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Abstract: In this paper, we introduce the notion of g-convex weight sequence (gcws) for connected
graphs based on the concept of g-convexity and g-weight. g-weight is a natural generalization of the
notion of branch weight for trees. We investigate the various questions of realization of an integer
sequence as a g-convex weight sequence for trees and some special classes of graphs such as complete
graphs, windmill and degenerate windmill graphs and wheels.
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1. Introduction

Graph theory is a branch of Discrete mathematics that has applications in several different areas
such as anthropology, architecture, biology, chemistry, computer science, economics, psychology,
telecommunication networks and so on [1]. Graphs are used to model several discrete real-life
problems. Among them, finding a central structure is one of the most important applications of graph
theory in other disciplines. The problem of finding a central structure is studied extensively in graph
theory under facility location problem. The centrality can be defined in several ways. One of them is
using the eccentricity of vertices. The other well studied centrality is using graph convexities. Several
types of convexities in graphs have been studied in the literature modeled on similar concepts in
topology. One of them, called the g-convexity, has been studied by several authors. See, for example,
Feldman-Hogassen [2], Mulder [3] and Nieminen [4]. In [5], Prakash constituted a first approach to a
systematic study on the size of convex sets in graphs. In a later paper [6], the author demonstrated an
application of g-convexity in mobile ad hoc networks. Apart from this, convex sets are also used for
measuring dissimilarities and dynamic search in graphs.

In this paper, we introduce the notion of g-convex weight sequences (gcws for short) for graphs.
We investigate the various questions of realization of gcws for trees and some special classes of graphs.
We believe that the general realization question is an NP-hard (non-deterministic polynomial-time
hard)problem. We address this conjecture in our future paper.

We now present some of the graph-theoretic definitions used throughout this paper. Standard
graph theoretic terms not defined here can be found in Bondy and Murty [7]. A graph G = (V, E)
consists of a finite set V of vertices and a set E of edges, where E is a subset of the set of two-element
(unordered) subsets of V. In this paper, we consider only undirected connected finite simple graphs.

The g-convexity and the g-centroid are defined as follows:

Definition 1. A set S ⊆ V is geodetic convex (g-convex for short) if every u, v ∈ S, all vertices on any u− v
shortest path (also called a geodesic path) belong to S.

Definition 2. Let G = (V, E) be any connected graph. For v ∈ V(G), we define the g-weight w(v) = max
{| S |: S is a g-convex set of G not containing v}. Let gc(G) = min {w(v): v ∈ V(G)}. Then, gc(G) is
called the g-centroidal number of G. The vertices v for which w(v) = gc(G) are called the g-centroidal vertices.
The g-centroid Cg(G) is the set of all g-centroidal vertices.
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A positive sequence W = {w1, w2, · · · , wn} of integers is said to be a g-convex weight sequence (gcws for
short) if there exists a graph G whose vertices vi have weights w(vi) = wi, 1 ≤ i ≤ n. Then, we say G realizes W.
When equal weights appear in the sequence, we use the power notation {wp1

1 ,wp2
2 , · · · , wpr

r }, where pis are
the multiplicities of wi and wi’s are arranged in the increasing order of magnitude. Clearly, gc(G) = w1 and
| Cg(G) | = p1.

Let C be a class of graphs. A gcws is said to be potential for C if at least one realization of the gcws is a
graph in C and it is said to be forcible for C if every realization of it is a graph in C.

For v ∈ V, we denote by Sv = Sv(G), any maximum g-convex set of G, not containing v.
If the context is clear, we use the term convexity instead of g-convexity.
We now define some graph-theoretic terms, which we will frequently use in the sequel.

Definition 3. Let G be a connected graph and x, y ∈ V(G). The distance between x and y, denoted as d(x, y)
is defined as the number of edges in a shortest path connecting x and y in G

In a connected graph G, let u ∈ V(G), and let y ∈ Ni(u) = {x : d(u, x) = i}. We say y is a successor of x
with respect to u if x ∈ Ni−1(u) and xy ∈ E. x is also called a parent or a predecessor of y. Now, consider the
successor relation with respect to u on G. Let y ∈ Nj(u). We say y is a decendant of some x ∈ Ni(u) if i < j
and there exists an x− y geodesic of length j− i in G. In this case, x is also called an ancestor of y.

By the neighbourhood structure of a graph with respect to a vertex u, we mean the
predecessor–successor relation on the vertex set of G defined with respect to u.

The rest of the paper is organized as follows: in Section 2, we address the problem of an integer
sequence W to be a gcws for trees. We also provide characterization of an integer sequence to be a
gcws for special classes of trees such as stars, caterpillars and spiders. Section 3 deals with the gcws for
complete graphs, wheels, windmill and degenerate windmill graphs. We then conclude our paper by
presenting a conjecture.

2. Convex Weight Sequences for Trees

In this section, we present a realization for a sequence to be a gcws for a tree. We also characterize
gcws for special classes of trees, such as paths, stars, caterpillars and spiders.

A tree is a connected acyclic graph. Vertices of degree one in a tree T are called the leaves of T.
Let u ∈ V(T). Consider the neighbourhood structure of T with respect to u. A vertex x ∈ V(T) is said
to be a k-leaf if k is the distance of x from the farthest leaf of T, which is a descendant of x. From the
definition of k-leaves, it follows that 0-leaves are the same as leaves.

Let T be a tree and u ∈ V(T). Then, by the branches at u, we mean the components of T − u.
The branch weight of u, denoted by bw(u), is the size of the maximum component of T− u. The branch
weight centroid of T is the collection of vertices with minimum branch weight. Since every component
of T− u is a g-convex set of T, not containing u, it follows that the g-centroid and the branch weight
centroid for a tree are the same. Thus, g-centroid is also regarded as the generalization of the branch
weight centroid for trees.

The following proposition is applicable to any general graph.

Proposition 1. Let G = (V, E) be any connected graph and u, v ∈ V(G). If w(u) < w(v), then for any Sv,
u ∈ Sv.

Proof. Let G be a connected graph and u, v ∈ V(G). Let w(u) < w(v), and Sv be any g-convex
set realizing the weight of v. If u /∈ Sv, then, by the definition of w(u), w(u) ≥| Sv |= w(v)—a
contradiction. Thus, u ∈ Sv.

As an immediate corollary, we have the following result:
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Corollary 1. For any v /∈ Cg(G), Cg(G) ⊆ Sv.

We now present some results concerning the gcws for trees that are used in the sequel.
The proof of the following lemma is immediate from the definition of a leaf vertex.

Lemma 1. Let T be a tree on n vertices and u ∈ V(T). w(u) = (n− 1) if and only if u is a leaf of T.

The following proposition establishes a relation between the neighbourhood structure of a tree
T at an arbitrary vertex u, and the component of T that realizes the weight of every vertex v of T,
such that w(v) ≥ w(u).

Proposition 1. Let T be a tree and u, v ∈ V(T) such that w(v) ≥ w(u). Consider the neighbourhood
structure of T with respect to u. Let Tv be the set of all descendants of v with respect to u, including v. Then,
Sv = V(T)− Tv.

Proof. Let T be a tree and u, v ∈ V(T) such that w(v) ≥ w(u). Consider the neighbourhood structure
of T with respect to u. Let V1, V2, · · · , Vr be the branches at v. Without loss of generality, assume
that u ∈ V1. If possible, let Sv = Vi for some i 6= 1. Since u /∈ Vi, u /∈ Vi ∪ {v}. Thus, w(u) > w(v),
a contradiction. Thus, Sv = V1 = V(T)− Tv.

The above proposition is true for a centroidal vertex of a tree. Thus, we have the following corollary.

Corollary 2. Let T be a tree and u ∈ Cg(T). Consider the neighbourhood structure of T with respect to u.
Let v ∈ V(T) be any arbitrary vertex of T. Let Tv be the set of all descendants of v with respect to u, including v.
Then, Sv = V(T)− Tv.

The following is a well-known theorem of Jordan [1].

Theorem 1. Let T be a tree. Then, the centroid of T consists of either a single vertex or a pair of adjacent vertices.

The following lemma is true for any arbitrary connected graph G.

Lemma 2. For any vertex v of G, w(v) ≥ ω(G)− 1, where ω(G) is the maximum clique size of G.

The proof follows from the fact that a clique is a g-convex set of any graph G.
The next proposition establishes a necessary and sufficient condition for a vertex to be a candidate

for a g-centroidal vertex in a tree.

Proposition 2. Let T be a tree and u ∈ V(T). Then, u ∈ Cg(T) if and only if every branch at u have less than
or equal to bn/2c vertices.

Proof. Let u ∈ Cg(T) and B1, B2, · · · , Br be the branches at u. If possible, let | Bi |> bn/2c for some i.
We split our discussion into two cases depending on whether n is odd or even.

Let n = 2m + 1 and | Bi |≥ m + 1. Since n = 2m + 1, the i is unique. That is, there is exactly one i
such that | Bi |≥ m + 1.

Now, w(u) = max { | Bj |: 1 ≤ j ≤ r} = | Bi |≥ m + 1. Let u1 = Bi ∩ N(u). Consider the branches
of u1. One branch is T − Bi and the other branches are A1, A2, · · · , Ak that are subtrees of Bi. It is
easy to see that | T− Bi |≤ m and | Aj |≤ m. Thus, w(u1) ≤ m. This is a contradiction, as u ∈ Cg(T);
proving the claim in this case.

The proof of the case when n is even is similar to the above.
To prove the converse, let u ∈ V(T) be any arbitrary vertex of T and B1, B2, · · · , Br be the

branches at u such that | Bi |≤ bn/2c, i ≤ i ≤ r. Then, w(u) = max {| Bi |: 1 ≤ i ≤ r } ≤ bn/2c. Let v
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be any arbitrary vertex of T. Without loss of generality, assume that v ∈ B1. Since | B1 |≤ bn/2c,
| T − B1 |≥ bn/2c. As v /∈ T − B1, w(v) ≥ w(u). Since v is an arbitrary vertex of T, it follows that
u ∈ Cg(T)

The following proposition establishes the connection between the least two weights of a tree and
the number of vertices in the tree.

Proposition 3. Let T be a tree with gcws W = (w1, w2, · · · , wn). Then,

1. w1 ≤ bn/2c,
2. w1 + w2 = n.

Proof. The proof for (1) follows from Proposition 2. (2) Let u be a vertex of T with weight w1.
Let B1, B2, · · · , Br be the branches at u. Without loss of generality, assume that | B1 | = w1 and
u1 = B1 ∩ N(u). Consider the neighbourhood structure of T with respect to u. From Proposition 1,
w(u1) = | V(T)− B1 | = n− w1. We now show that u1 is the second least weighted vertex of T. Let v
( 6= u1) be any arbitrary vertex belong to B1. Then, v is a decendant of u1 and from Proposition 1,
Sv = V(T)− Tv. Since Tv is a proper subset of B1, w(u1) = | V(T)− B1 | <| V(T)− Tv | = w(v). Let
v ∈ Bi for any i 6= 1. As | B1 |≥| Bi | ∀i, | V(T)− B1 |≤ | V(T)− Bi |≤ | V(T)− Tv | = w(v). This
establishes that w(u1) = w2 and thus w1 + w2 = n.

As an immediate corollary to (2), we have the following results:

Corollary 3. A tree T is bicentroidal, then it has even number of vertices.

Proof. Since T is bicentroidal, w1 = w2. Thus, 2w1 = n. Since w1 is an integer, this equation has a
solution only when n is even

For any tree T, we can make the following observations:

1. Every non-centroidal vertex has exactly one component realizing its weight.
2. If a vertex u has more than one component realizing its weight, then T is uni-centroidal and

Cg(T) = {u}.
3. If T is bi-centroidal, then every vertex of T has exactly one component realizing its weight.

We define a class of graphs called generalized trees as follows: A connected graph G is a
generalized tree if the following two properties are satisfied:

• Every non-centroidal vertex of G has exactly one g-convex set realizing its weight.
• If a vertex u has more than one g-convex set realizing its weight, then G is uni-centroidal and

Cg(G) = {u}.

It is easy to see that trees and complete graphs belong to the class of generalized trees. It will be an
interesting open question to characterize all graphs that belong to this class and study their properties.

2.1. gcws for Paths

In this subsection, we present a sequence that has potential for a path.
The sequence {m, (m + 1)2, (m + 2)2, · · · , (2m)2} has potential for a path on 2m + 1 vertices.
The sequence {m2, (m + 1)2, (m + 2)2, · · · , (2m− 1)2} has potential for a path on 2m vertices.

Remark 1. If W is a gcws for a path, then, for every integer i, bn/2c < i ≤ (n− 1), there are exactly two
vertices having weight i. Thus, every number between bn/2c and (n− 1) is represented in the weight sequence.
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A path and a non-path may have the same weight sequence. This is demonstrated through Figure 1.

Figure 1. Path and a Cyclic graph having the same weight sequence.

2.2. gcws for Star Graphs

In this subsection, we characterize the gcws for stars. A star on n vertices is the complete bipartite
graph K1,n−1. The vertices of degree n− 1 (or the leaves) is the crown of the star.

Proposition 4. The gcws of a connected graph is {1, (n− 1)n−1} if and only if it is a star.

Proof. Consider the weight sequence W = {1,(n− 1)n−1}. This is a gcws, since K1,n−1 realizes it. We now
show that this is the only graph realizing W. Let G be any graph realizing W. Let u be the vertex of
G with weight 1. Let ω(G) be the maximum clique size of G. Then, by Lemma 2, for every vertex v
of G, w(v) ≥ ω(G)− 1. This holds for u also and hence ω(G) ≤ 2. If xy is any edge of G− u, then
w(u) ≥| {x, y} | = 2, a contradiction. Thus, G− u is an independent set. Since G is connected, u is
adjacent to every vertex of G and hence G is K1,n−1.

Remark 2. In the above proof, we have not used the fact that except u, all the other vertices of G have weight
(n− 1). The assumption that G has a vertex of weight 1 forces that all the other vertices must have weight
(n− 1).

2.3. gcws for Caterpillars

In this subsection, we discuss the gcws for caterpillars.
A tree is a caterpillar if the deletion of all its leaves produces a path. This path is called the

basic path of the caterpillar. The vertices that belong to the basic path are called basic vertices of
the caterpillar.

Proposition 5. Let W = {w f1
1 , w f2

2 , · · · , w fr
r , (n − 1)k} with w1 < w2 < · · · < wr < (n − 1) and

∑r
i=1 fi + k = n be a potential gcws for a caterpillar. Then, for every i, fi ≤ 2.

Proof. Let T be a caterpillar realizing the given weight sequence W. At the outset, it is clear that
vertices with weight less than n− 1 are the basic vertices of T.

From the well-known Jordan’s theorem [1], the branch weight centroid of a tree is either a single
vertex or a pair of adjacent vertices. Thus, f1 ≤ 2.

Next we show that fi ≤ 2, for 2 ≤ i ≤ r. On the contrary, assume that f j ≥ 3. Let u1,u2,u3 be
any three vertices of T with weight wj. Without loss of generality, assume that u2 lies between u1 and
u3 in the basic path (as ui’s are basic vertices, the basic path contains u1,u2,u3). Now, consider Su2 .
If u1 /∈ Su2 , then {u2} ∪ Su2 is a g-convex set not containing u1 of cardinality w(u2) + 1—a contradiction.
Hence, u1 and similarly u3 belongs to Su2 . Since the u1 − u3 geodesic contains u2,Su2 is a g-convex set,
it follows that u2 ∈ Su2 . This is a contradiction. This proves that fi ≤ 2 for 2 ≤ i ≤ r.



Mathematics 2018, 6, 54 6 of 16

Remark 3. Stars are special types of caterpillars having exactly one basic vertex. We call them as trivial
caterpillars. Any caterpillar can be constructed either from a trivial, or from a non-trivial caterpillar by adding
two leaves. We capture this property in the following proposition.

Proposition 6. Let W be the sequence defined in Proposition 5. Then, W is potential gcws for a non-trivial
caterpillar if and only if W ′ = {(w1 − 1) f1 , (w2 − 1) f2 , · · · , (wr − 1) fr , (n− 3)k−2 } is a potential gcws for
a caterpillar.

Proof. Let W as given be the gcws of a caterpillar T. Then, w1,w2, · · · , wr are the weights of the basic
vertices. Let u, v be the end vertices of the basic path. Since T is a non-trivial caterpillar, such u and v
will exist. Then, at least one leaf vertex is attached to u and one to v. Removing one leaf attached to u
and one attached with v, the resulting tree T′ is again a caterpillar. It is not difficult to see that the gcws
of T′ is W ′.

If the weight of either u or v is n− 2, then they cease to be a basic vertex in T′. Thus, proving the
converse is not straightforward.

Conversely, let T′ be a caterpillar realizing W ′. Let r′ be the number of integers less than n− 3 in
W ′ (i.e., r′ is the number of basic vertices in T′) and r be the number of integers less than n− 1 in W.
It is easy to see that 0 ≤ r− r′ ≤ 2. To prove the converse, we add two leaves to the existing caterpillar.
Let u′ and v′ be the end vertices of the basic path in T′. We may add a leaf to each of u′ and v′, or one
leaf to u′ and other leaf to a leaf vertex attached with v′, or attach one leaf each to leaf vertices attached
with u′ and v′ depending upon the value of r− r′.
Case 1 r− r′ = 0

Add a leaf each to u′ and v′ to get a caterpillar T.
Case 2 r− r′ = 1

Add a leaf to u′ and a leaf to a leaf vertex attached to v′ to get T.
Case 3 r− r′ = 2.

In this case, add a leaf each to a leaf vertex attached to u′ as well as v′ to get T.
In all the three cases, we can easily show that the gcws of T is W.
We illustrate this in Figure 2.

Figure 2. Example that represents Case 1,2 and 3 of Proposition 6.

The condition that fi ≤ 2 in Proposition 6 cannot be dropped. This fact is illustrated in Figure 3.
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Figure 3. T1 is the only tree with gcws {2, 53,63}, which is not a caterpillar.

A non-caterpillar tree and a caterpillar can have the same weight sequence. In addition, it is very
easy to construct two non-isomorphic caterpillars with the same weight sequence. Figures 4 and 5
illustrate this.

Figure 4. A non caterpillar and a caterpillar with the same weight sequence.

Figure 5. Two non-isomorphic caterpillars having the same weight sequence.

2.4. gcws for Spiders

A tree is a spider if it is a nontrivial homeomorph of a star. The image of the crown of the star
under this homeomorphism is the head of the spider. By a spider with parameter (np1

1 , np2
2 , · · · , npr

r ),
(1 ≤ n1 < n2 < · · · < nr), we mean the spider has pi “legs” on ni vertices; that is, pi paths of ni vertices
are joined at the head. We define p = ∑r

i=1 pi
Paths are special cases of spiders having exactly two legs. The following proposition provides a

necessary and sufficient condition for the head of a spider to be a centroidal vertex.
If the context is clear, we refer a spider with parameter (np1

1 , np2
2 , · · · , npr

r ), (1 ≤ n1 < n2 < · · · < nr),
simply as a spider.

Proposition 7. Let T be a spider and u ∈ V(T) be the head of the spider. Then, u ∈ Cg(T) if and only if
nr ≤ bn/2c.

The proof follows from the Proposition 2 and the fact that if nr ≤ bn/2c, then every branch at u
has less than or equal to bn/2c vertices.

The following lemma establishes a relation between a k-leaf of a spider and its weight.

Lemma 3. Let T be a spider and u be its head. Let u ∈ Cg(T). Consider the neighbourhood structure of T with
respect to u. Let v ∈ V(T) be a k-leaf. Then, w(v) = n− 1− k.
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Proof. Let v ∈ V(T) be a k-leaf with respect to the neighbourhood structure of u. Then, k is the
distance to the farthest leaf of T, which is a descendant of v. Since v belongs to a leg, which is a path,
v has exactly k-descendants with respect to u. Thus, | Tv | = k + 1. (recall that Tv is the set of all
descendants of v with respect to u, including v.) From Proposition 1, Sv = V(T)− Tv. Thus, w(v) =
| V(T)− Tv | = n− 1− k.

Let T be a spider, u be its head and u ∈ Cg(T). Consider the neighbourhood structure of T with
respect to u. We list the gcws of T based on the enumeration of the number of k-leaves.

(1) T has p-number of k1-leaves; 0 ≤ k1 ≤ n1 − 1. Thus, W has terms { (n− 1)p, (n− 1− 1)p, · · · ,
(n− n1)

p }.
(2) T has (p− p1) number of k2-leaves; n1 ≤ k2 ≤ n2 − 1. Thus, W has terms { (n− n1 − 1)(p−p1),

(n− n1)
(p−p1), · · · , (n− n2)

(p−p1) }.
(3) T has (p− p1 − p2) number of k3-leaves; n2 ≤ k3 ≤ n3 − 1. Thus, W has terms { (n− n2 −

1)(p−p1−p2), (n− n2)
(p−p1−p2), · · · , (n− n3)

(p−p1−p2) }.
...

(nr) T has (p− p1 − p2 − · · · − pr−1 = pr) number of kr-leaves; nr−1 ≤ kr ≤ nr − 1. Thus, W has
terms { (n− nr−1 − 1)pr , (n− nr−1)

pr , · · · , (n− nr)pr }.
Finally, w(u) = nr.

Thus, the gcws of T is { (nr + 1), S1, S2, · · · , Si, · · · , Sr}, where Si = {(n− 1− ki)
(p−p1−p2−···−pi−1):

ni−1 + 1 ≤ ki ≤ ni}.
We now discuss the gcws for spiders when u /∈ Cg(T). Since u /∈ Cg(T), from Proposition 7,

nr ≥ bn/2c+ 1, and thus pr = 1. Let P be the leg on nr vertices. Depending on whether n is odd or
even, T will either be unicentroidal or bicentroidal. Let u1 ∈ P be a centroidal vertex. Consider the
neighbourhood structure of T with respect to u1. As before, we enumerate the number of number of
k-leaves and thus their corresponding term in the weight sequence. It is easy to see that the number of
k-leaves are the same for both the case when u ∈ Cg(T) and u /∈ Cg(T) for 0 ≤ k ≤ nr−1 − 1.

Thus, the gcws of T has the following terms: {S1, S2, · · · , Sr−1}, where Si = {(n − 1 −
ki)

(p−p1−p2−···−pi−1): ni−1 ≤ ki ≤ ni − 1}.
Starting from u, the rest of the vertices in P have the following weights depending on whether n

is odd or even:

n odd: (nr), (nr− 1), (nr− 2), (nr− 3), · · · , (bn/2c+1), (bn/2c), (bn/2c+1), (bn/2c+2), · · · , (n−nr−1− 3),
(n− nr−1 − 2), (n− nr−1 − 1),

n even: (nr), (nr − 1), (nr − 2), (nr − 3), · · · , (n/2+1), (n/2), (n/2), (n/2+1), (n/2+2), · · · , (n− nr−1− 3),
(n− nr−1 − 2), (n− nr−1 − 1).

Remark 4. The following property can be observed from the gcws of a spider:

(a) If u ∈ Cg(T), then gcws has contiguous terms starting from (n− 1) until (n− nr).
(b) If u /∈ Cg(T), then gcws has contiguous terms starting from (n− 1) until (bn/2c).

The following three results establishes a lower bound for the multiplicity of weights in the gcws
of a spider.

Proposition 8. Let T be a spider and W be its gcws. If the multiplicity of the weight (n− nr − 1) ≥ 2, then
u ∈ Cg(T), and pr ≥ 2.

Proof. Let T be a spider, which is not a path. Let the multiplicity of the weight (n− nr − 1)≥ 2. On the
contrary, let u /∈ Cg(T). Thus, pr = 1, and the g-centroid u1 lies on a path on nr vertices. Consider the
neighbourhood structure of T with respect to u1. Then, u1 has two branches with a one containing
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the head of the spider u (We call this branch as B1) and the other branch is a path (We call this branch
as B2) on bn/2c vertices.

Since T is not a path, T has at least three legs. Thus, the degree d(u) ≥ 3 and hence u has at least
two children with respect to the neighbourhood structure of u1. Among them, at least one child is
an (nr−1 − 1) leaf and its weight is (n− 1− (nr−1 − 1) ) = (n− nr−1). There is exactly one (nr−1 − 1)
leaf in the branch B2. Based on Corollary 2, starting from u until u1 along the predecessor path, the
weight monotonically decreases from nr to bn/2c. This sequence contains n− 1− nr−1 only when
n− 1− nr−1 ≤ nr. This inequality relation is possible only when T is a path. Thus, the multiplicity of
n− 1− nr−1 is 1, a contradiction. This proves that u ∈ Cg(T).

Since nr−1-leaf is only possible for vertices that belong to the legs on nr vertices, the multiplicity
of n− 1− nr−1 ≥ 2 implies that pr ≥ 2.

As a corollary, we have the following result.

Corollary 4. Let T be a spider, which is not a path. If the multiplicity of the weight (n− 1− nr−1) = 1, then pr = 1.

The proof follows from the fact that, if pr ≥ 2, then the head of the spider u ∈ Cg(T); and, in this
case, every leg on nr vertices has an nr−1-leaf.

Proposition 9. Let T be a spider, which is not a path with parameter (np1
1 , np2

2 , · · · , npr
r ) and W be its gcws.

Then, for no i < r, the multiplicity of (n− 1− ni−1) = 1.

Proof. Irrespective of whether the head of the spider u is a centroidal vertex or not, every leg on nj
vertices with j ≥ i has a ni−1-leaf. Since i < r, thus the multiplicity of (n− 1− ni−1) ≥ 1.

Given an integer sequence W, we present below an algorithm to construct a spider T for which
W is the gcws. Our algorithm is based on Proposition 8, 9 and Corollary 4 and the property of gcws
for spiders.

Algorithm for Constructing a Spider from its gcws

Let W be an integer sequence. If there is a spider T for which W is the gcws, the proposed
algorithm will extract (n1, p1, n2, p2, · · · , nr, pr). If the algorithm terminates without extracting the
parameters, then W is not a gcws for a spider. However, W may suntil be a gcws of a graph. However,
the proposed algorithm here will check only for a spider.

Algorithm

Input: An integer sequence W in a descending order. Where there are multiple terms, power notation
is used.

Step 1: The number of terms in W = n. If W is presented in a power-notation, we count the
multiplicities.

Step 2: The largest weight in the sequence should be (n−1); if it is anything else, the
algorithm terminates.

Step 3: Let p be the multiplicity of the weight (n−1).
Step 3.1: Let t1 be the number of contiguous weights (with unit gap) in the sequence having

multiplicity p. Then, n1 = t1.
Since r is unknown, we use Proposition 8, 9 and Corollary 4.

Step 4: Let temp be the multiplicity of (n− 1− n1).

– If there is exactly one term left in W and the left over term is n1, then the algorithm
terminates successfully. In this case, the spider has p number of legs on n1 vertices
attached with the head.

– If the term (n− 1− n1) is missing, and there are more terms left in the sequence, then the
algorithm terminates without success.
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– If temp = 1, then r = 2. In this case, p2 = 1; p1 = p− 1; n2 = n− 1−n1 × p1. If the gcws of
T = (np1

1 , np2
2 ) is not W, then W is not a gcws of a spider.

– Let temp ≥ 2. Then, p1 = p − temp; If p1 ≤ 0, then the algorithm terminates without
success. If p1 ≥ 0, then the algorithm moves to the next step in extracting the
next parameter.

Step 5: Let t2 be the number of contiguous weights in the sequence with multiplicity (p− p1). Then,
n2 = n1 + t2.

Step 6: If there is only one more term left, then r = 2; p2 = p− p1. If the last term is n2, then W is a
gcws; otherwise, it is not.

In a similar fashion, we can continue to extract other terms and decide whether W is a gcws or not.

Based on the above steps, we now present an algorithm to verify whether a given integer sequence
W is a gcws or not.

Algorithm:
Preprocessing:

• organize the terms of the sequence in a decending order,
• if there are multiple repetitive terms present in the sequence, use the power notation.

Procedure gcws(int W)

begin
n = number of terms in W;
if (the largest weight in W = n-1)

continue
else

(exit with FALSE)
p = multiplicity of (n-1)
t1 = number of contiguous weights in
the sequence with multiplicity p; n1 = t1

i = 1; temp = p;
loop {

if (only one term left in the sequence and is equal to ni)
(exit with TRUE);

temp1 = multiplicity of (n - 1 - ni)
if (n - 1 - ni) is missing (exit with FALSE)
if (temp1 = 1) {

r = i +1;
pr−1 = (p - 1 - ∑r−2

j=1 pj);

pr = 1; nr = (n-1)-∑r−1
j=1 pj × nj;

if the gcws of the spider (np1
1 ,np2

2 , · · · , npr
r ) is W

then the algorithm terminates successfully
else exit with FALSE }

if (temp ≥ 2) {
pi = temp - temp1
if (pi ≤ 0) {exit with FALSE}
temp = temp - pi
i = i + 1
ti be the number of contiguous terms in the sequence
with multiplcity temp
ni = ni−1 + ti
} endif
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} end loop
end

We now demonstrate the above algorithm through Example 1.
Example 1. Let W = (276, 266, 256, 243, 233, 22, 21, 20, 8) be an integer sequence. We test if there is a
spider that realizes this sequence.

Step 1: n is the number of terms in W (= 28);
Step 2: p is the multiplicity of 27 (= 6);
Step 3: t1 is the number of contiguous weights in W with multiplicity 6, which is 3; n1 = 3.
Step 4: i = 1; temp = p = 6; temp1 = multiplicity of (28-1-3 = 24), which is 3.
Step 5: p1 = temp− temp1 = 6-3 = 3;
Step 6: i = i + 1 = 2;
Step 7: t2 = number of contiguous weights with multiplicity temp, which is 2;
Step 8: n2 = 3 + 2 = 5;
Step 9: temp1 = multiplicity of (n− 1− n2 = 22), which is 1.

Since temp1 is 1, we write the explite gcws and check;
r = i + 1 = 3; p3 = 1; p2 = p− 1− p1 = 2;
n3 = (n− 1− p1 × n1 − p2 × n2) = 28 − 1 − 3 × 3 − 2 × 5 = 8;

Check whether the gcws of the spider with (33,52,81) is the same as W; since this is “TRUE”;
(33,52,81) realizes W.

Remark 5. From the above propositions and the example, it can be seen that no two spiders have the same gcws.

2.5. gcws for General Trees

In this subsection, we give a set of necessary conditions for a sequence to be potential for trees.
Next, we give a necessary and sufficient condition for the same.

We start with a set of necessary conditions.

Proposition 10. Let W = {w1, w2, · · · , wn }, such that w1 ≤ w2 ≤ · · · ≤ wn be the gcws of a tree, then

1. wn = wn−1 = n− 1,
2. ∑n

i=1 wi ≤ (n− 1)2 + 1,
3. (n− k)(n + k− 1)/2 ≤ ∑n

i=1 wi if n = 2k + 1,

k + (n− k)(n + k− 1)/2 ≤ ∑n
i=1 wi if n = 2k.

Proof. (1) This follows from the fact that any tree has at least two leaves and the weight of a leaf is
n− 1. (2) Let u ∈ Cg(T). Delete a leaf from a branch at u and append it to u. Let w′1, w′2, · · · , w′n be the
gcws of the new tree T′. Then, without much effort, we can show that ∑n

i=1 wi ≤ ∑n
i=1 w′i . By repeating

the procedure, we end up with K1,n−1, for which ∑n
i=1 w′i = 1 + (n− 1)2.

Proof of (3) is similar to that of (2), except that the removed leaf is appended to another leaf.
In this case, we end up with a path on n vertices.

Now, we give a necessary and sufficient condition for an integer sequence to be potential for trees.

Proposition 11. Let W = {w1, w2, · · · , wn} , such that w1 ≤ w2 ≤ · · · ≤ ws < ws+1 = · · ·wn = n− 1
with w1 + w2 = n be a sequence of positive integers. The W is potential for trees if and only if the following
conditions are satisfied.

The sequence R = (r2, r3, · · · , rn), with ri = n − wi, 2 ≤ i ≤ n can be partitioned into disjoint
subsequences Ti, 1 ≤ i ≤ s (for some s) of R such that

1. ∑ri∈T1
ri = n− 1 and
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2. ∑ri∈Tj
ri = rj − 1 for 2 ≤ j ≤ s.

Proof. (Necessity)
Let T be a tree realizing W. Let u1 be the vertex of T with weight w1. Let u2, u3, · · · , un be the

rest of the vertices of T such that w(ui) = wi. Consider the neighbourhood structure of T with respect
to u1. For each i ≥ 2, let Di be the set of all of descendants of ui with respect to u1 including ui. From
Corollary 2, for 2 ≤ i ≤ n, Sui = V − Di. Thus, w(ui) = n− | Di |. But w(ui) = n− ri. Therefore,
| Di |= ri. We now define T1, T2, · · · , Ts as follows:

If u11 , u12 , · · · , u1j1
are the neighbours of u1, then T1 = (r11 , r12 , · · · , r1j1

). For 2 ≤ i ≤ s,
if ui1 , ui2 , · · · , uiji

are the children of ui, then Ti = (ri1 , ri2 , · · · , riji
).

We now show that these Tis form a partition of R and satisfy the conditions (1) and (2).
By the definition of T1, ∑ri∈T1

ri = ∑
j1
k=1 rik = n− 1.

For 2 ≤ i ≤ s, from our construction of Ti, Di = {ui} ∪ Di1 ∪ Di2 ∪ · · · ∪ Diji
. Therefore, | Di |=

1 + ∑
j1
k=1 rik . Thus, Ti, 2 ≤ i ≤ s satisfy conditions (2).

We now claim that these Tis’ partitions R. The elements of Ti’s are rjs by construction. No rkm

can belong to two different Ti and Tj because ukm has a unique father in T with respect to u1. By the
construction of these Tis, all ris are included in Tis—hence the claim.

For the sake of clarity, we illustrate this by Figure 6.

Figure 6. T1 = (4,5,6), T2 = (3), T3 = (2,1,1), T4 = (1,1,3), T5 = (1,1), T6 = (1), T7 = (1,1).

Sufficiency. Let T1, T2, · · · , Ts partition R and satisfy conditions (1) and (2). We construct a graph G
from these Tis as follows:

With each ri ∈ R, 2 ≤ i ≤ n, we associate a vertex ui and V(G) consisting of these uis and another
vertex u1. If Ti = (ri1 , ri2 , · · · riji

), then ∑
ji
k=1 rik = ri − 1. Join the vertex ui (i.e., the vertex corresponding

to ri) with ui1 , ui2 , · · · , uiji
and for T1, join u1 with u11 , u12 , · · · , u1j1

. We now show that G is indeed a
tree with W as its weight sequence.

Observe that ui and uj are adjacent in G if and only if either rj is in Ti or ri is in Tj. Thus, we have
deg(u1) = number of parts of T1,
deg(ui) = 1 + number of parts of Ti for 2 ≤ i ≤ s, and
deg(ui) = 1 for i > s.

Claim 1. Each ui is connected to u1 in G and hence G is connected.

Proof of Claim 1. ui corresponds to ri and Ti. If ri is a part of Tj (j 6= 1), then ui is joined to uj. If rj
is a part of Tk for some k, then uj is joined to uk. This will stop when k = 1, (for, T1 and u1 do not
correspond to any element of R). Thus, we have a path from ui to u1. This proves the claim.

To show that G is a tree, it is enough to show that ∑n
i=1 deg(ui) = 2n− 2. We now show this.
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∑n
i=1 deg(ui) = deg(u1)+∑s

2 deg(ui) + ∑i≥s+1 deg(ui)

= no. of parts of u1 + ∑s
2(1+no. of parts of Ti) + (n− s)

= (s− 1) + ∑s
2 no. of parts of Ti + (n− s)

= (n− 1) + (n− 1) = 2n− 2 (since Ti’s partition R and there are
are exactly n− 1 elements in R, ∑s

2 no. of parts of Ti = n− 1

We now show that the weight sequence of G is w.

Proof of Claim 2. w(u1) = w1

Consider r2. Since r2 ≥ ri, for every i, the only Ti that contains r2 is T1. Since w(u1) = maxri∈T1{ri},
w(u1) = r2. i.e., w(u1) = n− w2 = w1, as (w1 + w2 = n).

To complete the proof of sufficiency part, consider the neighbourhood structure of G with respect
to u1. N(u) consists of all vertices ui such that ri ∈ T1 and uk ∈ Ni(u) if and only if there exists a
vertex uj in Ni−1(u) such that rk ∈ Tj. It can easily be proved that each ui (i ≥ 2) has exactly ri − 1
descendants with respect to u1. Thus, by Corollary 2, w(ui) = n− ri, 2 ≤ i ≤ n.

Remark 6. The condition that w1 + w2 = n in the above proposition cannot be dropped. This is illustrated by
Example 2.

Example 2. Let W = (3,3,3,4,4). Then, R = (2,2,1,1). Thus, T1 = (2,2), T2 = (1) partitions R, but there
is no tree with gcws W. The proof follows from Jordan’s theorem. Any tree has a maximum of two
centroidal vertices; i.e., has a maximum of two vertices with least weight.

Remark 7. If W is a gcws of a tree, then by taking different set of Tis satisfying conditions (1) and (2), we get
all trees realizing W.

We now show that the only forcible tree sequence is {1,(n− 1)n−1}. To prove this, we need the
following lemma.

Lemma 4. Let T be a tree and u ∈ V(T). Let x, y be a pair of non-adjacent vertices belonging to the same
branch at u. Then, w(u : T) = w(u : T + xy), i.e., the weight of u is same in both graphs T as well as T + xy.

Proof of this lemma follows from by a simple observation. However, the weight of the vertices x
and y differs in T and T + xy.

Now, we have the main proposition

Proposition 12. The only forcible tree sequence is {1,(n− 1)n−1}.

Proof. From Proposition 4, {1,(n− 1)n−1} is forcible for stars. Suppose that W is a gcws different from
the above, potential for trees. Let T be a tree realizing W. We now show that there exists a graph that is
not a tree realizing W.

Let u ∈ Cg(T). Consider the neighourhood structure of T with respect to u.
Case 1: There exists a vertex v( 6= u) with more than one child with respect to u.

Let v1, v2 be two childeren of v with respect to the neighbourhood structure of u. Since T is a tree,
v1 and v2 are not adjacent in T. Let T′ = T + v1v2. We now show that both T and T′ have the same
gcws. It is easy to see that w(x : T) = w(x : T′)∀x 6= v1 or v2. We now prove that w(v1 : T) = w(v1 : T′).
From Corollary 2, Sv1(T) = V(T)− Tv1 . We also show that Sv1(T) is a maximum g-convex set in T′

not containing v1. Since w(u : T′) ≤ w(v1 : T′), from Proposition 1, u ∈ Sv1(T). Since u ∈ Sv1(T
′),

no descendant x of v1 belong to Sv1(T), as the x − u geodesic path in T′ passes through v1. Thus,
Sv1(T) ⊆ V(T)− Tv1 . Let x, y ∈ V(T)− Tv1 . Then, it is easy to see that the shortest path between x



Mathematics 2018, 6, 54 14 of 16

and y in T and T′ passes through the same vertices. Thus, V(T)− Tv1 is a g-convex set in T′. Thus,
we have Sv1(T

′) = V(T)− Tv1 .
Case 1 exhausts all trees except spiders with the head u being a centrodial vertex.

Case 2: Let T be a spider with the head u ∈ Cg(T). Suppose a leaf x is attached to u. Since T is a
non-trivial spider, T has a leg L of length ≥ 2. Let x1 = L ∩ N(u) and x2 be its child in N2(u). Let
G = T ∪ {x2, u, x1, x}. Then, it is easy to check that gcws(G) = gcws(T).

Suppose that no leaf is attached to u. Let L1, L2 be two legs of T. Let xi = Li ∩ N(u) (i = 1, 2)
and yi be a child of xi in N2(u). Let G = T ∪ {y1u, y2u, x1x2}. Then, G and T have the same
weight sequence.

3. gcws for Some Special Classes of Graphs with Cycles

In this section, we characterize the gcws of some special classes of graphs with cycles, viz. complete
graphs, windmill and degenerate windmill graphs and wheels.

A connected graph is complete if and only if every pair of vertices are adjacent.
A graph is a windmill graph is G has exactly one cut vertex and each block of G is a triangle.

These triangles are called blades. A graph is a degenerate windmill graph is G is obtained from a windmill
graph with at least one blade by attaching at least one pendant edge to its cut vertex.

The wheel Wn is the graph with exactly one cycle of length n and a vertex not in the cycle (called
the center of the wheel) adjacent to every vertex in the cycle (these edges are called the spokes for
the wheel).

Proposition 13. A graph is complete if and only if its gcws is {(n− 1)n}

Proof. Obviously, Kn has the weight sequence {(n− 1)n}. Conversely, let G be any graph having the
gcws {(n− 1)n}. Then, for any v ∈ V(G), w(v) = n− 1 and so S = V − {v} is a convex set. It can easily
be proved that < N(u) > is complete and thus G is complete.

Proposition 14. The only graph realizing W = {2,(n− 1)n−1} is a windmill or a degenerate windmill graph.

Proof. Let G be a graph realizing W. Let u be the vertex of G with weight 2.
Claim 1: u is adjacent with every vertices of G.

If possible, let v ∈ V(G) belong to N2(u). Let v1 ∈ N1(u) be the ancestor of v. Then, w(v1) < n− 1,
as v− u path passes through v1; a contradiction as w(v1) = n− 1. This proves the claim.

Using the same argument, we can show that < N(u) > has no path on 3-vertices. Since w(u) = 2,
< N(u) > has at least one edge. Since the weight of every other vertices is n-1, < N(u) > is a union of
P1 and P2. Thus, G is either a windmill or a degenerate windmill graph.

Proposition 15. The only graph realizing W = {2, (n− 2)n−1} is the graph with at most one cut vertex, whose
blocks are either C4 or a wheel with r spokes, r ≥ 4.

Proof. Let G be a graph realizing W. Then, clearly | V(G) |≥ 4, as n− 2 ≥ 2.
Case 1: G is a block.

If G is a block on four vertices, then trivially G is C4. Let | V(G) |≥ 5. Let u be the vertex of G
with weight two. As before, ω(G) ≤ 3 (see Lemma 2).
Claim 1: Degree of every vertex other than u is three

Suppose v is a vertex of G with d = deg(v) ≥ 4. Consider an Sv. By definition, v /∈ Sv. Let v1 be the
other vertex not in Sv (as w(v1) = n− 2). It is easy to see that v1 ∈ N(v) (otherwise, N(v) is complete
and hence w(v) = n− 1). Thus, it follows that Sv contains d− 1 vertices of N(v). As in previous
arguments, these vertices together with v form a complete subgraph of G and thus ω(G) ≥ d > 3,
a contradiction. Therefore, d ≤ 3. We now prove the equality. Clearly, d(v) cannot be one, as it would
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imply w(v) = n− 1. Therefore, we have proved that 2 ≤ d ≤ 3. To prove d = 3, we need the following
sub claim.
Subclaim 1: The eccentricity of u is one, i.e., u is adjacent to all the vertices of G.

First, we show that e(u) ≤ 2. If not, let x ∈ N(u) have a descendant z in N3(u). Let x, y, z be a
geodesic joining x and z in G. Now, consider Sx. Since w(u) < w(x), u ∈ Sx. Hence, y, z /∈ Sx. (as
y− z geodesic passes through x) Therefore, w(x) ≤ n− 3, a contradiction. Thus, e(u) ≤ 2.

It also follows from the above proof that each vertex of N(u) has at most one descendant in N2(u).
Now, suppose e(u) = 2. Let x ∈ N(u) have a descendant y in N2(u). If y has no neighbour in

N2(u) and no neighbour other than x in N(u), then w(y) = n− 1. Therefore, y is adjacent to a vertex
y1 of N2(u) or a vertex x1 of N(u). We now discuss the implication of y being adjacent to a vertex in
N2(u) or in N1(u) (other than x).
Case A: y is adjacent to a vertex y1 in N2(u)

If x, y, y1 is the only geodesic joining x and y1, then {x, y, y1} is a g-convex set not containing u
and hence w(u) ≥ 3—a contradiction. Suppose that x, x2, y1 is another geodesic joining x and y1.
Then, x2 ∈ N(u), as x can have at most one descendant in N2(u). Since x and x1 are degree saturated
(deg = 3), {x, x1, y, y1} is a g-convex set of G. Therefore, w(u) ≥ 4; a contradiction.
Case B: y has an ancestor x1( 6= x) in N(u)

Since w(u) = 2, xx1 /∈ E(G); otherwise, {x, x1, y} is a K3 (and thus a g-convex set) not containing u;
and hence w(u) ≥ 3. Since | V(G) |≥ 5 and G is two-connected, either x or x1 is adjacent to a vertex of
N(u) (otherwise in G− u, {x, x1, y} are separated from the rest of the vertices). Without loss of generality,
assume that x1 is adjacent to x2 of N(u). If x2, x1, y is the only geodesic joining x2 and y, as before
we get a contradiction. Let x2, x3, y be another geodesic joining x2 and y. Then, by our assumption
about y, x3 ∈ N(u). Clearly, x1x3 /∈ E, for then w(u) ≥ 3. Consider Sx2 . Since w(u) < w(x2), u ∈ Sx2 .
Now, Sx2 cannot contain both x1 and x3 (as an x1 − x3 geodesic passes through x2). Without loss
of generality, assume that x1 /∈ Sx2 . Then, y /∈ Sx2 (as a y− u geodesic contains x1) and therefore
| Sx2 |≤ n− 3—a contradiction. From cases A and B, we conclude that N2(u) = ∅, i.e., e(u) = 1.

We now go back to proving our main claim d(v) = 3. If d(v) = 2 for some v, then it is easy to see
that N(v) is a clique (as u is adjacent to every vertex of G) and hence w(v) = n− 1, a contradiction.
This establishes the claim.

We now show that G is a wheel. Since G is 2-connected, G− u is connected. Since d(v) = 3 for
every vertex v ( 6= u), G− u is a 2-regular graph. Therefore, G− u is a cycle and hence G is a wheel.
Case 2: G is separable.

Let u be the vertex of G with weight two. First, we show that u is the only cut vertex of G. If not,
let v be another cut vertex of G. Since d(v)− 1 vertices of N(v) form a clique (as w(v) = n− 2), G− v
has exactly two components, one with exactly one vertex, say x. Thus, w(x) = n− 1, a contradiction.

In addition, each component of G− u has at least three vertices. For, if a component of G− u
has exactly one vertex or a pair of adjacent vertices, then the weight of those vertices is n− 1, as their
neighbours induce a complete subgraph. As in Case 1, we can prove that each block of G incident with
u is either a C4 or a wheel.

4. Conclusions

In this paper, we have presented a necessary and sufficient condition for a sequence to be a gcws
for trees. As an immediate generalization, one can try to get such conditions for k-trees, interval graphs
and other special classes of graphs such as permutation graphs and circular arc graphs.

Here, we have proved that the gcws are forcible for complete graphs, windmill graphs and
degenerate windmill graphs and wheels. One can try to find more such classes.

In this paper, we conjectured that the problem of deciding whether an integer sequence W is gcws
or not, is an NP-hard problem. We address this conjecture in our future papers.
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We defined a new classes of graphs, which are extensions to trees. We call it as Generalized
trees. It will be interesting to classify all graphs that belong to this class and identify the topological
properties of graphs that belong to this class.
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