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Abstract: In this paper, we prove large deviation results for some sequences of weighted sums of random
variables. These sequences have applications to the probabilistic generalized Cramér model for products of
primes in arithmetic progressions; they could lead to new conjectures concerning the (non-random) set of
products of primes in arithmetic progressions, a relevant topic in number theory.
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1. Introduction

The aim of this paper is to prove asymptotic results for a class of sequences of random variables, i.e.,{
∑n

k=1 LkXk

bn
: n ≥ 1

}
(1)

for suitable sequences of real numbers {bn : n ≥ 1} and {Ln : n ≥ 1} (see Condition 1 in Section 3) and
suitable random independent variables {Xn : n ≥ 1} defined on the same probability space (Ω,F , P).
We also present analogue results for the slightly different sequence{

Ln ∑n
k=1 Xk

bn
: n ≥ 1

}
. (2)

More precisely we refer to the theory of large deviations, which gives an asymptotic computation of
small probabilities on an exponential scale (see, e.g., [1] as a reference on this topic). We recall [2] as a recent
reference on large deviations for models of interest in number theory.

The origin and the motivation of our research rely on the study of some random models similar in nature
to the celebrated Cramér model for prime numbers: i.e., what we have called the generalized model (for products of
prime numbers in arithmetic progressions). We are not aware of any work where these probabilistic models are
studied. Details on these structures will be given in Section 2. Here we only point out that, as the classical
probabilistic model invented by Cramér has been used to formulate conjectures on the (non-random) set
of primes (see [3] for details), in a similar way we can draw out conjectures also for the non-random sets
of products of primes or products of primes in arithmetic progressions. The large deviation results for the
sequences concerning these structures will be given in Corollary 1.

We also remark that the particular form of the sequence (1) is motivated by analogy with the first
Chebyshev function, as will be explained in Section 2.
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It is worth noting that also some moderate deviation properties can be proved (in terms of suitable
bounds on cumulants and central moments) for the centered sequences{

∑n
k=1 Lk(Xk −E[Xk])

bn
: n ≥ 1

}
and

{
Ln ∑n

k=1(Xk −E[Xk])

bn
: n ≥ 1

}
.

Such propositions will not be dealt with in the sequel since, though some specific assumptions must be
made in the present setting, these results are in the same direction as those of the paper [4], where moderate
deviations from the point of view of cumulants and central moments are fully investigated.

It should be noted that our results are a contribution to the recent literature on limit theorems of interest
in probability and number theory; here, we recall [5], where the results are formulated in terms of the mod-ϕ

convergence (see also [6] where the simpler mod-Gaussian convergence is studied).
We here introduce some terminology and notation. We always set 0 log 0 = 0, c

∞ = 0 for c 6= 0, and
bxc := max{k ∈ Z : k ≤ x < k + 1} for all x ∈ R. Moreover, we write

• an ∼ bn to mean that limn→∞
an
bn

= 1;

• Z law∼ B(p), for p ∈ [0, 1], to mean that P(Z = 1) = p = 1− P(Z = 0);
• Z law∼ P(λ), for λ > 0, to mean that P(Z = k) = λk

k! e−λ for all integers k ≥ 0.

The outline of this paper is as follows: We start with some preliminaries in Section 2, and we present
the results in Section 3. The results for the generalized Cramér model (for products of primes in arithmetic
progressions) are presented in Corollary 1.

2. Preliminaries

On large deviations.

We refer to [1] (pages 4–5). Let Z be a topological space equipped with its completed Borel σ-field.
A sequence of Z-valued random variables {Zn : n ≥ 1} satisfies the large deviation principle (LDP) with
speed function vn and rate function I if the following is true: limn→∞ vn = ∞, and the function I : Z → [0, ∞]

is lower semi-continuous.

lim sup
n→∞

1
vn

log P(Zn ∈ F) ≤ − inf
z∈F

I(z) for all closed sets F

lim inf
n→∞

1
vn

log P(Zn ∈ G) ≥ − inf
z∈G

I(z) for all open sets G.

A rate function I is said to be good if its level sets {{z ∈ Z : I(z) ≤ η} : η ≥ 0} are compact.
Throughout this paper, we prove LDPs with Z = R. We recall the following known result for future use.

Theorem 1 (Gärtner–Ellis Theorem). Let {Zn : n ≥ 1} be a sequence of real valued random variables. Assume that
the function Λ : R→ (−∞, ∞] defined by

Λ(θ) := lim
n→∞

1
vn

logE
[
evnθZn

]
(for all θ ∈ R) (3)

exists; assume, moreover, that Λ is essentially smooth (see e.g., Definition 2.3.5 in [1]) and lower semi-continuous.
Then {Zn : n ≥ 1} satisfies the LDP with speed function vn and good rate function Λ∗ : R→ [0, ∞] defined by

Λ∗(z) := sup
θ∈R
{θz−Λ(θ)}.

Proof. See, e.g., Theorem 2.3.6 in [1].
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The main application of Theorem 1 in this paper concerns Theorem 2, where we have

Λ(θ) = eθ − 1, which yields Λ∗(x) =

{
x log x− x + 1 if x ≥ 0
∞ if x < 0.

(4)

The LDP in Theorem 3 will instead be proved by combining Theorem 4.2.13 in [1] with Theorem 2, i.e.,
by checking the exponential equivalence (see, e.g., Definition 4.2.10 in [1]) of the involved sequences.

On the generalized Cramér model (for products of primes in arithmetic progressions).

The Cramér model for prime numbers consists in a sequence of independent random variables
{Xn : n ≥ 1} such that, for every n ≥ 2,

Xn
law∼ B(1/ log n). (5)

This model can be justified by the prime numbers theorem (PNT), which roughly asserts that the
expected density of primes around x is 1

log x : the cardinality of prime numbers ≤ n is

π(n) := ∑
p≤n

1 ∼ li(n) :=
∫ n

2

1
log t

dt,

and, with the words of [7] (see footnote on p. 6), “the quantity 1
log n appears here naturally as the derivative

of li(x) evaluated at x = n”. Since
∫ n

2
1

log t dt ∼ n
log n , another way of stating the PNT is

π(n)
n
∼ 1

log n
. (6)

A first extension of this formula concerns the case of integers n which are products of exactly r prime
factors (r ≥ 2). More precisely, we consider the sets

Ar(n) := {k ≤ n : Ω(k) = r} and Br(n) := {k ≤ n : ω(k) = r}

where ω(n) is the number of distinct prime factors of n, and Ω(n) counts the number of prime factors of n
(with multiplicity); this means that, letting (by the canonical prime factorization of n) n = ∏

ω(n)
i=1 pαi

i , where
p1, . . . , pn are the distinct prime factors of n, we have

Ω(n) :=
ω(n)

∑
i=1

αi.

A result proved by Landau in 1909 (see, e.g., [8]) states that the cardinalities τr(n) and πr(n) of Ar(n)
and Br(n) respectively verify

τr(n) := ∑
k∈Ar(n)

1 ∼ n(log log n)r−1

(r− 1)! log n
and πr(n) := ∑

k∈Br(n)
1 ∼ n(log log n)r−1

(r− 1)! log n
;

see also, e.g., Theorem 437 in [9] (Section 22.18, page 368) or [10] (II.6, Theorems 4 and 5). Note that this
formula for πr(n) reduces to Equation (6) when r = 1.

Going a little further, for fixed integers a and q, we can consider the sets of products of primes in
arithmetic progressions

A(q)
r (n) =: {k ≤ n : Ω(k) = r, k ≡ a mod q} and B(q)

r (n) =: {k ≤ n : ω(k) = r, k ≡ a mod q}.
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One can prove (by similar methods as in [10,11]) that, for any a and q with (a, q) = 1, the cardinalities
τ
(q)
r (n) and π

(q)
r (n) of A(q)

r (n) and B(q)
r (n) respectively verify

τ
(q)
r (n) := ∑

k∈A(q)
r (n)

1 ∼ 1
φ(q)

· n(log log n)r−1

(r− 1)! log n
and π

(q)
r (n) := ∑

k∈B(q)
r (n)

1 ∼ 1
φ(q)

· n(log log n)r−1

(r− 1)! log n
,

where φ is Euler’s totient function. Notice that, for r = 1, we recover the sets of primes in arithmetic
progressions, considered for instance in [8,10] II.8, or [11]; the case r = 2 is studied in [12]; the general case
r ≥ 1 is considered in the recent preprint [13]; for q = 1, we recover the sets and the formulas for the model
described above.

Therefore, following Cramér’s heuristic, Equation (5), we can define the generalized Cramér model for
products of r prime numbers (or products of r prime numbers in arithmetic progression) as a sequence of
independent random variables {Xn : n ≥ 1} such that

Xn
law∼ B(λn), where λn :=

`n

log n
and `n :=

1
φ(q)

· (log log n)r−1

(r− 1)!
. (7)

Obviously in Equation (7) we take n ≥ n0, where n0 is an integer, such that λn ∈ (0, 1] for n ≥ n0; the
definition of λn for n < n0 is arbitrary.

Large deviation results for this model will be presented in Corollary 1 as a consequence of Theorem 3
and Remark 2, with

Ln := log n and bn := n`n; (8)

thus, the sequences in Equations (1) and (2) become

∑n
k=1(log k)Xk

n`n
and

(log n)∑n
k=1 Xk

n`n
(9)

respectively. Moreover, by taking into account Remark 3 presented below, the sequences in Equation (9)
converge almost surely to 1 (as n→ ∞).

On the first Chebyshev function.

The first Chebyshev function is defined by

θ(x) := ∑
p≤x

log p,

where the sum is extended over all prime numbers p ≤ x.
Therefore, when considering the classical Cramér model, this function is naturally modeled with

∑n
k=1(log k)Xk (and we obtain the numerator of the first fraction in Equation (9)).

It must be noted that T. Tao, in his blog (see [14]), considers the same random variable ∑k≤x(log k)Xk
and proves that almost surely one has

∑
k≤x

(log k)Xk = x + Oε(x1/2+ε)

for all ε > 0 (where the implied constant in the Oε(·) notation is allowed to be random). In particular, almost
surely one has

lim
n→∞

∑k≤n(log k)Xk

n
= 1.

It appears clearly that in this setting we have a sequence of the form of Equation (1), with the particular
choices Ln = log n and bn = n. What we are going to investigate in the sequel is how the sequence of
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random variables {Xn : n ≥ 1} and the two sequences of numbers {Ln : n ≥ 1} and {bn : n ≥ 1}must be
connected in order to obtain large deviations and convergence results (see also Equations (8) and (9) above).

On slowly and regularly varying functions (at infinity).

Here we recall the following basic definitions. A positive measurable function H defined on some
neighborhood of [x0, ∞) of infinity is said to be slowly varying at infinity (see, e.g., [15], page 6) if

lim
t→∞

H(tx)
H(t)

= 1 for all x > 0.

Similarly, a positive measurable function M defined on some neighborhood of [x0, ∞) of infinity is said
to be regularly varying at infinity of index ρ (see, e.g., [15], page 18) if

lim
t→∞

M(tx)
M(t)

= xρ for all x > 0.

Obviously, we recover the slowly varying case if ρ = 0. Recall the following well-known result for
slowly varying functions.

Lemma 1 (Karamata’s representation of slowly varying functions). A function H is slowly varying at infinity if
and only if

H(x) = c(x) exp
(∫ x

x0

φ(t)
t

dt
)

where φ(x)→ 0 and c(x)→ c∞ for some c∞ > 0 (as x → ∞).

Proof. See, e.g., Theorem 1.3.1 in [15].

In view of what follows we also present the following results. They are more or less known; but we
prefer to give detailed proofs in order to ensure that the paper is self-contained.

Lemma 2. Let M be a regularly varying function (at infinity) of index ρ ≥ 0. Then,

lim
t→∞

M(btxc)
M(t)

= xρ for all x > 0.

Proof. It is well-known (see, e.g., Theorem 1.4.1 in [15]) that we have M(x) = xρ H(x) for a suitable slowly
varying function H. Thus, it is easy to check that it suffices to prove the result for the case ρ = 0 (namely for
a slowly varying function H), i.e.,

lim
t→∞

H(btxc)
H(t)

= 1 for all x > 0. (10)

By Lemma 1, for all x > 0, we have

H(btxc)
H(t)

=
c(btxc)

c(t)
exp

(∫ btxc
t

φ(v)
v

dv
)

for t > 0. Obviously, c(btxc)
c(t) → 1 (as t→ ∞). Moreover, for all ε > 0, we have

∣∣∣∣∫ btxc

t

φ(v)
v

dv
∣∣∣∣ ≤ ε| log(btxc/t)|
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for t > 0, and log(btxc/t)→ log x (as t→ ∞); thus,

∫ btxc
t

φ(v)
v

dv→ 0 (as t→ ∞)

by the arbitrariness of ε > 0. Thus, Equation (10) holds, and the proof is complete.

Lemma 3. Let H be a slowly varying function (at infinity). Then,

lim
x→∞

xH(x)

∑
bxc
k=1 H(k)

= 1.

Proof. By the representation of H in Lemma 1, for all ε > 0 there is an integer n0 ≥ 1 such that, for all
x > n0, we have c∞ − ε < c(x) < c∞ + ε and −ε < φ(x) < ε. Then, we take x ≥ n0 + 1, and

∑
bxc
k=1 H(k)
xH(x)

=
∑n0

k=1 H(k)
xH(x)

+
∑
bxc
k=n0+1 H(k)

xH(x)
.

The first summand in the right hand side can be ignored since, if we take ε ∈ (0, 1), for a sufficient high
x, we have

H(x) >
c∞

2
exp

(
−ε
∫ x

x0

1
t

dt
)
=

c∞

2

(
x
x0

)−ε

,

which yields xH(x) > c1x1−ε for a suitable constant c1 > 0 (and x1−ε → ∞ as x → ∞). Therefore, we
concentrate our attention on the second summand and, by taking into account again the representation of H
in Lemma 1, for a sufficiently high x, we have

∑
bxc
k=n0+1 H(k)

xH(x)
=

∑
bxc
k=n0+1 c(k) exp

(∫ k
x0

φ(t)
t dt

)
xc(x) exp

(∫ x
x0

φ(t)
t dt

) =
∑
bxc
k=n0+1

c(k)
c(x) exp

(
−
∫ x

k
φ(t)

t dt
)

x
.

Moreover,

∑
bxc
k=n0+1

c(k)
c(x) exp

(
−
∫ x

k
φ(t)

t dt
)

x
≤ c∞ + ε

c∞ − ε

∑
bxc
k=n0+1 k−ε

x1−ε
→ c∞ + ε

c∞ − ε

1
1− ε

(as x → ∞)

and
∑
bxc
k=n0+1

c(k)
c(x) exp

(
−
∫ x

k
φ(t)

t dt
)

x
≥ c∞ − ε

c∞ + ε

∑
bxc
k=n0+1 kε

x1+ε
→ c∞ − ε

c∞ + ε

1
1 + ε

(as x → ∞),

and the proof is complete by the arbitrariness of ε.

3. Results

In this section we present large deviation results for Equations (1) and (2). We start with the case of
Poisson distributed random variables (see Theorem 2 and Remark 1), and later we consider the case of
Bernoulli distributed random variables (see Theorem 3 and Remark 2). Our large deviation results yield
the almost sure convergence to 1 (as n→ ∞) of the involved random variables (see Remark 3 for details).
In particular, the results for Bernoulli distributed random variables can be applied to the sequences of the
generalized Cramér model in Equation (9) (see Corollary 1).

In all our results, we assume the following condition.

Condition 1. The sequence {bn : n ≥ 1} is eventually positive; {Ln : n ≥ 1} is eventually positive and
non-decreasing.
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In general, we can ignore the definition of {bn : n ≥ 1} and {Ln : n ≥ 1} for a finite number of indices;
therefore, in order to simplify the proofs, we assume that {bn : n ≥ 1} and {Ln : n ≥ 1} are positive
sequences and that {Ln : n ≥ 1} is non-decreasing.

We start with the case where {Xn : n ≥ 1} are (independent) Poisson distributed random variables.

Theorem 2 (the Poisson case; the sequence in Equation (1)). Let {bn : n ≥ 1} and {Ln : n ≥ 1} be two
sequences as in Condition 1. Assume that

{Ln : n ≥ 1} is the restriction (on N) of a slowly varying function (at infinity). (11)

For all c ∈ (0, 1), α(c) := lim
n→∞

bbcnc
bn

exists, and lim
c↓0

α(c) = 0. (12)

lim
n→∞

Ln

bn
= 0. (13)

Moreover, assume that {Xn : n ≥ 1} are independent and Xn
law∼ P(λn) for all n ≥ 1, where {λn : n ≥ 1} are

positive numbers such that
n

∑
k=1

λk ∼
bn

Ln
. (14)

The sequence in Equation (1) then satisfies the LDP with speed function vn = bn
Ln

and good rate function Λ∗

defined by Equation (4).

We point out that Equation (12) is satisfied if the sequence {bn : n ≥ 1} is nondecreasing and is the
restriction (on N) of a regularly varying function with positive index (at infinity); this is a consequence of
Lemma 2.

Proof. We apply Theorem 1, i.e., we check that Equation (3) holds with Zn = ∑n
k=1 LkXk

bn
, vn = bn

Ln
, and Λ as

in Equation (4) (in fact, Equation (3) holds even without assuming (13); however, Equation (13) must be
required in order that vn = bn

Ln
be a speed function). We remark that

Ln

bn
logE

[
e

bn
Ln θ

∑n
k=1 Lk Xk

bn

]
=

Ln

bn
logE

[
eθ

∑n
k=1 Lk Xk

Ln

]
=

Ln

bn

n

∑
k=1

logE
[
e(θLk/Ln)Xk

]
=

Ln

bn

n

∑
k=1

log(eλk(e
θLk/Ln−1)) =

Ln

bn

n

∑
k=1

λk(eθLk/Ln − 1) for all θ ∈ R.

Equation (3) trivially holds for θ = 0. The proof is divided in two parts: the proof of the upper bound,

lim sup
n→∞

Ln

bn
logE

[
e

bn
Ln θ

∑n
k=1 Lk Xk

bn

]
≤ eθ − 1 for all θ ∈ R, (15)

and that of the lower bound,

lim inf
n→∞

Ln

bn
logE

[
e

bn
Ln θ

∑n
k=1 Lk Xk

bn

]
≥ eθ − 1 for all θ ∈ R. (16)

We start with the proof of Equation (15). For θ > 0, we have

Ln

bn
logE

[
e

bn
Ln θ

∑n
k=1 Lk Xk

bn

]
=

Ln

bn

n

∑
k=1

λk(eθLk/Ln − 1) ≤ Ln

bn

n

∑
k=1

λk(eθ − 1)
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since {Ln : n ≥ 1} is nondecreasing, and we obtain Equation (15) by letting n go to infinity and by taking
into account Equation (14). For θ < 0, we take c ∈ (0, 1) and

γ := sup{Ln : n ≥ 1}

(possibly infinite). Recalling that {Ln : n ≥ 1} is nondecreasing and that
Lbcnc

Ln
→ 1 (it is a consequence of

Lemma 2), we have

Ln

bn
logE

[
e

bn
Ln θ

∑n
k=1 Lk Xk

bn

]
=

Ln

bn

n

∑
k=1

λk(eθLk/Ln − 1)

≤ Ln

bn

bcnc

∑
k=1

λk(eθL1/γ − 1) +
Ln

bn

n

∑
k=bcnc+1

λk(e
θLbcnc/Ln − 1)

=
Ln

Lbcnc

bbcnc
bn

{
Lbcnc
bbcnc

bcnc

∑
k=1

λk

}
(eθL1/γ − 1)

+

({
Ln

bn

n

∑
k=1

λk

}
− Ln

Lbcnc

bbcnc
bn

{
Lbcnc
bbcnc

bcnc

∑
k=1

λk

})
(eθLbcnc/Ln − 1).

Then, by Equation (11) (and Lemma 2 with ρ = 0), (12) and (14), we obtain

lim sup
n→∞

Ln

bn
logE

[
e

bn
Ln θ

∑n
k=1 Lk Xk

bn

]
≤ α(c)(eθL1/γ − 1) + (1− α(c))(eθ − 1).

Using Equation (12), we conclude by letting c ↓ 0.
The proof of Equation (16) is similar with reversed inequalities; hence, we only sketch it here. For θ < 0,

we have
Ln

bn
logE

[
e

bn
Ln θ

∑n
k=1 Lk Xk

bn

]
=

Ln

bn

n

∑
k=1

λk(eθLk/Ln − 1) ≥ Ln

bn

n

∑
k=1

λk(eθ − 1),

and we obtain Equation (16) by letting n go to infinity and by taking into account (14). For θ ≥ 0, we take
c ∈ (0, 1) and, for γ defined as above, after some manipulations, we obtain

lim inf
n→∞

Ln

bn
logE

[
e

bn
Ln θ

∑n
k=1 Lk Xk

bn

]
≥ α(c)(eθL1/γ − 1) + (1− α(c))(eθ − 1).

We conclude by letting c ↓ 0 (by Equation (12)).

Remark 1 (The Poisson case; the sequence in Equation (2)). The LDP in Theorem 2 holds also for the sequence
in Equation (2) in place of the sequence in Equation (1). In this case we only need to use Condition 1 and to assume
Equations (13) and (14), whereas Equations (11) and (12) (which were required in the proof of Theorem 2) can be
ignored. For the proof, we still apply Theorem 1, so we have to check that Equation (3) holds with Zn =

Ln ∑n
k=1 Xk
bn

,

vn = bn
Ln

, and Λ as in Equation (4). This can be easily checked noting that

Ln

bn
logE

[
e

bn
Ln θ

Ln ∑n
k=1 Xk
bn

]
=

Ln

bn
logE

[
eθ ∑n

k=1 Xk
]
=

Ln

bn

n

∑
k=1

logE
[
eθXk

]
=

Ln

bn

n

∑
k=1

log(eλk(eθ−1)) =
Ln

bn

n

∑
k=1

λk(eθ − 1)→ eθ − 1 for all θ ∈ R

where the limit relation holds by Equation (14).
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The next result is for Bernoulli distributed random variables {Xn : n ≥ 1}. Here we shall use the
concept of exponential equivalence (see, e.g., Definition 4.2.10 in [1]). The proof is similar to the one of
Proposition 3.5 in [16] (see also Remark 3.6 in the same reference). We point out that it is not unusual to
prove a convergence result for Bernoulli random variables {Xn : n ≥ 1} starting from a similar one for
Poisson random variables {Yn : n ≥ 1} and by setting Xn := Yn ∧ 1 for all n ≥ 1; see, for instance, Lemmas 1
and 2 in [17].

Theorem 3 (The Bernoulli case; the sequence in Equation (1)). Let {bn : n ≥ 1} and {Ln : n ≥ 1} be as in
Theorem 2 (thus, Condition 1 together with Equations (11)–(13) hold). Moreover, assume that {Xn : n ≥ 1} are

independent and Xn
law∼ B(λn) for all n ≥ 1 and that Equation (14) and limn→∞ λn = 0 hold. The sequence in

Equation (1) satisfies the LDP with speed function vn = bn
Ln

and the good rate function Λ∗ defined by Equation (4).

Proof. Let n0 such that λn ∈ [0, 1) for all n ≥ n0 (recall that λn → 0 as n → ∞), and let {X∗n : n ≥ 1} be

independent random variables such that X∗n
law∼ P(λ̂n) (for all n ≥ 1), where λ̂n := log 1

1−λn
for n ≥ n0

(the definition of λ̂n for n < n0 is arbitrary). Notice that

n

∑
k=1

λ̂k ∼
n

∑
k=1

λk

because ∑n
k=1 λk → ∞ (as n→ ∞) by Equations (13) and (14) and, by the Cesaro theorem,

lim
n→∞

∑n
k=1 λ̂k

∑n
k=1 λk

= lim
n→∞

λ̂n

λn
= lim

n→∞

log 1
1−λn

λn
= 1.

Hence, the assumption of Equation (14) and Theorem 2 are in force for the sequence {X∗n : n ≥ 1} (in
fact, we have Equation (14) with {λ̂n : n ≥ 1} in place of {λn : n ≥ 1}) and, if we set Xn := X∗n ∧ 1 (for all
n ≥ 1), the sequence {Xn : n ≥ 1} is indeed an instance of the sequence appearing in the statement of the

present theorem since, by construction, Xn
law∼ B(1− e−λ̂n) and 1− e−λ̂n = λn.

The statement will be proved by combining Theorem 4.2.13 in [1] and Theorem 2 (for the sequence
{X∗n : n ≥ 1}). This means that we have to check the exponential equivalence condition

lim sup
n→∞

Ln

bn
log P(∆n > δ) = −∞ (for all δ > 0) (17)

where

∆n :=

∣∣∣∣∣ 1
bn

n

∑
k=1

LkXk −
1
bn

n

∑
k=1

LkX∗k

∣∣∣∣∣ . (18)

We remark that

∆n ≤
Ln

bn

n

∑
k=1
|Xk − X∗k | (19)

by the monotonicity and the nonnegativeness of {Ln : n ≥ 1}; therefore, if we combine Equation (19) and
the Chernoff bound, for each arbitrarily fixed θ ≥ 0, we obtain

P(∆n > δ) ≤ P

(
Ln

bn

n

∑
k=1
|Xk − X∗k | > δ

)
≤

E
[
eθ ∑n

k=1 |Xj−X∗j |
]

eθδbn/Ln
.

Therefore,
Ln

bn
log P(∆n > δ) ≤ Ln

bn

n

∑
k=1

logE
[
eθ|Xk−X∗k |

]
− θδ.
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Moreover, if we set

ρ
(θ)
k :=

eλkeθ − 1
λkeθ

,

we have

E
[
eθ|Xk−X∗k |

]
= P(X∗k = 0) + P(X∗k = 1) +

∞

∑
h=2

eθ|1−h|P(X∗k = h)

= e−λk + λke−λk +
∞

∑
h=2

eθ(h−1) λh
k

h!
e−λk = e−λk + λke−λk + e−θe−λk

(
eλkeθ − 1− λkeθ

)
= e−λk + e−θe−λk

(
eλkeθ − 1

)
= e−λk

(
1 + e−θ

(
eλkeθ − 1

))
= e−λk

(
1 + λkρ

(θ)
k

)
.

Therefore,
Ln

bn
log P(∆n > δ) ≤ − Ln

bn

n

∑
k=1

λk +
Ln

bn

n

∑
k=1

log
(

1 + λkρ
(θ)
k

)
− θδ. (20)

The proof will be complete if we show that, for all θ > 0,

lim sup
n→∞

Ln

bn

n

∑
k=1

log
(

1 + λkρ
(θ)
k

)
≤ 1. (21)

In fact, by Equations (14) and (21), we deduce from Equation (20) that

lim sup
n→∞

Ln

bn
log P(∆n > δ) ≤ −θδ,

and we obtain Equation (17) by letting θ go to infinity.
Thus, we prove Equation (21). We remark that ρ

(θ)
n → 1 because λn → 0 (as n → ∞). Hence, for all

ε ∈ (0, 1), there exists n0 such that, for all n > n0, we have ρ
(θ)
n < 1 + ε and

Ln

bn

n

∑
k=1

log
(

1 + λkρ
(θ)
k

)
=

Ln

bn

n0

∑
k=1

log
(

1 + λkρ
(θ)
k

)
+

Ln

bn

n

∑
k=n0+1

log
(

1 + λkρ
(θ)
k

)
≤ Ln

bn

n0

∑
k=1

log
(

1 + λkρ
(θ)
k

)
+

Ln

bn

n

∑
k=n0+1

log (1 + λk(1 + ε)) .

Moreover, Ln
bn

∑n0
k=1 log

(
1 + λkρ

(θ)
k

)
→ 0 (as n→ ∞) by Equation (13) and

Ln

bn

n

∑
k=n0+1

log (1 + λk(1 + ε)) ≤ (1 + ε)
Ln

bn

n

∑
k=n0+1

λk = (1 + ε)

(
Ln

bn

n

∑
k=1

λk −
Ln

bn

n0

∑
k=1

λk

)
.

Hence, Equation (21) follows from Equations (13) and (14), and the arbitrariness of ε.

Remark 2 (The Bernoulli case; the sequence in Equation (2)). The LDP in Theorem 3 holds also for the sequence
in Equation (2) in place of the sequence in Equation (1). The proof is almost identical to the one of Theorem 3: in this
case, we have

∆n :=

∣∣∣∣∣ Ln

bn

n

∑
k=1

Xk −
Ln

bn

n

∑
k=1

X∗k

∣∣∣∣∣
in place of Equation (18), and Inequality (19) still holds (even without the monotonicity of {Ln : n ≥ 1}).

Remark 3 (Almost sure convergence to 1 of the sequences in Theorems 2 and 3). Let {Zn : n ≥ 1} be either the
sequence in Equation (1) or the sequence in Equation (2), where {Xn : n ≥ 1} is as in Theorem 2 or as in Theorem 3
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(so we also consider Remarks 1 and 2). Then, by a straightforward consequence of the Borel–Cantelli lemma, the
sequence {Zn : n ≥ 1} converges to 1 almost surely (as n→ ∞) if

∑n≥1 P(Zn ∈ C) < ∞ for closed set C such that 1 /∈ C.

Obviously this condition holds if C ⊂ (−∞, 0) because {Zn : n ≥ 1} are nonnegative random variables. On the
other hand, if C ∩ [0, ∞) is not empty, Λ∗(C) := infx∈C Λ∗(x) is finite; moreover, Λ∗(C) ∈ (0, ∞) because 1 /∈ C.
Then, by the upper bound of the closed set, for all δ > 0, there exists nδ such that, for all n > nδ, we have

P(Zn ∈ C) ≤ e−(Λ
∗(C)−δ)bn/Ln .

Thus, again by the Borel–Cantelli lemma, {Zn : n ≥ 1} converges almost surely to 1 (as n→ ∞) if, for all κ > 0,
we have

∑
n≥1

e−κbn/Ln < ∞. (22)

Then, by the Cauchy condensation test, Equation (22) holds if and only if ∑n≥1 2ne−κb2n /L2n < ∞ and, as we see
below, the convergence of the condensed series is a consequence of the ratio test and of some hypotheses of Theorems 2
and 3. In fact,

2n+1e−κb2n+1 /L2n+1

2ne−κb2n /L2n
= 2 exp

(
−κ

b2n+1

L2n+1

(
1− b2n

b2n+1
· L2n+1

L2n

))
→ 0 (as n→ ∞)

because b2n
b2n+1

→ α(1/2) by Equation (12),
L2n+1

L2n → 1 by Equation (11) and
b2n+1
L2n+1

→ +∞ by Equation (13).

We conclude with the results for the generalized Cramér model (the sequences in Equation (9)).

Corollary 1 (Application to the sequences in Equation (9)). Let {Xn : n ≥ 1} be the random variables in Equation
(7), and let {bn : n ≥ 1} and {Ln : n ≥ 1} be defined by Equation (8). Then, the sequences

{
∑n

k=1(log k)Xk
n`n

: n ≥ 1
}

and
{

(log n)∑n
k=1 Xk

n`n
: n ≥ 1

}
in Equation (9) satisfy the LDP with speed function vn = bn

Ln
= n`n

log n and the good rate
function Λ∗ defined by Equation (4).

Proof. In this proof, the sequences in Equation (9) play the roles of the sequences in Equations (1) and (2) in
Theorem 3 and Remark 2, respectively. Therefore, we have to check that the hypotheses of Theorem 3 are
satisfied. Condition 1 and Equations (11) and (13) and limn→∞ λn = 0 can be easily checked. Moreover, one
can also check Equation (12) with α(c) = c; note that in this case, we have a regularly varying function with
index ρ = 1 (as n→ ∞), and {bn : n ≥ 1} is eventually nondecreasing. Finally, Equation (14), which is

lim
n→∞

(log n)∑n
k=1

`k
log k

n`n
= 1,

can be obtained as a consequence of Lemma 3; in fact, {`n : n ≥ 1} and {`n/(log n) : n ≥ 1} are restrictions
(on N) of slowly varying functions at infinity.

In conclusion, we can say that, roughly speaking, for any Borel set A such that 1 /∈ Ā (where Ā is the

closure of A), the probabilities P
(

∑n
k=1(log k)Xk

n`n

)
and P

(
(log n)∑n

k=1 Xk
n`n

)
decay exponentially as e−

n`n
log n infx∈A Λ∗(x)

(as n → ∞). Thus, in the spirit of Tao’s remark, we are able to suggest estimations concerning a sort of

“generalized” Chebychev function defined by
∑p1 ···pr≤x log(p1···pr)

x`x
or by

(log x)∑p1 ···pr≤x 1
x`x

. To our knowledge,
such estimations are not available for r > 1.
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