
mathematics

Article

A Novel Distributed Economic Model Predictive
Control Approach for Building Air-Conditioning
Systems in Microgrids

Xinan Zhang †, Ruigang Wang and Jie Bao *

School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
zhangxn@ntu.edu.sg (X.Z.); ruigang.wang@unsw.edu.au (R.W.)
* Correspondence: j.bao@unsw.edu.au
† Current address: School of Electrical & Electronic Engineering, Nanyang Technological University,

50 Nanyang Avenue, Singapore.

Received: 26 March 2018; Accepted: 13 April 2018; Published: 17 April 2018
����������
�������

Abstract: With the penetration of grid-connected renewable energy generation, microgrids are
facing stability and power quality problems caused by renewable intermittency. To alleviate such
problems, demand side management (DSM) of responsive loads, such as building air-conditioning
system (BACS), has been proposed and studied. In recent years, numerous control approaches
have been published for proper management of single BACS. The majority of these approaches
focus on either the control of BACS for attenuating power fluctuations in the grid or the operating
cost minimization on behalf of the residents. These two control objectives are paramount for
BACS control in microgrids and can be conflicting. As such, they should be considered together
in control design. As individual buildings may have different owners/residents, it is natural to
control different BACSs in an autonomous and self-interested manner to minimize the operational
costs for the owners/residents. Unfortunately, such “selfish” operation can result in abrupt and
large power fluctuations at the point of common coupling (PCC) of the microgrid due to lack
of coordination. Consequently, the original objective of mitigating power fluctuations generated
by renewable intermittency cannot be achieved. To minimize the operating costs of individual
BACSs and simultaneously ensure desirable overall power flow at PCC, this paper proposes a novel
distributed control framework based on the dissipativity theory. The proposed method achieves
the objective of renewable intermittency mitigation through proper coordination of distributed
BACS controllers and is scalable and computationally efficient. Simulation studies are carried out to
illustrate the efficacy of the proposed control framework.

Keywords: model predictive control (MPC); dissipativity; building air-conditioning system (BACS);
microgrids

1. Introduction

In the past decade, electricity generation by using renewable energy resources, such as solar
energy, becomes increasingly popular due to its capability of saving fossil fuels and reducing emissions.
As a result, the number of grid-connected solar generation (SG) plants rises rapidly. One of the
drawbacks of SG is the fluctuations in its output power caused by renewable intermittency. In practice,
large and rapid output power oscillations are often experienced in SG plants, which may lead to bus
voltage instability or even blackouts in the electric grid [1–3]. Such stability problems become far more
significant in the microgrids, where high penetration of SG plants can be expected [4]. One of the
widely accepted solutions to the aforementioned stability problems is to increase the operating reserve
of electric grid. This includes the installation of extra generators, deployment of a large amount of
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battery energy storage systems (BESSs), and demand side management (DSM), etc. Obviously, large
scale implementation of either extra generators or BESSs will introduce very high costs. In comparison,
DSM utilizes the load shifting potential of end-users and does not require additional infrastructure.
Thus, DSM is considered to be one of the most cost-effective methods for providing operating reserve
to the grid [5,6].

Conceptually, DSM indicates the management of electrical loads to diminish undesirable
fluctuations in power flow while satisfying customer requirements. Some electrical loads are
controllable, including washing machines, air-conditioners and ventilation systems, etc. Among
all these loads, air-conditioners typically consume a significant portion of energy. This is especially
true for modern buildings that employ central air-conditioning systems. Statistically, nearly 40% of the
world’s end-use electric energy is consumed by buildings and more than 50% of the building energy is
used for ventilation and air-conditioning [7–9]. This shows that control of building air-conditioning
systems (BACS) can be crucial for maintaining power balance in the grid, and the thermal capacity
of buildings can be used as an effective tool for smoothing the power flow and shaving peak power
in microgrids.

In recent years, model predictive control (MPC) has been investigated in the optimal management
and operation of energy systems (including BACSs) [10–17]. For example, Maasoumy et al. [14]
proposed an MPC approach to regulate building heating, ventilation and air-conditioning (HVAC)
systems to offer an ancillary service to automatic generation control (AGC). The proposed method
contributes to improving the accuracy of AGC in power systems. However, the operating costs of
building HVAC systems and the scenarios of large scale power systems with SGs are not considered.
In [15–17], researchers proposed other model based control methods to manipulate the aggregated
demand of BACSs to compensate for the power fluctuations caused by SG units. These methods
essentially increase the operating reserve of electric grids. Nevertheless, the associated operating
costs of BACS are still not considered. In fact, the operating costs are one of the main concerns of
building residents and must be taken into account in BACS control. From the perspective of building
residents, the main control objective of BACSs should be the minimization of operating cost so that
their electricity bills can be reduced. In [18], a hierarchical economic MPC framework based on the
time-scale difference between HVAC and building thermal energy storage was developed to improve
the total operation cost. In this work, distributed control is adopted since different buildings are
usually subject to different energy demands and ownerships.

To study general situations in microgrids, dynamic electricity prices are employed in this paper for
energy trading of distributed buildings with SGs and BACSs. Theoretically, dynamic prices are based
on the current and predicted power supply/demand information that is available in the commonly
used day-ahead market. Certainly, such dynamic “prices” can be either actual electricity prices for a
microgrid with financially independent buildings (where the prices impact owners’ economic costs) or
virtual prices for a microgrid owned by one organization such as a university or company campus
(where the “prices” are used as a token for the coordination of energy consumption of different
buildings). With respect to the dynamic prices, each individual BACS controller can minimize its
operating cost economically through demand management. This mechanism encourages BACS
controllers to shave peak power demand in the high price region and shift it to a low price region.
However, if not appropriately coordinated, a positive feedback loop might be formed. In this case,
the prediction of an increasing electricity price stimulates building controllers to purchase and use
more energy at the current step to save the predicted future SG outputs for possible energy selling
at higher prices. This subsequently results in a further boosted electricity price. The presence of
such a mechanism can significantly deteriorate the collective power flow profile of all participated
buildings in the microgrid. Under some extreme conditions, voltage instability might also be incurred.
Therefore, the formulation of the aforementioned positive feedback loop must be avoided through
appropriate coordination of different BACS controllers. Proper coordination of microgrid users is
necessary to attenuate excessive energy trading behaviors effectively. Advanced control methods,
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such as process control techniques, can be applied in this scenario to improve system-wide stability and
performance [10,13,19,20]. Although some articles are published on the coordination of distributed
controllers for microgrid applications [21–23], their nature of achieving economic optimum at an
aggregation level makes them computationally complicated and not scalable for large scale systems,
such as microgrids. Thus, distributed control without online centralized optimization is a better
solution to the aforementioned problem.

In this paper, a novel distributed economic MPC approach for BACS in microgrids is developed,
based on the dissipativity theory. This approach allows individual BACS MPCs to minimize their own
operational costs while attenuating the fluctuations of the total power demand and ensure microgrid
level stability. To allow large scale implementation, the basic idea is to constrain the behaviors of
BACS controllers with additional conditions to achieve the microgrid level performance and stability.
In this work, such conditions are developed based on concept of dissipativity. Being an input and
output property of dynamical systems [24,25], dissipativity was found useful for stability design for
feedback systems (e.g., [26,27]) and was recently applied to develop plantwide interaction analysis and
distributed control approaches (e.g., [28–31]). In this paper, microgrid-wide performance and stability
are represented as microgrid dissipativity conditions that in turn are translated into the constraints
that each BACS controller has to satisfy. To reduce the conservativeness of the dissipativity conditions,
dynamic supply rates in Quadratic Difference Form (QdF) [32] are adopted in this approach, similar
to [33]. Each BACS controller can optimize its own “selfish” economic objective based on the local
information (e.g., the indoor temperature) and the electricity price, subject to the above discussed
constraint, without iterative optimization or negotiations.

The remaining part of this paper is organized as follows: Section 2 introduces thermal modeling
of buildings with AC and SG for microgrid applications. In Section 3, the effect of dynamic electricity
price on energy trading in microgrids is discussed and an illustrative price scheme is provided.
The dissipativity theory is briefly reviewed in Section 4. Subsequently, microgrid-wide dissipativity is
analyzed and the proposed control framework is presented. Based on the general case of dynamic
electricity price, simulations are carried out with the results presented in Section 5 to show the
effectiveness of the proposed approach on improving collective performance of BACSs in microgrids.
Finally, a conclusion is drawn in Section 6.

2. Buildings with Air-Conditioning and Solar Generation in Microgrids

2.1. Building Thermal Modeling

To effectively reduce the energy consumption of BACS without sacrificing the comfort of residents,
thermal dynamics of buildings have to be studied. Therefore, a suitable building thermal model is
necessary. In literature, a number of models are proposed to quantitatively evaluate building thermal
dynamics [34–38]. Typically, three exogenous disturbances, including ambient temperature, solar
irradiation and heat generated by internal electrical appliances, are adopted in these models and
ground temperature is neglected [35]. The complexity of these models are basically dependent on their
accuracy and the number of thermal zones considered in a building. It is noted that linear state space
models are commonly used and found to be accurate enough [36–38]. In addition, the complexity of
such models rises drastically with the increase of the number of building thermal zones [39]. Therefore,
in real-time control applications, a reduced order model is usually desirable. Without loss of generality,
a lumped parameter building thermal model [38] is employed in this paper as follows:

dTd
dt

=
1

CdRa
(Ta − Td) +

1
CdRd

(Tw − Td) +
1

CdRw
(Te − Td) +

1
Cd

[(Pheat + Pcool + ρPld) + Φs Aµ1] ,

dTw

dt
=

1
CwRd

(Td − Tw) +
1

Cw
Φs Aµ2,

dTe

dt
=

1
CeRw

(Td − Te) +
1

CeRam
(Ta − Te),

(1)
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where the definitions and units of notations used in Equation (1) are given in Table 1. Noticeably,
expressions Φs Aµ1 and Φs Aµ2 represent the solar radiation transferred through an external building
envelop to heat up indoor air and interior walls, respectively. Considering the effect of shading,
the usage of heat insulation materials in the envelop of most buildings and the heat transfer rate
between air and wall, the values of µ1 and µ2 are chosen to be 0.02 and 0.0075 in this paper. It should be
pointed out that the control framework to be presented in Section 4 can be applied with any building
thermal model, including those more detailed models that consider the dynamics of each individual
thermal zone.

Table 1. Variables in the thermal model.

Variable Definition Unit

Td Temperature of building indoor air ◦C
Tw Temperature of building interior walls ◦C
Te Temperature of building envelop ◦C
Ta Temperature of ambient environment ◦C
Φs Solar radiation kW/m2

Pheat Heating power from air-conditioning system (positive) kW
Pcool Cooling power from air-conditioning system (negative) kW
Pld Power consumption of indoor appliances (excluding AC system) kW
ρ Fraction of heat generated from the operation of indoor appliances

Ra Thermal resistance between indoor air and ambient environment ◦C/kW
Rd Thermal resistance between interior walls and indoor air ◦C/kW
Rw Thermal resistance between indoor air and building envelop ◦C/kW
Ram Thermal resistance between building envelop and ambient environment ◦C/kW
Cd Heat capacity of indoor air kW/◦C
Cw Heat capacity of interior walls kW/◦C
Ce Heat capacity of building envelop kW/◦C
A Effective area of building envelop m2

µ1 Coefficient of solar radiation transferred through building envelop to heat up indoor air
µ2 Coefficient of solar radiation transferred through building envelop to heat up interior

walls

2.2. Building with Air-Conditioning and Solar Generation

As mentioned before, modern buildings are usually equipped with automatically controlled
air-conditioners (AC), which includes on/off type and inverter based variable frequency type. In most
cases, the latter shows superior performance over the former even though it is more expensive [40].
According to some previous studies, the variable frequency air-conditioner (VFAC) can achieve
significant energy savings and simultaneously provide better comfort level [40–42] compared to its
on/off counterpart. This means the increased capital cost of VFAC can be readily paid back through
the reduction of electricity bills. Consequently, nowadays, VFACs are widely used to replace the
conventional on/off models [43]. In view of such circumstances, the VFAC, which is capable of
continuously adjusting its output heating/cooling power, is assumed to be the default air-conditioner
for buildings in this paper.

In the microgrids, it is common to install solar photovoltaic (PV) systems on the roof of buildings
to reduce buildings’ energy dependency on the grid. In this way, many buildings can have their own
clean energy sources to support loads or even sell surplus electric energy back to the grid. In order
to describe a general situation, SG systems are assumed to be present in the buildings of microgrids
in this work. Conceptually, the studied building system with AC and SG can be briefly depicted by
Figure 1. Denote Pb and Ps as the power purchased from and sold to the microgrid by the building,
respectively. Then, the power balance equation can be expressed as follows:

Pb + Ps + Ppv = Pheat + Pcool + Pld, (2)
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where Ppv and Pld are defined as the power generated by SG plant and the power consumed by the
other electrical loads (excluding AC system), respectively.
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Figure 1. Block diagram of buildings with air-conditioner (AC) and solar generation (SG) in microgrids.

The output power of SG can be estimated/predicted from forecasted solar radiation and
ambient temperature together with the technical specifications of the PV panels and the incremental
conductance based maximum power point tracking algorithm [44].

2.3. State-Space Representation

The aim of controller is to maintenance the building’s indoor temperature with a certain range
while dynamically adjusting the power demands within the microgrid to achieve better economy.
Thus, the state variables x, output (or controlled) variables y, manipulated variables u and disturbance
variables d can be chosen as follows:

x =
[

Td Tw Te

]T
, y =

[
Td Pb Ps

]T
,

u =
[

Pheat Pcool Pb

]T
, d =

[
Pld Ppv Ta Φs

]T
,

(3)

respectively. The discrete-time state-space model of Equations (1)–(2) can be expressed in the following
compact form:

x(k + 1) = Ax(k) + Bu(k) + Ed(k),

y(k) = Cx(k) + Du(k) + Fd(k),
(4)

where

A = I3 + Ts

−
1

Cd
( 1

Ra
+ 1

Rd
+ 1

Rw
) 1

RdCd
1

RwCd
1

RdCw
− 1

RdCw
0

1
RwCe

0 − 1
Ce
( 1

Rw
+ 1

Ram
)

 , B =
Ts

Cd

1 1 0
0 0 0
0 0 0

 ,

C =

1 0 0
0 0 0
0 0 0

 , D =

0 0 0
0 0 1
1 1 −1

 , E = Ts


ρ

Cd
0 1

RaCd

µ1 A
Cd

0 0 0 µ2 A
Cw

0 0 1
RamCe

0

 , F =

0 0 0 0
0 0 0 0
1 −1 0 0

 ,

(5)

with Ts as the controller sampling period and I3 as a 3× 3 identity matrix.
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3. Electricity Price Policy for Energy Trading in Microgrids

There are research efforts on minimizing the operating costs of BACS based on the predictions
of electricity price while respecting thermal comfort constraints [45–48]. Nonetheless, the attentions
of these proposals are only based on static electricity price. Instead, the general case of dynamic
electricity pricing, which varies with respect to real-time power supply and demand conditions, is not
investigated. In practice, dynamic electricity prices are widely proposed for microgrid and smart grid
applications [22,49–51] because they are effective tools for achieving power and financial balances.
Furthermore, the existing proposals also neglect the effect of cost minimization by distributed BACS
controllers on the overall power flow profile of microgrid. Actually, this effect is very important since
the detrimental intermittent power fluctuations caused by renewable intermittency can be aggregated
rather than mitigated if there is no coordination among distributed BACS controllers. The reason for
such phenomenon is that buildings in one geographical area, such as a microgrid, are typically subject
to the same electricity price and very similar weather conditions. As a consequence, simultaneous cost
minimization of BACSs can lead to similar control actions, producing similar building power flow
profiles even though there are some differences in the output of SGs installed on buildings.

It is acknowledged that a constant electricity price does not give customers incentives to change
their load patterns, which can lead to supply issues in power systems during peak demand hours [9,52].
In addition, it implies that people who use electricity during off-peak hours are essentially subsidizing
peak hour users [53]. Undoubtedly, such a price policy is undesirable for both the grid operator and
the users. To effectively shave the peak of power demand, time-of-use (TOU) price policy is proposed
and employed [47,54,55]. For example, a typical TOU price αUG adopted by the state of New South
Wales in Australia [54,55] is illustrated in Figure 2, from which it is seen that TOU electricity price
varies with time periodically with large price difference between peak and non-peak hours. In this
way, the shifting of electrical loads from peak hours to non-peak (off-peak or shoulder) hours can help
reduce users’ electricity cost to a large extent. Therefore, TOU price policy motivates users to shift their
electricity usage to low price regions.

10PM10PM

7AM7AM7AM7AM

10PM10PM

8PM8PM

2PM2PM

WeekendsWeekendsWeekdaysWeekdays











Peak-Off    1144.0

Shoulder     2026.0

Peak           5061.0

UG

Off-PeakOff-Peak

ShoulderShoulder

ShoulderShoulder

ShoulderShoulder

Off-PeakOff-Peak

PeakPeak

PPrices in AUD: 055.0UG,,

Figure 2. Illustrative example of time-of-use (TOU) electricity price and solar feed-in tariff.

Indeed, there are drawbacks of the existing TOU price policies. Firstly, researchers have pointed
out that the ratio of peak to off-peak TOU prices has to be significant. Otherwise, the profile of user
power demand will not change effectively [56]. Nevertheless, large price differences in different time
intervals can result in higher overall cost for some users, and, thus, may not be preferable. Secondly,
since the TOU price policy is static, dynamic supply and demand information cannot be reflected in
the electricity price. Consequently, it is impossible for the electricity market to use price as an effective
tool to affect power balance in the grid. In practice, dynamic electricity price has great potential to
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influence both the supply and demand to alleviate power imbalances in areas with high penetration
of SG plants [49], such as microgrids. Theoretically, electric energy can be traded among users in
microgrids with reasonable prices and this is beneficial for both grid operator and users. For the grid
operator, electricity price can be regulated based on real-time supply and demand information to
mitigate microgrid-wide power imbalance. Alternatively, for users in the microgrid, trading with
the other users instead of the grid gives them the opportunity of getting a better electricity price.
This contributes to reducing their overall cost. Therefore, dynamic electricity prices are promising for
microgrid applications.

Of course, to implement dynamic electricity prices in the microgrid, energy trading between
microgrid and utility grid (UG) is inevitable because power imbalances in microgrid have to be
compensated by UG. As a result, the existing TOU price profile employed by UG must be considered.
In general, the dynamic electricity prices should possess three features. First of all, they ought to be
functions of the real-time power supply and demand in microgrid. Secondly, the users who buy energy
should be charged at a price not higher than that of the UG and the users who sell energy should be
paid at a price not lower than that of the UG. This feature motivates users to participate in energy
trading activities. Thirdly, despite their nature of benefiting users, the dynamic electricity prices must
guarantee that the microgrid can be financially self-sustained in its transactions with UG. In other
words, the financial gain of microgrid through energy selling must be able to cover the financial loss
of microgrid through energy buying. In theory, many pricing policies can satisfy the above features.
One of the examples is{

αmg = [1 + (1− γ)PΣ
s /PΣ

b ]αUG, βmg = γαUG, if PΣ
b + PΣ

s > 0,

αmg = βmg = βUG, if PΣ
b + PΣ

s ≤ 0,
(6)

where αmg and βmg represent the electricity price charged on energy buyers and paid to energy sellers
in microgrid, respectively, and Pb,Σ (≥0) and Ps,Σ (≤0) are the total electric power purchased from and
sold to the microgrid by internal users, i.e.,

PΣ
b =

M

∑
i=1

Pi
b, PΣ

s =
M

∑
i=1

Pi
s , (7)

with Pi
b and Pi

s as the trading behaviors of individual users and M as the number of users. Notations
αUG and βUG denote the electricity price charged on and paid to microgrid by UG when there are
transactions between them. The values of αUG and βUG can be determined from Figure 2. Symbol γ is
a user-defined constant in the range 0 < γ < 1.

From Equation (6), it can be seen that{
αmgPΣ

b + βmgPΣ
s = (PΣ

b + PΣ
s )αUG if PΣ

b + PΣ
s > 0,

αmgPΣ
b + βmgPΣ

s = (PΣ
b + PΣ

s )βUG if PΣ
b + PΣ

s ≤ 0.
(8)

In both equations, the left-hand side represents financial gain/loss of microgrid’s trading with
internal users and the right-hand side indicates financial gain/loss of microgrid’s trading with UG.
Obviously, equivalence of the two sides implies zero financial gain/loss of microgrid. Consequently,
by employing such a pricing policy, the microgrid serves as a non-profit information platform that
facilitates energy trading among internal users. In practical applications, if certain operation and
maintenance costs are associated with this information platform, a monthly service charge can be
imposed on users. However, this service charge should be very low due to the large amount of users
in microgrid and the marginal cost of running an information platform.
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4. Dissipativity Based Distributed Control Framework

The distributed control diagram of building thermal systems in the microgrid is depicted by
Figure 3, where Bi and Ci represent the i-th building and its corresponding controller. During
each sampling period, individual controllers receive price information (both current and predicted
purchasing/selling prices) from the energy trading unit, retrieve load profiles from historical data and
measure building temperatures. Then, it calculates the control inputs by minimizing its economical
cost and sending the power demand/supply information to the energy trading unit. The further price
profile is generated by this centralized component based on the price scheme in Equation (6) and
redistributed to individual controllers at the next time step.

Utility Grid

αMG βMGPΣ

Energy Trading

αmg βmg

Building 1 Building M· · ·

B1
d1

y1

u1

C1

BM
dM

yM

uM

CM

Figure 3. Block diagram of signal flows of a controlled building thermal system.

As shown in our previous work [57], without proper coordination, the “selfish” nature of each
economic MPC controller could generate excessive energy trading behaviors, which may cause
undesirable oscillations. In this section, the dissipativity theory, which characterizes system behaviors
from input–output trajectories, is employed to resolve this issue. The whole system in Figure 3
is treated as a network of dynamical interacted subsystems. Firstly, the dissipativity analysis is
performed on each components, e.g., building thermal model, controller and energy trading unit.
Then, a microgrid-wide supply rate is obtained by the linear combination of individual subsystems’
supply rates. Finally, a microgrid-wide dissipativity synthesis is performed offline and the online
implementation involves solving distributed economic model predictive control (DEMPC) problems
subject to additional dissipativity based coordination constraints.

4.1. Dissipativity and Dissipative Conditions

Consider a general discrete-time system expressed as follows:

x(k + 1) = f (x(k), u(k)), y(k) = h(x(k), u(k)), (9)

where x ∈ Rn, u ∈ Rp and y ∈ Rq are defined as the state, input and output variables, respectively.
Notation k denotes the k-th sampling instant. This system is said to be dissipative if there exists a
positive semidefinite function ψ(x) defined on the state, called storage function, and a function φ(y, u)



Mathematics 2018, 6, 60 9 of 21

defined on the input and output, which is known as supply rate, such that the following inequality
holds [24]

ψ(x(k + 1))− ψ(x(k)) ≤ φ(y(k), u(k)), ∀k ≥ 0. (10)

Commonly, the following (Q, S, R)-type supply rate is used

φ(y(k), u(k)) =

[
y(k)
u(k)

]T [
Qφ Sφ

ST
φ Rφ

] [
y(k)
u(k)

]
, (11)

where Qφ = QT
φ ∈ Rq×q, Rφ = RT

φ ∈ Rp×p and Sφ ∈ Rq×p are parametric matrices. In general,
the information of system gain is contained in Qφ, Rφ and the phase relation is indicated by Sφ. For
example, Qφ = −Iq, Sφ = 0, Rφ = ρ2 Ip implies a system with bounded L2 gain (with an H∞ system
norm of ρ).

Since the (Q, S, R)-type supply rate only contains input and output information at the current
sampling instant, i.e., u(k) and y(k), it can be very conservative. The conservativeness of the
dissipativity conditions can be reduced by introducing the concept of dynamic supply rate, e.g.,
in the quadratic differential form (QDF) [32], or the QdF for discrete time systems [58]. Such a
dynamic supply rate is a function of the input and output trajectories and, consequently, captures
more behavioral features of the system. An exemplary illustration of an n-th order QdF supply rate is

Φ(ŷ, û) :=

[
ŷ(k)
û(k)

]T [
Qφ Sφ

ST
φ Rφ

] [
ŷ(k)
û(k)

]
, (12)

where Qφ = QT
φ ∈ Rnq×nq, Sφ ∈ Rnq×np, Rφ = RT

φ ∈ Rnp×np, and û(k), ŷ(k) are the input and output
trajectories defined by:

ŷ(k) = col(y(k), . . . , y(k + n− 1)), û(k) = col(u(k), . . . , u(k + n− 1)) (13)

where col(y1, . . . , ym) =
[
yT

1 · · · yT
m

]T
. By using the above notation, a QdF storage function Ψ(ŷ, û)

can be derived as follows:

Ψ(ŷ, û) :=

[
ŷ(k)
û(k)

]T [
diag(Xψ, 0q×q) diag(Yψ, 0q×p)

diag(YT
ψ , 0p×q) diag(Zψ, 0p×p)

] [
ŷ(k)
û(k)

]
, (14)

where Xψ = XT
ψ ∈ R(n−1)q×(n−1)q, Yψ ∈ R(n−1)q×(n−1)p, Zψ = ZT

ψ ∈ R(n−1)p×(n−1)p. It is noted that
zero vectors are concatenated with Xψ , Yψ and Zψ to extend the dimension of parametric matrix.
With slight abuse of notations, we use Φ and Ψ to denote the coefficient matrix of supply rate and
storage function, i.e.,

Φ =

[
Qφ Sφ

ST
φ Rφ

]
, Ψ =

[
diag(Xψ, 0q×q) diag(Yψ, 0q×p)

diag(YT
ψ , 0p×q) diag(Zψ, 0p×p)

]
. (15)

Subsequently, the QdF-type dissipativity [33] can be defined as follows.

Definition 1. System (9) is said to be dissipative with respect to the n-th order QdF-type supply rate Φ(ŷ, û) if
there exists n-th order QdF-type storage function Ψ(ŷ, û) ≥ 0 satisfying the following dissipation inequality:

∇Ψ(ŷ, û) = Ψ(ŷ(k + 1), û(k + 1))−Ψ(ŷ(k), û(k)) ≤ Φ(ŷ(k), û(k)), ∀k ≥ 0. (16)
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It is noted that the change of storage function ∇Ψ(ŷ, û) is expressed as

∇Ψ =

[
diag(0q×q, Xψ)− diag(Xψ, 0q×q) diag(0q×p, Yψ)− diag(Yψ, 0q×p)

diag(0p×q, YT
ψ )− diag(YT

ψ , 0p×q) diag(0p×p, Zψ)− diag(Zψ, 0p×p)

]
. (17)

4.2. Dissipativity Analysis of an Individual Building in the Microgrid

Assume that there are M buildings participating in the energy trading in microgrid and the i-th
(i = 1, . . . , M) building system is expressed as follows:

xi(k + 1) = Aixi(k) + Biui(k) + Eidi(k),

yi(k) = Cixi(k) + Diui(k) + Fidi(k),
(18)

where variables xi, ui, di, yi and matrices Ai, Bi, Ci, Di, Ei, Fi are defined in a similar way as those in
(3)–(5).

The dissipativity property of individual building thermal model can be obtained as follows.

Proposition 1. System (18) is dissipative with supply rate Φi(ŷi, ûi, d̂i), if there exists a storage function
Ψi(ŷi, ûi, d̂i) satisfying the following linear matrix inequalities (LMIs)

Ψi ≥ 0,

Ĉi D̂i F̂i
0 I 0
0 0 I


T

(Φi −∇Ψi)

Ĉi D̂i F̂i
0 I 0
0 0 I

 ≥ 0, (19)

where

Ĉi =


Ci

Ci Ai
...

Ci An
i

 , D̂i =


Di 0 · · · 0

CiBi Di · · · 0
...

...
. . . 0

Ci An−1
i Bi Ci An−2

i Bi · · · Di

 , F̂i =


Fi 0 · · · 0

CiEi Fi · · · 0
...

...
. . . 0

Ci An−1
i Ei Ci An−2

i Ei · · · Fi

 . (20)

Proof. From (18), we have ŷi(k) = Ĉix(k) + D̂iûi(k) + F̂i d̂i(k). By submitting it into the dissipation
inequality (16), then (19) follows as x(k), ûi(k), d̂i(k) are independent.

4.3. Dissipativity Based DEMPC

In this work, a DEMPC approach is developed to control each BACS as MPC implement cost
functions that directly reflect the actual operational costs of air-conditioners and can deal with
constraints easily. For the i-th building with AC and SG, the economic optimal control problem
can be expressed as follows:

min
ui

N−1

∑
j=0

αmg(k + j)Pi
b(k + j) + βmg(k + j)Pi

s(k + j),

s.t. x̃i(k + j + 1) = Ax̃i(k + j) + Bui(k + j) + Ed̃i(k + j), x̂i(k) = xi(k)

ỹi(k + j) = Cx̃i(k + j) + Dui(k + j) + Fd̃i(k + j)

ỹi(k + j) ∈ [Ti, Ti]× [0, Pt]× [−Pt, 0]

ũi(k + j) ∈ [0, PAC]× [−PAC, 0]× [0, Pt],

(21)

where ui = {ui(k), . . . , ui(k + N− 1)} is the vector of decision variable and N is the prediction horizon.
In addition, the constraint inequalities indicate limits imposed by user comfort temperature zone
[Ti, Ti], power distribution line limit Pt and rating of air-conditioner PAC.
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Similar to [57], an additional dissipativity based constraint is added to individual DEMPC
controllers to achieve microgrid-wide stability and performance. Since MPC is a static control law
without any storage function, it could be very conservative to impose the dissipation inequality (16) to
the DEMPC formulation (21). To solve this problem, the concept of dissipative trajectory, which is the
integral version of (16), is adopted in this work:

Definition 2 ([31]). An MPC controller with the supply rate Φc(ŷ(k), û(k)) is said to trace a dissipative
trajectory if the following condition is satisfied:

Wk =
k

∑
j=0

Φc(ŷ(j), û(j)) ≥ 0, ∀k ≥ 0. (22)

To ensure that the DEMPC controller in (21) is dissipative with respect to supply rate Φc,i(ŷi, ûi, d̂i),
the following constraint

Wk−1 + ŷT
c,iQφc,i ŷc,i +


ŷc,i(k)
ûc,i(k)
d̂c,i(k)
v̂c,i(k)


T [

0 Sφc,i

ST
φc,i

Rφc,i

] 
ŷc,i(k)
ûc,i(k)
d̂c,i(k)
v̂c,i(k)

 ≥ 0, (23)

where yc,i = ui, uc,i = yi, dc,i = di and vc,i =
[
αmg βmg

]T
are imposed to the optimization

problem (21). To ensure its recursive feasibility, the controller’s supply matrix Φc,i needs to satisfy [33]
the following conditions:

−Qφc,i ≥ 0,

[
0 Sφc,i

ST
φc,i

Rφc,i

]
≥ 0. (24)

4.4. Analysis of Dissipativity of Price Controller in Microgrid

The energy trading unit is a memoryless rational function of total power supply (PΣ
s ) and demand

(PΣ
b ). The dissipation inequality of the CPC can be expressed as follows:


αmg

βmg

PΣ
b

PΣ
s


T

φe


αmg

βmg

PΣ
b

PΣ
s

 ≥ 0, (25)

where φe is the quadratic supply rate (QSR) matrix. The problem in (25) can be solved efficiently by
the sum-of-squares (SOS) programming method.

Here is a brief introduction to the basic concept of SOS programming. Let R[x] be the set of all
polynomials in x with real coefficients and

Σ[x] := {p ∈ R[x] | p = p2
1 + p2

2 + · · ·+ p2
n, p1, . . . , pn ∈ R[x]} (26)

be the subset of R[x] containing the SOS polynomials. Finding a sum of squares polynomial p(x) is
equivalent to determination of the existence of a positive semidefinite matrix Q such that

p(x) = mT(x)Qm(x) (27)

where m(x) is a vector of monomials. The SOS decomposition (27) can be efficiently and reliably
achieved through semidefinite programming (SDP) [59]. In this paper, open source MATLAB toolbox
YALMIP (version R20170921, Linkoping University, Linköping, Sweden) [60] and SDP solver SeDuMi
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(version 1.05R5, maintained by CORAL Lab, Department of Industrial and Systems Engineering,
Lehigh University, Bethlehem, PA, USA) [61] are used for finding the Q matrix.

By substituting the price scheme (6) into (25), we can have the following SOS programming problem:
αUG[PΣ

b + (1− γ)PΣ
s ]

γαUGPΣ
b

(PΣ
b )

2

PΣ
s PΣ

b


T

φe


αUG[PΣ

b + (1− γ)PΣ
s ]

γαUGPΣ
b

(PΣ
b )

2

PΣ
s PΣ

b

 ≥ 0. (28)

The following n-th order QdF supply rate (augment of QSR supply rate) can be written as

ΦE = ΠT
m diag(φe, . . . , φe)Πm, (29)

where the permutation matrix Πm is defined by

αmg(k)
βmg(k)
PΣ

b (k)
PΣ

s (k)
...

αmg(k + n− 1)
βmg(k + n− 1)
PΣ

b (k + n− 1)
PΣ

s (k + n− 1)


= Πm


α̂mg(k)
β̂mg(k)
P̂Σ

b (k)
P̂Σ

s (k)

 . (30)

4.5. Microgrid-Wide Dissipativity Synthesis

Let the independent variables for the networked system be partitioned into the following sets:

yg = col(P1
b , P1

s , . . . , PM
b , PM

s ),

dg = col(d1, . . . , dM),

wg = col(P1
heat, P1

cool , T1
d , . . . , PM

heat, PM
cool , TM

d , αmg, βmg).

(31)

Then, the microgrid-wide supply rate, which is the linear combination of the supply rates of
individual subsystems, distributed controllers and energy trading unit can be represented as

Φg(ŷg, d̂g, ŵg) =

 ŷg

d̂g

ŵg


T

Φg

 ŷg

d̂g

ŵg

 , (32)

where Φg = ΠT diag(Φ1, . . . , ΦM, Φc,1, . . . , Φc,M, ΦE)Π and Π =
[
ΠT

1 ΠT
2 ΠT

3

]T
with permutation

matrices Π1, Π2, Π3 satisfying



ŷ1

û1

d̂1
...

ŷM
ûM
d̂M


= Π1

 ŷg

d̂g

ŵg

 ,



ŷc,1

ûc,1

d̂c,1

v̂c,1
...

ŷc,M
ûc,M
d̂c,M
v̂c,M


= Π2

 ŷg

d̂g

ŵg

 ,



ŷc,1

ûc,1

d̂c,1

v̂c,1
...

ŷc,M
ûc,M
d̂c,M
v̂c,M


= Π3

 ŷg

d̂g

ŵg

 . (33)
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By imposing different constraints on the above microgrid-wide supply rate, we can achieve
different performances of the collective behavior of all buildings. In practice, the UG operator mainly
pays attention to the power flow at point of common coupling (PCC) depicted in Figure 1 because it
directly affects the stability and power quality of UG. Instead, the power flows within the microgrid
are usually not of concern on condition that the limits of power distribution lines are taken care of by
distributed controllers.

In the context of microgrid with a high penetration of SG plants, desirable performances at PCC
include: (1) reduced peak-to-peak amplitude of power flow profile; and (2) attenuated amplitude
of rapid power flow fluctuations. To satisfy these two requirements, a frequency weighted H∞

microgrid-wide performance (34) is employed in this paper for the collective behavior of all buildings

‖W(z)yg‖2

‖dg‖2
≤ 1, (34)

where yg and dg are defined in (31) and W(z) is a frequency dependent weighting function utilized to
penalize the mid to high frequency fluctuations of total power flow of all buildings and the excessive
energy trading by individual buildings. An example of W(z) is

W(z) = w(z)Ω, Ω =


1 1 1 . . . 1
0 ξ 0 . . . 0
0 0 ξ . . . 0
...

...
...

. . .
...

0 0 0 . . . ξ

⊗
[
1 1

]
, (35)

where the Kronecker operator ⊗ is defined by A⊗ B =

a11B · · · a1nB
...

. . .
...

an1B · · · annB

. The weighting function

w(z) can be chosen as follows to attenuate the high frequency power fluctuations:

w(z) = K
2T2(1− z−1) + Ts(1 + z−1)

2T1(1− z−1) + Ts(1 + z−1)
, (36)

with coefficients Ts, Ti(i = 1, 2) and K representing controller sampling period, time constants and
attenuation gain, respectively. In addition, Ω is a linear transformation matrix that puts weightings on
both the overall power flow at PCC and the net power flow of each individual building as interpreted by

Ωyg =


PΣ

b + PΣ
s

P2
b + P2

s
...

PM
b + PM

s

 . (37)

In this paper, the weightings in (35) are normalized with unity weighting assigned to the overall
power flow at PCC (i.e., PΣ

b + PΣ
s ) and a small positive weighting of ξ < 1 assigned to the net power

flow of each building. Physically, this means that the penalty on the amplitude of high frequency
power fluctuations is mainly imposed on the overall power flow, while the excessive energy trading
behavior of each building is also constrained.
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The condition on the microgrid H∞ performance (34) can be reinterpreted into the microgrid
supply rate condition to ensure the minimum performance level of microgrid observed at PCC [33,57].
To illustrate this, the microgrid-wide supply rate is partitioned as follows:

Φg(ŷg, d̂g, ŵg) =

 ŷg

d̂g

ŵg


T Λyy Λyd Λyw

ΛT
yd Λdd Λdw

ΛT
yw ΛT

dw Λww


 ŷg

d̂g

ŵg

 . (38)

According to [33], the L2-gain condition in (34) can be converted into the following LMIs:

Λyd = 0, Λyw = 0, Λdw = 0,

Λyy ≤ −NT N, Λdd ≥ DT D, Λww ≤ 0,
(39)

where N = diag {K(Ts − 2T1), K(Ts + 2T1)} ⊗Ω and D = diag {Ts − 2T2, Ts + 2T2} ⊗ IM.

4.6. Distributed Control Design and Implmentation

The proposed dissipativity based DEMPC involves two steps:

• Off-line dissipativity synthesis: The dissipativity property for a given system is not unique.
A system can have different supply rates that represent different aspects of the process dynamics
(e.g., the gain and phase conditions). Therefore, dissipativity conditions for all subsystems
including individual buildings, BACS controllers and the pricing controller that allow the
required microgrid-wide stability and performance condition in (34) need to be found during
the offline design step. This is done by solving LMIs in (19) for dissipativity conditions for
buildings (corresponding to the building model in (18)), feasibility conditions for individual
EMPC controllers in (24), the dissipativity condition for the pricing controller in (28), and the
dissipativity condition representing the microgrid-wide stability and performance in (39)
simultaneously. The outcome of this step is the dissipativity conditions (more specifically,
the supply rates Qφc,i , Sφc,i and Rφc,i for the i-th controller) that individual EMPC controllers need
to satisfy.

• Online implementation: solve the DEMPC optimization problem in (21) subject to an additional
dissipativity based coordination constraint in (23).

5. Simulation Results

To demonstrate the efficacy of the proposed control framework, a simulation model of microgrid
consisting of eight buildings with AC and SG is developed. These buildings can be divided into four
groups with each two buildings in one group sharing the same thermal parameters. Simulation studies
are carried out based on the illustrative dynamic price scheme presented in Section 3. The data of power
consumption by electrical appliances in buildings are downloaded from Australian Energy Market
Operator (AEMO) [62] and the information of weather conditions, including ambient temperature and
solar radiation, is obtained from the weather station of Murdoch University [63]. For the reference,
profiles of the aforementioned data for one building are plotted in Figure 4. Furthermore, the values
of thermal parameters for different types of buildings (with their definitions given in Table 1) are
given in Table 2. In addition, an exemplary weighting function W(z) is designed by selecting K = 2,
T1 = 2π × 3 rad/h, T2 = 2π

48 rad/h, and ξ = 0.1. The controller sampling period is selected to be
10 min and the online computation time for individual DEMPC controller is less than 10 s, which is
negligible. The small control latency is due to the non-iterative feature of the proposed approach.
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Table 2. Values of thermal parameters for four types of buildings.

Buildings Ra Rd Rw Ram Cd Cw Ce µ1 µ2 A ρ

Type 1 3.26 0.21 0.132 0.0389 76.02 874.94 2767.1 0.02 0.0075 10500 0.1
Type 2 4.22 0.22 0.142 0.133 37.04 337 1465.28 0.02 0.0075 3600 0.1
Type 3 3.95 0.23 0.146 0.12 36.72 300 1302.5 0.02 0.0075 3200 0.1
Type 4 3.54 0.2 0.144 0.142 32.85 312 1310 0.02 0.0075 3200 0.1

(a)

(b)

(c)

Figure 4. Representative profiles of: (a) power consumption of electrical appliances (excluding building
air-conditioning systems (BACS)) in building 7 (kW); (b) ambient temperature of building 7 (◦C);
(c) solar radiation of buiding 1 (kW/m2).

Firstly, the dynamic responses of different buildings are simulated by using distributed MPC as
BACS controller without dissipativity based coordination (23). The results are given in Figures 5a
and 6a, from which high amplitude fluctuations are seen in both the dynamic electricity prices and the
overall power flow of microgrid. This is caused by the “selfish” optimizations by distributed BACS
controllers, which formulate a positive feedback loop in energy trading as analyzed in the Introduction.

After implementing the dissipativity based coordination (23), which imposes constraints on the
overall power flow of all participating buildings in the microgrid, comparative simulations are run
under the same conditions of Figures 5a and 6a. The corresponding results are shown in Figures 5b
and 6b. By comparing these four figures, it is seen that high amplitude fluctuations in electricity prices
and the overall power flow are effectively attenuated, which implies successful mitigation of excessive
energy trading of buildings. Moreover, from the third subplots of Figure 6, it is observable that the
peak-to-peak amplitude of overall power flow is reduced by approximately 50% with the application
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of dissipativity based coordination. This means that coordination of distributed BACS controllers can
reduce microgrid’s energy dependency on UG.
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Figure 5. Dynamic electricity price for energy trading: (a) with; (b) without dissipativity based coordination.
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Figure 6. Overall power flow profiles of all buildings: (a) without dissipativity based coordination;
(b) with dissipativity based coordination.

To investigate the impact of dissipativity based coordination on the response of individual
buildings, corresponding simulation results are presented in Figure 7, from which it can be seen that
the indoor temperature is kept within the required comfort zone and fluctuations in the total power
flow and the consumption by AC of an individual building is also attenuated.

To further demonstrate the effectiveness of the proposed control framework, the responses of
electricity prices and overall power flow profiles are simulated during the weekend. The corresponding
results are given in Figures 8 and 9, from which improvements on the damping of rapid fluctuations
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and peak-to-peak amplitude of power flow can also be seen in the responses with dissipativity
based coordination.
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Figure 7. Response of building 7: (a) without dissipativity based coordination; (b) with dissipativity
based coordination.
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Figure 8. Weekend dynamic electricity prices: (a) without dissipativity based coordination; (b) with
dissipativity based coordination.
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Figure 9. Weekend overall power flow profiles of microgrid: (a) without dissipativity based
coordination; (b) with dissipativity based coordination.

6. Conclusions

This paper proposes a novel distributed control framework for the management of buildings with
air-conditioners and SG in the context of microgrid. It allows the freedom of individually distributed
building air-conditioner controllers in order to minimize their own operating costs, while achieving
appropriate coordination among them to produce desirable overall power flow profile at the PCC.
The effectiveness of the proposed control framework is demonstrated through simulation studies in
comparison with conventional building air-conditioning control without coordination.
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