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Abstract: The Hilbert metric is a widely used tool for analysing the convergence of Markov processes
and the ergodic properties of deterministic dynamical systems. A useful representation formula for the
Hilbert metric was given by Liverani. The goal of the present paper is to extend this formula to the
non-compact and multidimensional setting with a different cone, taylored for sub-Gaussian tails.
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1. Introduction

Let V be a topological vector space and C a closed convex cone inside V enjoying the property
that C ∩ −C = ∅. Then, C defines a partial ordering “�” by setting

f � g⇐⇒ g− f ∈ C ∪ {0}. (1)

Using this ordering, the Hilbert semi-metric Θ on C is given by

Θ( f , g) = log
[

β( f ,g)
α( f ,g)

]
, (2)

where
α( f , g) = sup{λ ∈ R+ | λ f � g}, (3)

and
β( f , g) = inf{µ ∈ R+ | g � µ f } (4)

and α = 0 and β = +∞ if the corresponding sets are empty. In the sequel, we will focus on the case
where V is the space of continuous integrable functions on Rn with Euclidean norm denoted by ‖ · ‖.

The Hilbert metric, originally introduced in [1], has been very useful in ergodic theory for
deterministic dynamical systems [2–4], for the analysis and application of Markov Chains to control
systems statistics and information theory [5–7]. Robust routing problems have also been studied using
the Hilbert metric view point [8].

The first application of the Hilbert metric to the field of dynamical systems is Birkhoff’s approach to
the Perron-Frobenius theorem [9]; see also [10]. The ground-breaking result of Birkhoff is the following.

Theorem 1. Let C be a cone in a vector space V and K be a cone in a vector space W. If L : V 7→W is a linear
mapping with L(C) ⊂ K and projective diameter ∆(L) = supx, y∈C, L(x)∼KL(y) d(Lx, Ly). Then

inf
x∼Cy∈C

d(Lx, Ly)/d(x, y) ≤ tanh
(

1
4

∆(L)
)

(5)
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where tanh(∞) = 1.

Birkhoff’s theorem provides an elegant way to prove that certain maps between cones are contracts
and therefore obtain existence and uniqueness for certain problems such as in Perron-Frobenius theory
for positive operators.

The goal of this short note is to extend to the noncompact and multidimensional setting a useful
formula for the Hilbert semi-metric which was previously given by Liverani [2] in the case in which V
is the space L1([0, 1]) of integrable functions of the interval [0, 1]. The cone C in that result, which will
be denoted in the sequel by Ca, a > 0, is given by

Ca([0, 1]) =
{

g ∈ C0([0, 1]) ∩ L1([0, 1]) | ∀x, y ∈ [0, 1] g > 0 and
g(x)
g(y)

≤ ea|x−y|
}

. (6)

In that setup, the Hilbert semi-metric is given by the following expression:

Θ( f , g) = ln
[

sup
x,y,u,v∈[0,1]

(
ea|x−y|2 g(y)− g(x)

)(
ea|u−v|2 f (v)− f (u)

)(
ea|x−y|2 f (y)− f (x)

)(
ea|u−v|2 g(v)− g(u)

) ]. (7)

2. Main Result

The cone we use in the sequel is different from the cone chosen by Liverani in [1].

Ca(Rn) =
{

g ∈ C0(Rn) ∩ L1(Rn) | ∀x, y ∈ Rn g > 0 and
g(x)
g(y)

≤ ea‖x−y‖2
}

(8)

This cone is chosen to contain densities with subgaussian tails on Rn. Our main result is the
following theorem.

Theorem 2. Let Θ be the Hilbert semi-metric associated to Ca, a > 0; when f , g ∈ Ca,

Θ( f , g) = ln
[

sup
x,y,u,v∈E

(
ea‖x−y‖2

g(y)− g(x)
)(

ea‖u−v‖2
f (v)− f (u)

)(
ea‖x−y‖2 f (y)− f (x)

)(
ea‖u−v‖2 g(v)− g(u)

) ]. (9)

Proof. We have to compute α( f , g) and β( f , g). Just as in the proof p. 247 of Lemma 2.2 of [2], we obtain

α( f , g) = min
{

inf
x∈Rn

g(x)
f (x)

; inf
x, y∈Rn

ea‖x−y‖2
g(y)− g(x)

ea‖x−y‖2 f (y)− f (x)

}
. (10)

We now prove that

inf
x∈Rn

g(x)
f (x)

≥ inf
x, y∈Rn

ea‖x−y‖2
g(y)− g(x)

ea‖x−y‖2 f (y)− f (x)
(11)

Let (xn)n∈N ⊂ Rn be a minimizing sequence for the left hand side of Equation (11). We have to split
the analysis into two cases.

First case. Assume that (xn)n∈N has a bounded subsequence, denoted by (xσ(n))n∈N. Moreover,
by the Bolzano-Weierstrass Theorem we may assume without loss of generality that this subsequence
converges to some limit point x∗. Fix ε > 0 and let N ∈ N be such that

g(xσ(n))

f (xσ(n))
≤ inf

x∈Rn

g(x)
f (x)

+ ε (12)
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for all n ≥ N. Now take x such that

| sup
n∈N

ea‖x−xσ(n)‖2
f (xσ(n))− f (x)| < +∞. (13)

Then, we get

ea‖x−xσ(n)‖2
g(xσ(n))− g(x)

ea‖x−xσ(n)‖2
f (xσ(n))− f (x)

=
ea‖x−xσ(n)‖2 g(xσ(n))

f (xσ(n))
f (xσ(n))−

g(x)
f (x) f (x)

ea‖x−xσ(n)‖2
f (xσ(n))− f (x)

≤
ea‖x−xσ(n)‖2( g(x)

f (x) f (xσ(n)) + ε
)
− g(x)

f (x) f (x)

ea‖x−xσ(n)‖2
f (xσ(n))− f (x)

=
g(x)
f (x)

+ ε
ea‖x−xσ(n)‖2

f (xσ(n))

ea‖x−xσ(n)‖2
f (xσ(n))− f (x)

.

(14)

Let n tend towards +∞, and obtain

ea‖x−x∗‖2
g(x∗)− g(x)

ea‖x−x∗‖2 f (x∗)− f (x)
≤ g(x)

f (x)
+ ε

ea‖x−x∗‖2
f (x∗)

ea‖x−x∗‖2 f (x∗)− f (x)
(15)

and the result follows by taking ε→ 0 due to the assumption of Equation (13) on x. The result is then
easily seen to hold for all x by continuity.

Second case. In this case, ‖xn − x‖ → +∞. Consider the unit vector dn given by

dn =
xn − x
‖xn − x‖ (16)

and extract a convergent subsequence (dσ(n))n∈N denoting its limit by d∗. Now take zδ = x− δd∗.
Let us prove that

lim
n→+∞

ea‖zδ−xσ(n)‖2
g(xσ(n))− g(zδ)

ea‖zδ−xσ(n)‖2
f (xσ(n))− f (zδ)

≤ g(zδ)

f (zδ)
(17)

Letting δ tend towards zero will prove the desired result using continuity. As in the first case, one easily
finds that for each ε > 0 there exists N ∈ N such that for all n ≥ N,

ea‖zδ−xσ(n)‖2
g(xσ(n))− g(zδ)

ea‖zδ−xσ(n)‖2
f (xσ(n))− f (zδ)

≤ g(zδ)

f (zδ)
+ ε

1

1− f (zδ)

e
a‖zδ−xσ(n)‖

2
f (xσ(n))

=
g(zδ)

f (zδ)
+ ε

1

1− f (x)

e
a‖x−xσ(n)‖

2
f (xσ(n))

f (zδ)e
a‖x−xσ(n)‖

2

e
a‖zδ−xσ(n)‖

2
f (xσ(n))

.
(18)

Looking at this expression, we obviously wonder about the asymptotic behavior of

cn =
f (x)

ea‖x−xσ(n)‖2
f (xσ(n))

f (zδ)e
a‖x−xσ(n)‖2

ea‖zδ−xσ(n)‖2
f (xσ(n))

. (19)

For this purpose, first notice that since f belongs to Ca, we have

f (x)

ea‖x−xσ(n)‖2
f (xσ(n))

≤ 1. (20)
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and
f (zδ)e

a‖x−xσ(n)‖2

ea‖zδ−xσ(n)‖2
f (xσ(n))

≤ ea‖x−xσ(n)‖2
ea‖x−zδ‖2

ea‖zδ−xσ(n)‖2 (21)

but
ea‖x−xσ(n)‖2−a‖zδ−xσ(n)‖2+a‖x−zδ‖2

= e−2a‖x−xσ(n)‖‖x−zδ‖, (22)

and since ‖xn − x‖ → +∞, we obtain that cn → 0 as n→ +∞, implying that the value one is not an
accumulation point. Using this, we may deduce from Equation (18) that

ea‖zδ−xσ(n)‖2
g(xσ(n))− g(zδ)

ea‖zδ−xσ(n)‖2
f (xσ(n))− f (zδ)

≤ g(zδ)

f (zδ)
+ ε. (23)

Letting ε tend towards zero we obtain

inf
n∈N

ea‖zδ−xσ(n)‖2
g(xσ(n))− g(zδ)

ea‖zδ−xσ(n)‖2
f (xσ(n))− f (zδ)

≤ g(zδ)

f (zδ)
. (24)

Letting δ tend towards zero and using continuity, we finaly conclude that

inf
n∈N

ea‖x−xσ(n)‖2
g(xσ(n))− g(x)

ea‖x−xσ(n)‖2
f (xσ(n))− f (x)

≤ g(x)
f (x)

, (25)

implying the desired result. �

3. Conclusions

In this short note, we presented an extension of a formula for the Hilbert metric obtained in [2]
to the multidimensional and non-compact case for a different reference cone. Using the presented
formula and Theorem 1, applications to the study of Markov Chain Monte Carlo methods and the
analysis of the Sinkhorn algorithms for Optimal Transportation will be undertaken in future work.
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