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1. Introduction

Various aspects of the theory of third-order differential inclusions with boundary conditions
attract the attention of many researchers (e.g., [1–10]).

In the present paper we study third-order differential inclusions of the form

− u′′′ (t) ∈ F (t, u (t)) , t ∈ (0, 1) , (1)

with boundary conditions of the form:

u′ (0) = u′ (1) = αu (η) , u (0) = βu (η) , (2)

where α, β, and η are constants in R, F : [0, 1]×R → P (R) a multi-valued map, and P (R) is the
family of all subsets of R.

This paper is a continuation of the work in [11], where the authors discussed the existence of
solutions of the problem (1)–(2) when the multi-valued map F is nonconvex and lower semi-continuous.

The aim of our present paper is to provide some existence results for the problem (1)–(2) under
assumptions of convexity and upper semi-continuity of the right-hand side. To this end, we use
a nonlinear alternative of Leray-Shauder type, some hypothesis of Carathéodory type, and some facts
of the selection theory. More exactly, we discuss the existence of solutions for the problem (1)–(2) when
F is convex and upper semi-continuous and satisfies a Carathéodory condition. We also prove that the
set of solutions is compact, and we end our results by presenting a Filippov’s-type result concerning
the existence of solutions to the considered problem. An illustrative example of a boundary value
problem satisfying the mentioned conditions is also given.

The paper is divided into three sections. In the second section, we give some necessary background
material. In Section 3, we prove our main results.
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2. Preliminaries

In this section we introduce some notations, definitions, and preliminary facts which will be used
in the remainder of the paper. Let C ([0, 1] ,R) denote the Banach space of all continuous functions
from [0, 1] into R, equipped with the norm

‖u‖ = sup {|u (t)| , for all t ∈ [0, 1]} .

We also denote the Banach space of measurable functions u : [0, 1] → R which are Lebesgue
integrable by L1 ([0, 1] ,R), normed by

‖u‖L1 =
∫ 1

0
|u (t)| dt.

By ACi([0, 1],R) we denote the space of i−times differentiable functions u : [0, 1]→ R, whose ith

derivative, u(i)is absolutely continuous.
Let (X, d) be a metric space induced from a normed space (X, ‖.‖). Denote P0(X) =

{A ∈ P(X) : A 6= ∅}, Pcl(X) = {A ∈ P0(X) : A is closed}, Pb(X) = {A ∈ P0(X) : A is bounded},
Pcomp(X) = {A ∈ P0(X) : A is compact}, and Pcv(X) = {A ∈ P0(X) : A is convex}.

Consider Hd : P (X)×P (X)→ R∪ {∞} given by

Hd (A, B) = max
{

sup
a∈A

d (a, B) , sup
b∈B

d (b, A)
}

,

where d (a, B) = infb∈B d (a, b) and d (b, A) = infa∈A d (a, b) . Then, (Pb,cl (X) , Hd) is a metric space
and (Pcl (X) , Hd) is a generalized metric space (see [12]).

Let E be a separable Banach space, Y a nonempty closed subset of E and G : Y → Pcl(E)
a multi-valued map. G is said to be upper semi-continuous (u.s.c) at the point y0 ∈ Y if for every
open W ⊆ Y such that G (y0) ⊂W there exists a neighborhood V(y0) of y0 such that G (V (y0)) ⊂W.
We say that G has a fixed point if there is x ∈ Y such that x ∈ G(x). G is also said to be completely
continuous if G (Ω) is relatively compact for every Ω ∈ Pb(Y). If the multi-valued map G is completely
continuous with nonempty compact values, then G is upper semi-continuous (u.s.c) if and only if G
has a closed graph; that is, xn → x∗, yn → y∗, yn ∈ G (xn) imply that y∗ ∈ G (x∗) .

For more details on the multi-valued maps, see the books of Aubin and Cellina [13], Aubin and
Frankowska [14], Deimling [15], Gorniewicz [16], and Hu and Papageorgiou [17].

We recall here some definitions and Lemmas needed below.

Definition 1. A multi-valued map F : [0, 1]×R→ P (R) is said to be Carathéodory if

(1) t→ F (t, u) is measurable for each u ∈ R,
(2) u→ F (t, u) is upper semi-continuous for almost all t ∈ (0, 1) , and further a Carathéodory function F

is called L1−Carathéodory if
(3) for each r > 0, there exists Φr ∈ L1 ((0, 1) ,R+), such that

‖F (t, u)‖ = sup {|v| : v ∈ F (t, u)} 6 Φr (t)

for all ‖u‖ ≤ r and for a.e. t ∈ (0, 1).

For each u ∈ C ((0, 1) ,R), define the set of selections of F by

SF,u =
{

v ∈ L1 ((0, 1) ,R) : v (t) ∈ F (t, u (t)) for a.e. t ∈ (0, 1)
}

.
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Lemma 1 ([18]). Let E be a Banach space, let F : [0, T] × E → Pcomp,cv (E) be a L1−Carathéodory
multi-valued map, and let Θ be a linear continuous mapping from L1 ([0, 1] , E) to C ([0, 1] , E). Then,
the operator

Θ ◦ SF : C ([0, 1] , E)→ Pcomp,cv (C ([0, 1] , E))

u→ (Θ ◦ SF) (u) = Θ (SF,u)

is a closed graph operator in C ([0, 1] , E)× C ([0, 1] , E) .

Lemma 2 (See [16], Theorem 19.7). Let X be a separable metric space and G a multi-valued map with
nonempty closed values. Then, G has a measurable selection.

Lemma 3 ([19]). Assume 1− β− αη 6= 0, then for y ∈ C ([0, 1] ,R) the problem

u′′′ (t) + y (t) = 0, t ∈ (0, 1) , (3)

u′ (0) = u′ (1) = αu (η) , u (0) = βu (η) , (4)

where α, β, and η are constants with α ∈
[
0, 1

η

)
, 0 < η < 1, β 6= 1− αη, has a unique solution

u (t) = −1
2

∫ t

0
(t− s)2 y (s) ds +

1
2

[
t2 + η2 αt + β

1− αη − β

] ∫ 1

0
(1− s) y (s) ds−

− αt + β

2 (1− αη − β)

∫ η

0
(η − s)2 y (s) ds.

3. Main Results

3.1. Existence of Solutions

Before giving some results on the existence of solutions for the problem (1) and (2), let us introduce
the following hypotheses which are assumed hereafter:

(H1) F : [0, 1]×R→ Pcomp,cv (R) is Carathéodory,
(H2) there exists a function p ∈ C ([0, 1] ,R+) such that

‖F (t, u)‖P = sup {|w| : w ∈ F (t, u)} ≤ p (t) , for each (t, u) ∈ [0, 1]×R.

Theorem 1. Assume that (H1) , (H2) hold, then the boundary value problem (1) and (2) has at least one
solution on [0, 1] .

Proof. Define the operator T : C ([0, 1] ,R)→ P (C ([0, 1] ,R)) by

T (u) =
{

h ∈ C ([0, 1] ,R) : h (t) = − 1
2

∫ t
0 (t− s)2 f (u) ds+

+ 1
2

[
t2 + η2 αt+β

1−αη−β

] ∫ 1
0 (1− s) f (u) ds−

− αt+β
2(1−αη−β)

∫ η
0 (η − s)2 f (u) ds

}
,

for f ∈ SF,u, we will show that T satisfies the assumptions of the nonlinear alternative of
Leray-Schauder type. The proof consists of several steps.

Step 1: Let us begin by proving that T is convex for each u ∈ C ([0, 1] ,R).



Mathematics 2018, 6, 40 4 of 12

Let h1, h2 ∈ Tu. Then, there exist w1, w2 ∈ SF,u such that for each t ∈ [0, 1], we have

hi (t) = −1
2

∫ t

0
(t− s)2 wi (s) ds +

1
2

[
t2 + η2 αt + β

1− αη − β

] ∫ 1

0
(1− s)wi (s) ds−

− αt + β

2 (1− αη − β)

∫ η

0
(η − s)2 wi (s) ds, i = 1, 2.

Let 0 ≤ µ ≤ 1. So, for each t ∈ [0, 1], we have

µh1 (t) + (1− µ) h2 (t) =
1
2

∫ t

0
(t− s)2 (µw1 (s) + (1− µ)w2 (s)) ds +

+
1
2

[
t2 + η2 αt + β

1− αη − β

]
×

×
∫ 1

0
(1− s) (µw1 (s) + (1− µ)w2 (s)) ds−

− αt + β

2 (1− αη − β)

∫ η

0
(η − s)2 (µw1 (s) + (1− µ)w2 (s)) ds.

Since SF,u is convex, it follows that µh1 + (1− µ) h2 ∈ Tu.

Step 2: In this step, we prove that T maps bounded sets into bounded sets in C ([0, 1] ,R).

For a positive number r, let Br = {u ∈ C ([0, 1] ,R) : ‖u‖ ≤ r} be a bounded ball in C ([0, 1] ,R) .
So, for each h ∈ Tu, u ∈ Br, there exists w ∈ SF,u such that

h (t) = −1
2

∫ t

0
(t− s)2 w (s) ds +

1
2

[
t2 + η2 αt + β

1− αη − β

] ∫ 1

0
(1− s)w (s) ds−

− αt + β

2 (1− αη − β)

∫ η

0
(η − s)2 w (s) ds,

|h (t)| ≤
(

1 + η2 α + |β|
2 |1− αη − β|

) ∫ 1

0
p (s) ds +

α + |β|
2 |1− αη − β|

∫ η

0
p (s) ds,

= R.

So,
‖h‖∞ 6 R.

Step 3: Here we verify that T maps bounded sets into equicontinuous sets of C ([0, 1] ,R).

Let t1, t2 ∈ [0, 1] , with t1 < t2 and Br be a bounded set of C ([0, 1] ,R). So, for each h ∈ Tu,
we obtain

|h (t2)− h (t1)| ≤
1
2

∫ t2

t1

(t2 − s)2 |w (s)| ds +

+
1
2

[(
t2
2 − t2

1

)
+ η2 α (t2 − t1)

|1− αη − β|

] ∫ 1

0
(1− s) |w (s)| ds +

+
α (t2 − t1)

2 |1− αη − β|

∫ η

0
(η − s)2 |w (s)| ds +

+
1
2

∫ t1

0

(
(t1 − s)2 − (t2 − s)2

)
|w (s)| ds,
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≤ 1
2

∫ t2

t1

(t2 − s)2 p (s) ds +

+
1
2

[(
t2
2 − t2

1

)
+ η2 α (t2 − t1)

|1− αη − β|

] ∫ 1

0
(1− s) p (s) ds +

+
α (t2 − t1)

2 |1− αη − β|

∫ η

0
(η − s)2 p (s) ds +

+
1
2

∫ t1

0

(
(t1 − s)2 − (t2 − s)2

)
p (s) ds.

Obviously, the right-hand side of the above inequality tends to zero independently from u ∈ Br as
t2 − t1 → 0. As T satisfies the above three assumptions, it follows by Ascoli–Arzela’s theorem that
T : C ([0, 1] ,R)→ P (C ([0, 1] ,R)) is completely continuous.

Step 4: In this step we prove that T has a closed graph.

Let un → u∗, hn ∈ T (un) and hn → h∗. Then, we need to show that h∗ ∈ Tu∗.
Associated with hn ∈ T (un), there exists wn ∈ SF,un such that for each t ∈ [0, 1],

hn (t) = −1
2

∫ t

0
(t− s)2 wn (s) ds +

1
2

[
t2 + η2 αt + β

1− αη − β

] ∫ 1

0
(1− s)wn (s) ds−

− αt + β

2 (1− αη − β)

∫ η

0
(η − s)2 wn (s) ds.

So, we have to show that there exists w∗ ∈ SF,u∗ such that for each t ∈ [0, 1],

h∗ (t) = −1
2

∫ t

0
(t− s)2 w∗ (s) ds +

1
2

[
t2 + η2 αt + β

1− αη − β

] ∫ 1

0
(1− s)w∗ (s) ds−

− αt + β

2 (1− αη − β)

∫ η

0
(η − s)2 w∗ (s) ds.

Let us consider the continuous linear operator Θ : L1 ([0, 1] ,R)→ C ([0, 1] ,R) given by

w → Θw (t) = −1
2

∫ t

0
(t− s)2 w (s) ds +

+
1
2

[
t2 + η2 αt + β

1− αη − β

] ∫ 1

0
(1− s)w (s) ds−

− αt + β

2 (1− αη − β)

∫ η

0
(η − s)2 w (s) ds.

Observe that

‖hn (t)− h∗ (t)‖ =

∥∥∥∥−1
2

∫ t

0
(t− s)2 (wn (s)− w∗ (s)) ds+

+
1
2

[
t2 + η2 αt + β

1− αη − β

] ∫ 1

0
(1− s) (wn (s)− w∗ (s)) ds−

− αt + β

2 (1− αη − β)

∫ η

0
(η − s)2 (wn (s)− w∗ (s)) ds

∥∥∥∥ ,

then ‖hn (t)− h∗ (t)‖ → 0 as n→ ∞.
So, it follows from Lemma 1 that Θ ◦ SF is a closed graph operator.
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Further, we have hn (t) ∈ Θ (SF,un). Since un → u∗, therefore,

h∗ (t) = −1
2

∫ t

0
(t− s)2 w∗ (s) ds +

1
2

[
t2 + η2 αt + β

1− αη − β

] ∫ 1

0
(1− s)w∗ (s) ds−

− αt + β

2 (1− αη − β)

∫ η

0
(η − s)2 w∗ (s) ds,

for some w∗ ∈ SF,u∗ .

Step 5: We end our proof by discussing an a priori bounds on solutions.

Let u be a solution of (1) and (2). So, there exists w ∈ L1 ([0, 1] ,R) with w ∈ SF,u such that
for t ∈ [0, 1], we have

u (t) = −1
2

∫ t

0
(t− s)2 w (s) ds +

1
2

[
t2 + η2 αt + β

1− αη − β

] ∫ 1

0
(1− s)w (s) ds−

− αt + β

2 (1− αη − β)

∫ η

0
(η − s)2 w (s) ds.

In view of (H2), for each t ∈ [0, 1], we obtain

|u (t)| ≤
[

1 + η2 α + |β|
|1− αη − β|

] ∫ 1

0
p (s) ds = L.

Let us set
U = {u ∈ C ([0, 1] ,R) : ‖u‖ < L + 1}.

Note that the operator T : U → P (C ([0, 1] ,R)) is upper semi-continuous and completely
continuous. From the choice of U, there is no u ∈ ∂U such that u ∈ λTx for some λ ∈ (0, 1).

Consequently, by the nonlinear alternative of Leray-Schauder type (see [20]), we deduce that T
has a fixed point u ∈ U which is a solution of the problem (1) and (2). This completes the proof.

Example 1. Consider the boundary value problem given by

−u′′′ (t) ∈
[
−u2 log(t + 2) + 1, t eu

1+eu + 2
]

, t ∈ (0, 1) , (5)

u′ (0) = u′ (1) = u
(

1
5

)
, u (0) = −u

(
1
5

)
, (6)

where α = 1, β = −1, η = 1
5 . and F (t, u (t)) =

[
−u2 log(t + 2) + 1, t eu

1+eu + 2
]

.

For f ∈ F, we have

| f | 6 max
(
−u2 log(t + 2) + 1, t

eu

1 + eu + 2
)
6 3, u ∈ R.

Applying Theorem 1, we get that F is a Carathéodory multi-valued map and there exists a function
p (t) ∈ C ([0, 1] ,R+) ‖F (t, u)‖P ≤ p (t) for each (t, u) ∈ [0, 1] × R, where p (t) = 3. By a simple
calculus we get R = 17

5 , L = 47
15 . Then, the boundary value problem (5) and (6) has at least one solution

on [0, 1] .

3.2. Compactness of the Set of Solutions

Theorem 2. Under Assumptions (H1) , (H2), the set of solutions to Problem (1) and (2) is not empty, and it
is compact.
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Proof. Let S = {u ∈ C ([0, 1] ,R) : u solutions of the problem (1) and (2)}. From Theorem 1, S 6= ∅.
Now, we prove that S is compact.

Let (un)n∈N ∈ S, then there exist vn ∈ SF.un such that

un (t) = −1
2

∫ t

0
(t− s)2 vn (s) ds +

1
2

[
t2 + η2 αt + β

1− αη − β

] ∫ 1

0
(1− s) vn (s) ds−

− αt + β

2 (1− αη − β)

∫ η

0
(η − s)2 vn (s) ds.

From (H2), we can prove that there exists an M > 0 such that

‖un‖∞ ≤ M, for every n ≥ 1.

As in Theorem 1, we can show by using (H2) that the set {un, n ≥ 1} is equicontinuous in
C ([0, 1] , R) ; hence, by Arzela-Ascoli’s theorem we can conclude that there exists a subsequence

{
unk

}
such that unk converges to some u in C ([0, 1] , R). We shall now prove that there exists v (.) ∈ F (., y (.))
such that

u (t) = −1
2

∫ t

0
(t− s)2 v (s) ds +

1
2

[
t2 + η2 αt + β

1− αη − β

] ∫ 1

0
(1− s) v (s) ds−

− αt + β

2 (1− αη − β)

∫ η

0
(η − s)2 v (s) ds.

Additionally, as F (t, .) is upper semi-continuous, then for every ε > 0, there exists n0 (ε), such that
for every n ≥ n0 we have

vn (t) ∈ F (t, un (t)) ⊂ F (t, u (t)) + εB (0, 1) , a.e. t ∈ [0, 1] .

Since F (., .) has compact values, there exists a subsequence vnm such that

vnm (.)→ v (.) as m→ ∞

and
v (t) ∈ F (t, u (t)) , a.e. t ∈ [0, 1] , and ∀m ∈ N.

It is clear that
vnm (t) ≤ p (t) , a.e. t ∈ [0, 1] .

By Lebesgue’s dominated convergence theorem, we conclude that

v ∈ L1 [0, 1] ,R) =⇒ v ∈ SF,u.

Thus,

u (t) = −1
2

∫ t

0
(t− s)2 v (s) ds +

1
2

[
t2 + η2 αt + β

1− αη − β

] ∫ 1

0
(1− s) v (s) ds−

− αt + β

2 (1− αη − β)

∫ η

0
(η − s)2 v (s) ds.

Then, S ∈ Pcomp (C ([0, 1] ,R)) .

3.3. Filippov’s Theorem

Now, we present a Filippov’s result for the problem (1) and (2). Let u ∈ AC2([0, 1],R) be a solution
of the following problem:
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u′′′ (t) + g (t) = 0, t ∈ (0, 1) , (7)

u′ (0) = u′ (1) = αu (η) , u (0) = βu (η) . (8)

We will consider the following two assumptions:

(C1) The function F : [0, 1]×R→ Pcl(R) is such that

(a) for all v ∈ R, the map t→ F(t, v) is measurable,
(b) the map γ∗ : t→ d (g(t), F(t, u(t)) is integrable.

(C2) There exists a function p(t) ∈ C ([0, 1] ,R+) such that, for a.e. t ∈ [0, 1]

Hd(F(t, w1), F(t, w2)) ≤ p(t)|w1(t)− w2(t)|, for all a.e ∈ [0, 1] .

Theorem 3. Assume that the conditions (C1) and (C2) hold. If(
1 +

∣∣∣∣η2 α + β

1− αη − β

∣∣∣∣) ‖p‖L1 < 1,

then the problem (1) and (2) has at least one solution v satisfying, for a.e. t ∈ [0, 1], the estimates

|v(t)− u(t)| ≤ φ(t),

where

φ(t) ≤
(

1 + L +
L− 1

η2

)
(K ‖p‖L1 + ‖γ∗‖L1) ,

K =
L

1− L ‖p‖L1
‖γ∗‖ , and L = 1 + η2

∣∣∣∣ α + β

1− αη − β

∣∣∣∣ .

Proof. Let g0 = −u′′′ and v0 (t) = u (t) for a.e. t ∈ [0, 1], i.e. Then, by Lemma 3

v0 (t) = − 1
2

∫ t
0 (t− s)2 g0 (s) ds+

+ 1
2

[
t2 + η2 αt+β

1−αη−β

] ∫ 1
0 (1− s) g0 (s) ds−

− αt+β
2(1−αη−β)

∫ η
0 (η − s)2 g0 (s) ds.

(9)

Let U1 : [0, 1] → P (R) be given by U1 (t) = F (t, v0 (t)) ∩ B (g (t) , γ∗). The multi-valued map
U1 (t) is measurable (see Proposition III.4 in [12]), so there exists a function t → g1 (t) which is
a measurable selection for U1.

Let
v1 (t) = − 1

2

∫ t
0 (t− s)2 g1 (s) ds+

+ 1
2

[
t2 + η2 αt+β

1−αη−β

] ∫ 1
0 (1− s) g1 (s) ds−

− αt+β
2(1−αη−β)

∫ η
0 (η − s)2 g1 (s) ds.

(10)

Then, we have

|v1(t)− v0(t)| ≤
1
2

∫ t

0
(t− s)2 γ∗ (s) ds +

1
2

∣∣∣∣t2 + η2 αt + β

1− αη − β

∣∣∣∣ ∫ 1

0
(1− s) γ∗ (s) ds +

+
1
2

∣∣∣∣ αt + β

1− αη − β

∣∣∣∣ ∫ η

0
(η − s)2 γ∗ (s) ds,

≤
(

1 + η2
∣∣∣∣ α + β

1− αη − β

∣∣∣∣) ∫ 1

0
γ∗ (s) ds.
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So, we obtain

‖v1(t)− v0(t)‖∞ ≤
(

1 + η2
∣∣∣∣ α + β

1− αη − β

∣∣∣∣) ‖γ∗‖L1 . (11)

In the same way, the multi-valued map U2 (t) = F (t, v1 (t)) ∩ B (g1 (t) , p (t) |v1(t)− v0(t)|) is
measurable with nonempty closed values (see [12,16,19]). By Lemma 2 (Kuratowski–Ryll–Nardzewski
selection theorem), there exists a function g2 which is a mesurable selection of U2.

Let the function

v2 (t) = − 1
2

∫ t
0 (t− s)2 g2 (s) ds+

+ 1
2

[
t2 + η2 αt+β

1−αη−β

] ∫ 1
0 (1− s) g2 (s) ds−

− αt+β
2(1−αη−β)

∫ η
0 (η − s)2 g2 (s) ds.

(12)

Then

|v2(t)− v1(t)| ≤
1
2

∫ t

0
(t− s)2 p (t) |v1(t)− v0(t)| ds +

+
1
2

∣∣∣∣t2 + η2 αt + β

1− αη − β

∣∣∣∣ ∫ 1

0
(1− s) p (t) |v1(t)− v0(t)| ds +

+
1
2

∣∣∣∣ αt + β

1− αη − β

∣∣∣∣ ∫ η

0
(η − s)2 p (t) |v1(t)− v0(t)| ds.

Hence

|v2(t)− v1(t)| ≤
1
2

∫ t

0
p (t) ‖v1(t)− v0(t)‖∞ ds +

+
1
2

∣∣∣∣1 + η2 α + β

1− αη − β

∣∣∣∣ ∫ 1

0
p (t) ‖v1(t)− v0(t)‖∞ ds +

+
1
2

η2
∣∣∣∣ α + β

1− αη − β

∣∣∣∣ ∫ η

0
p (t) ‖v1(t)− v0(t)‖∞ ds,

|v2(t)− v1(t)| ≤
(

1 + η2
∣∣∣∣ α + β

1− αη − β

∣∣∣∣)2

‖p‖L1 ‖γ∗‖L1 . (13)

As above, the multi-valued map U3 (t) = F (t, v2 (t)) ∩ B (g2 (t) , p (t) |v2(t)− v1(t)|)
is measurable, so there exists a measurable selection g3 of U3. Consider the function

v3 (t) = − 1
2

∫ t
0 (t− s)2 g3 (s) ds+

+ 1
2

[
t2 + η2 αt+β

1−αη−β

] ∫ 1
0 (1− s) g3 (s) ds−

− αt+β
2(1−αη−β)

∫ η
0 (η − s)2 g3 (s) ds.

(14)

Then

|v3(t)− v2(t)| ≤
1
2

∫ t

0
(t− s)2 p (t) |v2(t)− v1(t)| ds +

+
1
2

∣∣∣∣t2 + η2 αt + β

1− αη − β

∣∣∣∣ ∫ 1

0
(1− s) p (t) |v2(t)− v1(t)| ds +

+

∣∣∣∣12 αt + β

(1− αη − β)

∣∣∣∣ ∫ η

0
(η − s)2 p (t) |v2(t)− v1(t)| ds.



Mathematics 2018, 6, 40 10 of 12

Hence

|v3(t)− v2(t)| ≤
1
2

∫ t

0
p (t) ‖v2(t)− v1(t)‖∞ ds +

+
1
2

∣∣∣∣1 + η2 α + β

1− αη − β

∣∣∣∣ ∫ 1

0
p (t) ‖v2(t)− v1(t)‖∞ ds +

+

∣∣∣∣η2 α + β

2 (1− αη − β)

∣∣∣∣ ∫ η

0
p (t) ‖v2(t)− v1(t)‖∞ ds,

|v3(t)− v2(t)| ≤
(

1 + η2
∣∣∣∣ α + β

1− αη − β

∣∣∣∣)3

‖p‖2
L1 ‖γ∗‖L1 . (15)

Repeating the process for n = 0, 1, 2, 3, ...., we arrive at the following bound:

|vn(t)− vn−1(t)| ≤
(

1 + η2
∣∣∣∣ α + β

1− αη − β

∣∣∣∣)n
‖p‖n−1

L1 ‖γ∗‖L1 . (16)

Suppose that (15) holds for some n, now it is left to check (16) for n + 1. The multi-valued map
Un+1 (t) = F (t, vn (t)) ∩ B (gn (t) , p (t) |vn(t)− vn−1(t)|) is measurable (see Proposition III.4 in [8]);
then, there exists a function t→ gn+1 (t), which is a measurable selection for Un+1.

We consider

vn+1 (t) = −1
2

∫ t

0
(t− s)2 gn+1 (s) ds +

+
1
2

[
t2 + η2 αt + β

1− αη − β

] ∫ 1

0
(1− s) gn+1 (s) ds−

− αt + β

2 (1− αη − β)

∫ η

0
(η − s)2 gn+1 (s) ds.

Then

|vn+1(t)− vn(t)| ≤
1
2

∫ t

0
p (t) ‖vn(t)− vn−1(t)‖∞ ds +

+
1
2

∣∣∣∣1 + η2 α + β

1− αη − β

∣∣∣∣ ∫ 1

0
p (t) ‖vn(t)− vn−1(t)‖∞ ds +

+
η2

2

∣∣∣∣ α + β

1− αη − β

∣∣∣∣ ∫ η

0
p (t) ‖vn(t)− vn−1(t)‖∞ ds,

≤
(

1 + η2
∣∣∣∣ α + β

1− αη − β

∣∣∣∣)n
‖p‖n−1

L1 ‖v1(t)− v0(t)‖∞ .

Since
(

1 + η2
∣∣∣ α+β

1−αη−β

∣∣∣) ‖p‖L1 < 1, we deduce that {vn} is a Cauchy sequence in C ([0, 1] ,R) ,
converging uniformly to a function v ∈ C ([0, 1] ,R) . From the definition of Un, n ∈ N,

|gn+1 (t)− gn (t)| ≤ p (t) |vn(t)− vn−1(t)| for n ∈ N, a.e, t ∈ [0, 1] .

Hence, for almost every t ∈ [0, 1], the sequence {gn (t) : n ∈ N} is Cauchy in R,
then {gn (t) : n ∈ N} converges almost everywhere to a measurable function {g (.)} in R.
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Moreover, since g0 = −u′′′ and by using the least inequality, we get

|gn (t)− g0 (t)| ≤ |gn (t)− gn−1 (t)|+ |gn−1 (t)− gn−2 (t)|+ ... + |g2 (t)− g1 (t)|+
+ |g1 (t)− g0 (t)| ,

≤ ∑n−1
k=1 p (t) |vk(t)− vk−1(t)|+ |g1 (t)− g0 (t)| ,

≤ p (t)∑∞
k=1

(
1 + η2

∣∣∣∣ α + β

1− αη − β

∣∣∣∣)k
‖p‖k−1

L1 ‖γ∗‖L1 + γ∗ (t) ,

≤ Kp (t) + γ∗ (t) ,

where

K =
L

1− L ‖p‖L1
‖γ∗‖ , and L = 1 + η2

∣∣∣∣ α + β

1− αη − β

∣∣∣∣ .

Then, for all n ∈ N,
|gn (t)| ≤ Kp (t) + γ∗ (t) . (17)

By (17), we deduce that gn converges to g in L1 ([0.1] ,R) . Consequently,

v (t) = − 1
2

∫ t
0 (t− s)2 g (s) ds+

+ 1
2

[
t2 + η2 αt+β

1−αη−β

] ∫ 1
0 (1− s) g (s) ds−

− αt+β
2(1−αη−β)

∫ η
0 (η − s)2 g (s) ds

(18)

is a solution for the problem (1) and (2) with conditions v′ (0) = v′ (1) = αv (η) , v (0) = βv (η).
Then, v ∈ SF.

Finally, we prove that the solution v (t) verifies the estimate:

|u (t)− v (t)| ≤ φ(t) for all t ∈ [0, 1] .

|u (t)− v (t)| =

∣∣∣∣−1
2

∫ t

0
(t− s)2 (g0 (s)− g (s)) ds+

+
1
2

[
t2 + η2 αt + β

1− αη − β

] ∫ 1

0
(1− s) (g0 (s)− g (s)) ds−

− αt + β

2 (1− αη − β)

∫ η

0
(η − s)2 (g0 (s)− g (s)) ds

∣∣∣∣ ,

≤ 1
2

∫ t

0
(t− s)2 |g0 (s)− g (s)| ds +

+
1
2

∣∣∣∣t2 + η2 αt + β

1− αη − β

∣∣∣∣ ∫ 1

0
(1− s) |g0 (s)− g (s)| ds +

+

∣∣∣∣ αt + β

2 (1− αη − β)

∣∣∣∣ ∫ η

0
(η − s)2 |g0 (s)− g (s)| ds,

≤
(

1 +
η2

2

∣∣∣∣ α + β

1− αη − β

∣∣∣∣+ 1
2

∣∣∣∣ α + β

1− αη − β

∣∣∣∣) ∫ 1

0
|g0 (s)− gn (s)| ds +

+

(
1 +

η2

2

∣∣∣∣ α + β

1− αη − β

∣∣∣∣+ 1
2

∣∣∣∣ α + β

1− αη − β

∣∣∣∣) ∫ 1

0
|g (s)− gn (s)| ds,

As n→ ∞, we conclude that
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|u (t)− v (t)| ≤
(

1 + L +
L− 1

η2

) ∫ 1

0
(Kp (t) + γ∗ (t)) ds,

≤
(

1 + L +
L− 1

η2

)
(K ‖p‖L1 + ‖γ∗‖L1) .
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