 A such that
f ( x , z ) D ( x , z ) 2 r 1 θ 2 r 2 x r z r
for all x , z A .
If, in addition, the mapping f : A 2 A satisfies (30), (31) and f ( 2 x , z ) = 2 f ( x , z ) for all x , z A , then the mapping f : A 2 A is a C * -ternary biderivation.
Theorem 16.
Let r < 1 and θ be nonnegative real numbers, and let f : A 2 A be a mapping satisfying (33) and f ( x , 0 ) = f ( 0 , z ) = 0 for all x , z A . Then there exists a unique C -bilinear mapping D : A 2 A such that
f ( x , z ) D ( x , z ) θ 2 ( 2 2 r ) x r z r
for all x , z A .
If, in addition, the mapping f : A 2 A satisfies (30), (31) and f ( 2 x , z ) = 2 f ( x , z ) for all x , z A , then the mapping f : A 2 A is a C * -ternary biderivation.

5. C * -Ternary Bihomomorphisms in C * -Ternary Algebras Associated with the Bi-Additive Functional Inequalities (4) and (5)

In this section, we investigate C * -ternary bihomomorphisms in C * -ternary algebras associated with the bi-additive s-functional inequalities (4) and (5).
Theorem 17.
Let r > 3 and θ be nonnegative real numbers, and let f : A 2 B be a mapping satisfying f ( x , 0 ) = f ( 0 , z ) = 0 and (28). Then there exists a unique C -bilinear mapping H : A 2 B satisfying (29), where D is replaced by H in (29).
If, in addition, the mapping f : A 2 B satisfies f ( 2 x , z ) = 2 f ( x , z ) and
f ( [ x , y , z ] , [ w , w , w ] ) [ f ( x , w ) , f ( y , w ) , f ( z , w ) ] θ ( x r + y r ) ( z r + w r ) ,
f ( [ x , x , x ] , [ y , z , w ] ) [ f ( x , y ) , f ( x , z ) , f ( x , w ) ] θ ( x r + y r ) ( z r + w r )
for all x , y , z , w A , then the mapping f : A 2 B is a C * -ternary bihomomorphism.
Proof. 
By the same reasoning as in the proof of Theorem 13, there is a unique C -bilinear mapping H : A 2 B , which is defined by
H ( x , z ) = lim n 2 n f x 2 n , z
for all x , z A .
If f ( 2 x , z ) = 2 f ( x , z ) for all x , z A , then we can easily show that H ( x , z ) = f ( x , z ) for all x , z A .
It follows from (36) that
H ( [ x , y , z ] , [ w , w , w ] ) [ H ( x , w ) , H ( y , w ) , H ( z , w ) ] = lim n 4 3 n f [ x , y , z ] 8 n , [ w , w , w ] 8 n f x 2 n , w 2 n , f y 2 n , w 2 n , f z 2 n , w 2 n lim n 4 3 n θ 4 r n ( x r + y r ) ( z r + w r ) = 0
for all x , y , z , w A . Thus
H ( [ x , y , z ] , [ w , w , w ] ) = [ H ( x , w ) , H ( y , w ) , H ( z , w ) ]
for all x , y , z , w A .
Similarly, one can show that
H ( [ x , x , x ] , [ y , z , w ] ) = [ H ( x , y ) , H ( x , z ) , H ( x , w ) ]
for all x , y , z , w A . Hence the mapping f : A 2 B is a C * -ternary bihomomorphism. ☐
Theorem 18.
Let r < 1 and θ be nonnegative real numbers, and let f : A 2 B be a mapping satisfying (28) and f ( x , 0 ) = f ( 0 , z ) = 0 for all x , z A . Then there exists a unique C -bilinear mapping H : A 2 B satisfying (32), where D is replaced by H in (32).
If, in addition, the mapping f : A 2 B satisfies (36), (37) and f ( 2 x , z ) = 2 f ( x , z ) for all x , z A , then the mapping f : A 2 B is a C * -ternary bihomomorphism.
Proof. 
The proof is similar to the proof of Theorem 17. ☐
Similarly, we can obtain the following results.
Theorem 19.
Let r > 3 and θ be nonnegative real numbers, and let f : A 2 B be a mapping satisfying f ( x , 0 ) = f ( 0 , z ) = 0 and (33). Then there exists a unique C -bilinear mapping H : A 2 B satisfying (34), where D is replaced by H in (34).
If, in addition, the mapping f : A 2 B satisfies (36), (37) and f ( 2 x , z ) = 2 f ( x , z ) for all x , z A , then the mapping f : A 2 B is a C * -ternary bihomomorphism.
Theorem 20.
Let r < 1 and θ be nonnegative real numbers, and let f : A 2 B be a mapping satisfying (33) and f ( x , 0 ) = f ( 0 , z ) = 0 for all x , z A . Then there exists a unique C -bilinear mapping H : A 2 B satisfying (35), where D is replaced by H in (35).
If, in addition, the mapping f : A 2 B satisfies (36), (37) and f ( 2 x , z ) = 2 f ( x , z ) for all x , z A , then the mapping f : A 2 B is a C * -ternary bihomomorphism.

Acknowledgments

Choonkil Park was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2017R1D1A1B04032937).

Conflicts of Interest

The author declares no conflicts of interest.

References

  1. Ulam, S.M. A Collection of the Mathematical Problems; Interscience Publishers: New York, NY, USA, 1960. [Google Scholar]
  2. Hyers, D.H. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
  3. Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
  4. Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
  5. Gǎvruta, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184, 431–436. [Google Scholar] [CrossRef]
  6. Gilányi, A. Eine zur Parallelogrammgleichung äquivalente Ungleichung. Aequ. Math. 2001, 62, 303–309. [Google Scholar] [CrossRef]
  7. Rätz, J. On inequalities associated with the Jordan-von Neumann functional equation. Aequ. Math. 2003, 66, 191–200. [Google Scholar] [CrossRef]
  8. Fechner, W. Stability of a functional inequalities associated with the Jordan-von Neumann functional equation. Aequ. Math. 2006, 71, 149–161. [Google Scholar] [CrossRef]
  9. Gilányi, A. On a problem by K. Nikodem. Math. Inequal. Appl. 2002, 5, 707–710. [Google Scholar] [CrossRef]
  10. Park, C. Additive ρ-functional inequalities and equations. J. Math. Inequal. 2015, 9, 17–26. [Google Scholar] [CrossRef]
  11. Park, C. Additive ρ-functional inequalities in non-Archimedean normed spaces. J. Math. Inequal. 2015, 9, 397–407. [Google Scholar] [CrossRef]
  12. Cho, Y.; Jang, S.; Kwon, S.; Park, C.; Park, W. Approximate bi-homomorphisms and bi-derivations in C*-ternary algebras: revisited. Korean J. Math. 2013, 21, 161–170. [Google Scholar] [CrossRef]
  13. Gordji, M.E.; Fazeli, A.; Park, C. 3-Lie multipliers on Banach 3-Lie algebras. Int. J. Geom. Meth. Mod. Phys. 2012, 9, 1250052. [Google Scholar] [CrossRef]
  14. Gordji, M.E.; Ghaemi, M.B.; Alizadeh, B. A fixed point method for perturbation of higher ring derivationsin non-Archimedean Banach algebras. Int. J. Geom. Meth. Mod. Phys. 2011, 8, 1611–1625. [Google Scholar] [CrossRef]
  15. Gordji, M.E.; Ghobadipour, N. Stability of (α, β, γ)-derivations on Lie C*-algebras. Int. J. Geom. Meth. Mod. Phys. 2010, 7, 1097–1102. [Google Scholar] [CrossRef]
  16. Jung, S.; Lee, Y. A fixed point approach to the stability of a mean value type functional equation. Mathematics 2017, 5, 78. [Google Scholar] [CrossRef]
  17. Lee, Y. Stability of a monomial functional equation on a restricted domain. Mathematics 2017, 5, 53. [Google Scholar] [CrossRef]
  18. Shin, D.; Park, C.; Farhadabadi, S. On the superstability of ternary Jordan C*-homomorphisms. J. Comput. Anal. Appl. 2014, 16, 964–973. [Google Scholar]
  19. Shin, D.; Park, C.; Farhadabadi, S. Stability and superstability of J*-homomorphisms and J*-derivations for a generalized Cauchy-Jensen equation. J. Comput. Anal. Appl. 2014, 17, 125–134. [Google Scholar]
  20. Amyari, M.; Baak, C.; Moslehian, M. Nearly ternary derivations. Taiwan. J. Math. 2007, 11, 1417–1424. [Google Scholar] [CrossRef]
  21. Zettl, H. A characterization of ternary rings of operators. Adv. Math. 1983, 48, 117–143. [Google Scholar] [CrossRef]
  22. Moslehian, M.S. Almost derivations on C*-ternary rings. Bull. Belg. Math. Soc. Simon Stevin 2006, 14, 135–142. [Google Scholar]
  23. Amyari, M.; Moslehian, M.S. Approximate homomorphisms of ternary semigroups. Lett. Math. Phys. 2006, 77, 1–9. [Google Scholar] [CrossRef]
  24. Bae, J.; Park, W. Approximate bi-homomorphisms and bi-derivations in C*-ternary algebras. Bull. Korean Math. Soc. 2010, 47, 195–209. [Google Scholar] [CrossRef]
  25. Park, C. Bi-additive s-functional inequalities and quasi-multipliers on Banach algebras. Unpublished. (preprint).

Share and Cite

MDPI and ACS Style

Park, C. C*-Ternary Biderivations and C*-Ternary Bihomomorphisms. Mathematics 2018, 6, 30. https://doi.org/10.3390/math6030030

AMA Style

Park C. C*-Ternary Biderivations and C*-Ternary Bihomomorphisms. Mathematics. 2018; 6(3):30. https://doi.org/10.3390/math6030030

Chicago/Turabian Style

Park, Choonkil. 2018. "C*-Ternary Biderivations and C*-Ternary Bihomomorphisms" Mathematics 6, no. 3: 30. https://doi.org/10.3390/math6030030

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop