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Abstract: In this work, we propose a framework for economic model predictive control (EMPC)
with zone tracking. A zone tracking stage cost is incorporated into the existing EMPC framework
to form a multi-objective optimization problem. We provide sufficient conditions for asymptotic
stability of the optimal steady state and characterize the exact penalty for the zone tracking cost
which prioritizes zone tracking objective over economic objective. Moreover, an algorithm to modify
the target zone based on the economic performance and reachability of the optimal steady state is
proposed. The modified target zone effectively decouples the dynamic zone tracking and economic
objectives and simplifies parameter tuning.

Keywords: predictive control; process optimization; soft constraint; zone control

1. Introduction

Process control of chemical plants needs to address a number of objectives including safety,
environmental regulations, product quality, energy efficiency, profitability, etc. Based on the emphasis
of the control objectives in practice, three elements or three facets of control exist [1]: regulatory control,
constraint control and maneuvering control. Regulatory control refers to the conventional setpoint
tracking control which minimizes the variance of controlled variables to the setpoint. Constraint control,
or zone control, prevents the system from violating its boundary and steers the system back into the
zone whenever constraint violation happens. No control action is required if the system is (predicted
to be) in the target zone. Maneuvering control moves the system from the current operating point to
a new operating point, typically due to economic considerations or change of operating conditions.
Generally speaking, a well designed control system necessarily integrates all three control types,
although emphasis on the three facets of control may vary from application to application.

Model predictive control (MPC) has been the most widely applied advanced control technique.
The ability to handle constraints and to incorporate economic considerations makes MPC an ideal
platform for integrating different control objectives. The literature is rich with theories for conventional
setpoint tracking MPC ([2]). The past decade has seen an increasing academic interest in economic
model predictive control (EMPC) ([3–6]) which integrates economic objectives into regulatory setpoint
tracking control. On the contrary, zone control has received less attention. In the MPC framework,
zone control is usually dealt with by the so-called soft constraint technique ([7–11]). As its name
suggests, soft constraint is often dismissed as a trick to avoid feasibility issue with hard constraint,
and is discussed separately from set-point tracking and economic objectives. To the best of the
authors’ knowledge, only a few MPC frameworks explicitly handle zone tracking objectives ([12–14]).
A practical challenge for the design and implementation of an integrated control system is the difficulty
in parameter tunning. How to tradeoff different control objectives via the tuning parameters to get the
desired closed-loop performance is crucial to the successful implementation of any control framework.
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In this work, we propose an EMPC framework with integrated zone control. A zone tracking
stage cost which penalizes a weighted l1 norm and squared l2 norm distance to the target zone is
incorporated into the EMPC framework to form a multi-objective optimization problem. We provide
sufficient conditions for asymptotic stability of the optimal steady state and characterize the exact
penalty for the zone tracking cost which prioritizes the zone tracking objective over the economic
objective. Moreover, we propose an algorithm to modify the target zone based on the economic
performance and reachability of the optimal steady state in the target zone. The modified target
zone is constructed as an invariant subset of the original target zone in which closed-loop transient
economic performance is guaranteed. EMPC with the modified target zone effectively decouples the
zone tracking and economic objectives and enjoys a simplified and more transparent parameter tuning
procedure. Finally, two numerical examples are investigated which reveal the intrinsic difficulties
in parameter tunning for EMPC with zone tracking and demonstrate the efficacy of the proposed
approach.

2. Problem Setup

2.1. Notation

Throughout this work, ‖x‖p denotes the lp norm of the vector x such that ‖x‖p =
(

∑ |x(i)|p
)1/p.

The operator | · | denotes the l2 norm or Euclidean norm of a scalar or a vector. The symbol IN
M

denotes the set of integers {M, M + 1, ..., N}. The symbol I≥0 denotes the set of non-negative integers
{0, 1, 2, ...}. The symbol projX(O) denotes projection of the set O onto its subspace X. A function
l(x) : X→ R is said to be positive definite with respect to a set Xt ⊂ X, if l(x) = 0 for all x ∈ Xt and
l(x) > 0 otherwise.

2.2. System Description and Control Objective

We consider the following nonlinear discrete time system:

x(n + 1) = f (x(n), u(n)) (1)

where x(n) ∈ X ⊂ Rnx , u(n) ∈ U ⊂ Rnu , n ∈ I≥0, denote the state and input at time n, respectively.
The vector function f (·) : Rnx ×Rnu → Rnx is continuous. The system is subject to coupled state and
input constraint:

(x(n), u(n)) ∈ Z ⊆ X×U, n ∈ I≥0

where X, U, Z are all compact sets. The primary control objective is to steer and maintain the system in a
compact set Zt ⊂ Z. The distance to the target zone is measured by the function `z(x(n), u(n)) : Z→ R
which is positive definite with respect to the target zone Zt. There is also a secondary economic
objective to minimize the operational cost characterized by the function `e(x, u) : Z→ R. Both `z(·)
and `e(·) are continuous functions. Since zone tracking objectives are usually associated with important
process specifications concerning safety or product quality, an ideal control strategy should satisfy
zone objectives whenever possible and allow zone tracking violation only for a short period of
time. This leads to the following formal statement of the control objective as an infinite-horizon
optimization problem:

min
∞
∑

n=0
`e(x(n), u(n)) +

K
∑

n=0
`z(x(n), u(n)) + K

s.t. (x(n), u(n)) ∈ Z, n ∈ I≥0

(x(n), u(n)) ∈ Zt, n ≥ K + 1

(2)
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The above optimization problem optimizes the economic performance over an infinite horizon
and minimizes the zone tracking error for the first K time steps when the system is outside the
target zone Zt. When the system is steered into the target zone, the zone tracking error `z(·) is zero.
The duration of zone target violation K is also an explicit objective which ensures that the zone tracking
objective is satisfied in finite time. The optimization of Equation (2) is essentially a multi-objective
optimization problem in which the magnitude, duration of zone target violation, as well as the
economic performance are traded off.

For simplicity of exposition, we assume that the optimization of Equation (2) is well defined.
This implies that the system can be steered to the target zone Zt in finite time without violating the
constraint. Moreover, the infinite sum ∑∞

n=0 `e(x(n), u(n)) is bounded. This condition is satisfied for
strictly dissipative systems if we assume without loss of generality that the economic performance at
the optimal steady state is zero [6].

Let (xs, us) denote the economically optimal steady state in the target zone Zt. That is:

(xs, us) = arg min
x,u

`e(x, u)

s.t. x = f (x, u)

(x, u) ∈ Zt

(3)

We assume that (xs, us) uniquely solves the above steady-state optimization problem. Note that
the economic cost function `e(·) is not necessarily positive definite with respect to (xs, us).

3. EMPC with Zone Tracking

In this section, we propose a general framework for EMPC with zone tracking to tackle the
infinite-horizon optimization problem in Equation (2). The EMPC is formulated as a finite horizon
optimization problem which is solved repeatedly in a receding horizon fashion to approximate the
optimal solution to Equation (2). We provide sufficient conditions for asymptotic stability of the
optimal steady state and discuss how zone tracking can be prioritized using exact penalty.

3.1. EMPC Formulation

At a sampling time n, the EMPC is formulated as the following finite-horizon optimization problem:

min
u0,··· ,uN−1

∑N−1
i=0 `e(xi, ui) + `z(xi, ui) (4)

s.t. xi+1 = f (xi, ui), i ∈ IN−1
0 (5)

x0 = x(n) (6)

(xi, ui) ∈ Z, i ∈ IN−1
0 (7)

xN = xs (8)

In the above optimization, the objective function Equation (4) minimizes the zone tracking
error and economic performance over a finite horizon of N steps, Equation (5) is the system
model, Equation (6) specifies the initial condition, Equation (7) sets the state and input constraints.
The point-wise terminal constraint Equation (8) requires the terminal state to arrive at the optimal
steady state xs after N steps. This implicitly imposes constraint on the duration of zone objective
violation (K in Equation (2)).

Let u∗(i|n), i ∈ IN−1
0 denote the optimal solution. The input injected to the system at time n is:

u(n) = u∗(0|n). At the next sampling time n + 1, the optimization of Equation (4) is re-evaluated,
generating an implicit feedback control law u(n) = κN(x(n)). We denote the feasibility region of
the optimization problem of Equation (4) by XN . Due to the terminal constraint Equation (8), XN is
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forward invariant under the EMPC design. In other words, the EMPC design is recursively feasible.
The zone tracking penalty `z(x, u) is defined by the following function:

`z(x, u) = min
xz ,uz

c1(‖x− xz‖1 + ‖u− uz‖1) + c2(‖x− xz‖2
2 + ‖u− uz‖2

2)

s.t. (xz, uz) ∈ Zt

(9)

where c1 and c2 are positive scalars. The zone tracking penalty defined in Equation (9) is formulated
implicitly as an optimization problem which minimizes weighted l1 norm and squared l2 norm distance
from the point (x, u) to the target zone Zt. The distance to the target zone is evaluated by introducing
artificial variables (xz, uz) which are bounded in the target zone Zt. It is easy to verify that `z(x, u)
defined in Equation (9) is positive definite with respect to the target zone Zt. When the zone tracking
penalty of Equation (9) is used, Equation (4) is equivalent to the following optimization problem:

min
ui ,xz

i ,uz
i

N−1
∑

i=0
`e(xi, ui) + c1(

∥∥xi − xz
i

∥∥
1 +

∥∥ui − uz
i

∥∥
1) + c2(

∥∥xi − xz
i

∥∥2
2 +

∥∥ui − uz
i

∥∥2
2)

s.t. xi+1 = f (xi, ui), i ∈ IN−1
0

x0 = x(n)

(xi, ui) ∈ Z, i ∈ IN−1
0

xN = xs

(xz
i , uz

i ) ∈ Zt, i ∈ IN−1
0

(10)

Remark 1. The incorporation of the l1 norm penalty allows for the so-called exact penalty which will be
discussed in Section 3.3. From a multi-objective optimization point of view, the combined use of the linear
(l1 norm) penalty and quadratic (squared l2 norm) penalty offers a way to trade off the magnitude and duration
of zone tracking violation [7]. Larger linear penalty may, though not necessarily, result in more drastic control
move with smaller duration of zone tracking violation. On the contrary, quadratic penalty generally leads to
mild control action with smaller zone tracking violation but larger duration of violation. These results will be
demonstrated in the simulation.

Remark 2. A well-known technique to address the feasibility issues in MPC is to employ the so-called soft
constraint where slack variables are introduced to relax hard (state) constraint. Interested readers may refer
to [7,9] which provide comprehensive discussions on constraint relaxation of MPC using soft constraint. Let the
target zone Zt be characterized by Zt := {(x, u) : g(x, u) ≤ 0} where g(x, u) : Rnx ×Rnu → Rny . When soft
constraint is used, the penalty for constraint violation has the following form:

`s(x, u) = min
s

c1 ‖s‖1 + c2 ‖s‖2
2

s.t. g(x, u) ≤ s

The function `s(x, u) defined above is also positive definite with respect to the target zone Zt. Note that the
zone tracking penalty `s(x, u) is different from `z(x, u) in Equation (9). In the above example, implementing
the soft-constraint penalty `s(x, u) requires ny artificial variables whereas for `z(x, u) the number is nx + nu.
The soft-constraint penalty `s(x, u) may be better described as an output zone tracking penalty (considering
y = g(x, u) as the system output) whereas `z(x, u) in Equation (9) is a zone tracking penalty for system state
and input. The pros and cons of state zone tracking against output zone tracking calls for further investigation.
One advantage of using the state zone tracking penalty `z(x, u) is that it allows set-theoretic method ([15])
in the EMPC design. In Section 4 an algorithm based on set-theoretic method will be proposed to modify the
target zone.
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3.2. Stability Analysis

In the following, we establish sufficient conditions for asymptotic stability of the optimal steady
state xs.

Definition 1. (Strictly dissipative systems) The system of Equation (1) is strictly dissipative with respect to the
supply rate s : X×U → R if there exists a continuous storage function λ(·) : X → R and a K∞ function
α1(·) such that the following holds for all x ∈ X and u ∈ U:

λ( f (x, u))− λ(x) ≤ s(x, u)− αl(|x− xs|)

Assumption 1. (Strict dissipativity, [16]) The system of Equation (1) is strictly dissipative with respect to the
supply rate s(x, u) = `e(x, u)− `e(xs, us)

Assumption 2. (weak controllability, ([17])) There exists a K∞ function γ(·) such that for all x ∈ XN ,
there exists a feasible solution to Equation (4) such that:

N−1

∑
i=0
|ui − us| ≤ γ(|x− xs|)

Theorem 1. If Assumptions 1 and 2 hold, then the optimal steady state xs is asymptotically stable under the
EMPC of Equation (4) with a region of attraction XN .

Proof. To proceed, we define the rotated cost ¯̀e(x, u) as:

¯̀e(x, u) = `e(x, u)− `e(xs, us) + λ(x)− λ( f (x, u)) (11)

From Assumption 1, the rotated cost satisfies

¯̀e(x, u) ≥ αl(|x− xs|) (12)

Substitute Equation (11) into the Equation (4), the optimization problem of Equation (4) can be
equivalently written as follows:

min
u0,··· ,uN−1

N−1
∑

i=0

¯̀e(xi, ui) + `z(xi, ui)− λ(x0) + λ(xN) + N`e(xs, us)

s.t. xi+1 = f (xi, ui), i ∈ IN−1
0

x0 = x(n)

(xi, ui) ∈ Z, i ∈ IN−1
0

xN = xs

The last three terms in the objective function of the above optimization are all constant and can be
dropped (because of constraints Equations (6) and (8)). The above optimization is then reduced to:

V(x(n)) = min
u0,··· ,uN−1

N−1
∑

i=0
L(xi, ui)

s.t. xi+1 = f (xi, ui), i ∈ IN−1
0

x0 = x(n)

(xi, ui) ∈ Z, i ∈ IN−1
0

xN = xs
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where L(x, u) = ¯̀e(x, u) + `z(x, u). Since L(·) is non-negative and taking into Equation (12), we have:

V(x(n)) ≥ L(x0, u0) = ¯̀e(x0, u0) + `z(x0, u0) ≥ ¯̀e(x0, u0) ≥ αl(|x(n)− xs|) (13)

Moreover, Assumption 2 implies the existence of aK∞ function β(·) such that (see [17] Appendix):

V(x(n)) ≤ β(|x(n)− xs|) (14)

Finally, the value function V(x(n)) is strictly non-increasing and satisfies:

V(x(n + 1))−V(x(n)) ≤ −L(x(n), u(n)) ≤ −αl(|x(n)− xs|) (15)

Equations (13)–(15) makes the value function V(x(n)) a Lyapunov function with respect to the
optimal steady state xs. Therefore the optimal steady state xs is asymptotically stable.

Remark 3. If the optimal steady state lies in the interior of the target zone, then asymptotic stability of the
optimal steady state implies finite-time convergence into the target zone. However, if the optimal steady state is
on the boundary of the target zone, asymptotic stability of the optimal steady state does not imply finite-time
convergence to the target zone. One way to still achieve nominal finite-time convergence to the target zone is
to implement the whole predicted input sequence instead of only the first element. That is, u(n + i) = u∗(i|n)
for i ∈ IN−1

0 . At the sampling time n + N, re-evaluate the optimization of Equation (4) based on the state
measurement x(n + N). Due to the terminal constraint, the nominal system will reach the optimal steady state
in N steps. Another way is to employ sufficiently large l1 norm zone tracking penalty (large c1) which is known
to result in deadbeat control policy ([18]).

3.3. Prioritized Zone Tracking

In practice, zone control objectives are usually associated with important or urgent objectives
such as operation safety and product specification. Thus a natural question to ask is how to pick the
zone tracking penalty such that the zone tracking is prioritized over the economic objective? In other
words, how to ensure that the system stays in the target zone whenever possible? The answer has to
do with the so-called exact penalty function. To proceed with the discussion, we introduce the concept
of the dual norm:

Definition 2. (dual norm) Consider the p norm of a vector u, ‖u‖p, p ∈ I≥0. We refer to ‖u‖q as the dual
norm of ‖u‖p where ‖u‖q is defined as follows:

‖u‖q := max
‖v‖≤1

uTv

It can be verified that ‖·‖1 is the dual norm of ‖·‖∞ and vice versa. Consider the following
constrained optimization problem:

min
u

V(u)

s.t. g(u) ≤ 0
(16)

The above hard-constraint optimization problem can be recast as the following soft-constraint
optimization problem:

min
u,ε

V(u) + c ‖ε‖p

s.t. g(u) ≤ ε
(17)
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where c is a positive scalar. It is conceivable that if the penalty c is sufficiently large, then the solution
to the Equation (17) will be identical to Equation (16). The following well-known result specifies how
large is sufficiently large for c:

Theorem 2. Consider the optimization of Equations (16) and (17). Assume that the solutions to both problems
satisfy second-order sufficient conditions, and let λ denote the vector of the Lagrange multipliers of Equation (16).
If c > ‖λ‖q where ‖·‖q is the dual norm of ‖·‖p, then the solutions to Equations (16) and (17) are identical.

Proof. The proof can be found in [19] Theorem 14.3.1.

Any penalty function satisfying the conditions in Theorem 2 is called the exact penalty function.
When exact penalty is used, the soft-constraint optimization problem has the same solution as the
original problem. This means that if we treat the feasibility region, {x | g(x) ≤ 0}, as the target zone
and the penalty, c ‖ε‖p, as the zone tracking penalty, the exact penalty prioritizes the zone tracking
objective over the economic objective.

Remark 4. The exact penalty function problem for Equation (16) is usually written in the following form:

min
u

V(u) + c ‖max{0, g(u)}‖p

The above formulation is equivalent to the problem of Equation (17). With slight abuse of language, we
refer to the soft-constraint formulation in Equation (17) with c > ‖λ‖q as the exact penalty. Essentially what
allows the exact penalty to be exact or to prioritize the constraint objective is the non-smoothness of the penalty
function at ε = 0. In the case of equality constraint, the same result applies since one can also treat h(u) = 0
as a set of inequality constraints h(u) ≤ 0 and −h(u) ≤ 0. In this case, the exact penalty function problem
becomes: min

u
V(u) + c ‖h(u)‖p

In the light of Theorem 2, we can construct the following optimization problem in which zone
tracking is made the hard constraint:

min
ui ,xz

i ,uz
i

N−1
∑

i=0
`e(xi, ui)

s.t. xi+1 = f (xi, ui), i ∈ IN−1
0

x0 = x(n)

(xi, ui) ∈ Z, i ∈ IN−1
0

xN = xs

(xz
i , uz

i ) ∈ Zt, i ∈ IN−1
0

xi = xz
i , i ∈ IN−1

0

ui = uz
i , i ∈ IN−1

0

(18)

To make the statement of the final result more compact, we employ the definition of the N-step
reachable set [20]:

Definition 3. (N-step reachable set) We use XN(Zt, xs) to denote the set of states that can be steered to X f in
N steps while satisfying the state and input constraints (x, u) ∈ Zt. That is,

XN(Zt, xs) =
{

x(0) | ∃ (x(n), u(n)) ∈ Zt, n ∈ IN−1
0 , x(N) = xs

}
Based on the above definition, the EMPC is capable of maintaining the system in the target zone

only if x(0) ∈ XN(Zt, xs). Now we are ready to state and prove the final result:



Mathematics 2018, 6, 65 8 of 19

Theorem 3. Let λ denote the Lagrange multiplier of the optimization of Equation (18). If x(n) ∈ XN(Zt, xs)

and c1 > ‖λ‖∞, then the solutions to the MPC of Equations (10) and (18) are identical.

Proof. We provide a sketch of the proof. Consider the exact penalty problem of Equation (18) with
p = 1 and q = ∞ in Theorem 2. Since c1 > ‖λ‖∞, it can be verified that the optimization of Equation (18)
is equivalent to the following optimization problem:

min
ui ,xz

i ,uz
i

N−1
∑

i=0
`e(xi, ui) + c1(

∥∥xi − xz
i

∥∥
1 +

∥∥ui − uz
i

∥∥
1)

s.t. (5)− (8)

(xz
i , uz

i ) ∈ Zt, i ∈ IN−1
0

Since the optimal solution satisfies xi = xz
i and ui = uz

i for i ∈ IN−1
0 , adding the quadratic

terms c2(
∥∥xi − xz

i

∥∥2
2 +

∥∥ui − uz
i

∥∥2
2) to the stage cost does not change the optimal solution to the above

optimization problem. This implies that the solutions to the MPC of Equation (10) and Equation (18)
are identical.

Theorem 3 implies that if the l1 norm penalty c1 is sufficiently large, then the zone tracking
objective is prioritized over the economic objective. Note that the constraints (18c)–(18e) can be
combined by canceling the slack variables xz

i and uz
i into the compact form:

(xi, ui) ∈ Zt, i ∈ IN−1
0

Thus the EMPC of Equation (18) yields the same solution to the following EMPC constrained by
the target zone:

min
u0,··· ,uN−1

∑N−1
i=0 `e(xi, ui)

s.t. xi+1 = f (xi, ui), i ∈ IN−1
0

x0 = x(n)

(xi, ui) ∈ Zt, i ∈ IN−1
0

xN = xs

(19)

The constraint (6) is removed because Zt ⊂ Z. Therefore, sufficiently large l1 norm penalty term
c1(
∥∥xi − xz

i

∥∥
1 +

∥∥ui − uz
i

∥∥
1) in effect can convert the zone tracking objective into hard constraints

(xi, ui) ∈ Zt whenever possible.

Remark 5. Note that exact penalty cannot be achieved by the quadratic term c2(‖x− xz‖2
2 + ‖u− uz‖2

2) unless
c2 can be made infinitely large [9]. Note also that to ensure x(n) ∈ Zt for all n ∈ I≥0 and x(0) ∈ XN(Zt, xs),
the condition c1 > ‖λ‖∞ needs to be satisfied for Lagrange multipliers λ associated with all x(n) ∈ XN(Zt, xs).
Finding the exact lower bound for such c1 is in general difficult. The task is possible for linear systems with
quadratic tracking costs and polyhedral constraints ([8]).

4. Modified Target Zone

The EMPC with zone tracking framework discussed in Section 3 is applicable to a broad class of
control systems with multiple objectives involving economic optimization, zone tracking or setpoint
tracking. A challenging problem in practice that largely affects the performance of MPC is parameter
tuning. Specifically, for the EMPC of Equation (10), how does one pick c1 and c2 such that the
closed-loop system achieves the desired tradeoff between magnitude and duration of zone tracking
violation as well as economic performance? As a rule of thumb, if the zone objective is more important
than economic objective, one should pick sufficiently large c1 such that it makes zone tracking the exact
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penalty, and tune c2 relative to c1 to tradeoff magnitude and duration of constraint violation. While this
method suits most scenarios, for certain systems which we will show in the simulation, naive choice of
a large zone tracking penalty may lead to arbitrarily poor transient economic performance.

Parameter tuning can be a challenging task for a number of reasons: (i) the number of tuning
parameters can be large depending on the number of system states and inputs. In the EMPC
formulation Equation (10), we have lumped all tuning parameters into two parameters, c1 and
c2, for simplicity of exposition. Note that in principle each element of the system state and input
may be assigned a weight, for quadratic penalty a weighting matrix may be used; (ii) there is a
lack of transparency in the relationship between closed-loop performance and tuning parameters;
(iii) the difficulty may be intrinsic to the problem. That is, suitable tuning parameters may vary under
different conditions or states. These will be illustrated in the simulation example.

Motivated by the above considerations, we propose an algorithm to modify the target zone.
The idea is to construct a modified target zone which is an invariant subset of the original target zone
in which closed-loop transient economic performance is guaranteed. In this way, EMPC tracking the
modified target zone will have guaranteed economic performance once the system is in the modified
target zone. Moreover, under exact zone tracking penalty, the closed-loop system will not leave
the target zone once it enters. EMPC tracking the modified target zone allows the user to tradeoff
magnitude and duration of zone tracking violation by tuning c1 and c2 without worrying about poor
transient economic performance. The proposed algorithm is outlined below:

Algorithm 1: Modified target zone.

1. Choose some M ∈ IN
1 and α ≥ 0

2. Set Z0 = (xs, us)
3. for i = 0 : M− 1

Calculate Zi+1 with Equation. (20)

end
4. The modified target zone is Z′t = ZM

Zi+1 =

(x, u)
∣∣∣ f (x, u) ∈ projX(Zi)

`e(x, u) ≤ `e(xs, us) + α

(x, u) ∈ Zt

 (20)

The modified target zone Z′t, obtained by Algorithm 1 is a zone in which the system can be steered
to the optimal steady state in M steps in the target zone Zt while the economic performance of each
step is upper bounded by `e(xs, us) + α. Once the modified target zone is obtained, the EMPC of
Equation (10) may be implemented with the original target zone Zt replaced by the modified target
zone Z′t. The properties of the EMPC that tracks the modified target zone Z′t are summarized in the
following theorem:

Theorem 4. Consider the system of Equation (1) under the EMPC of Equation (10) with the target zone Zt

replaced with the modified target zone Z′t and x(0) ∈ XN(Zt, xs).

(i) If c1 is an exact zone tracking penalty for Z′t for all x(n) ∈ XN(Zt, xs), then the modified target zone is
forward invariant under the closed-loop system. That is,

(x(n), u(n)) ∈ Z′t =⇒ (x(n + 1), u(n + 1)) ∈ Z′t
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(ii) If in addition Assumptions 1 and 2 hold, the transient economic performance in the modified target zone
Z′t is upper bounded such that for any time instant K where (x(K), u(K)) ∈ Z′t, the following holds:

∞

∑
n=K

(
`e(x(n), u(n))− `e(xs, us)

)
≤ M · α

Proof.
(i) First, we prove that the sets Zi, i ∈ IM

0 , defined in Equation (20) are nested such that Zi ⊆ Zi+1
for i ∈ IM−1

0 . We can start from M = 2. It is easy to verify that (xs, us) ∈ Z1 because the point
(xs, us) satisfies the conditions in Equation (20) for i = 0. Thus we have Z0 ⊆ Z1. Then we can
prove by induction. Suppose that Zi−1 ⊆ Zi for all i ≤ M. Consider i = M− 1 in Equation (20) and
(x, u) ∈ ZM, we have f (x, u) ∈ projX(ZM−1) ⊆ projX(ZM). Now consider i = M in Equation (20) and
(x, u) ∈ ZM. Since f (x, u) ∈ projX(ZM) for any (x, u) ∈ ZM, ZM is a subset of ZM+1. This proves that
the sets Zi ⊆ Zi+1 are nested for all i ∈ IM−1

0 . The nestedness of the set Zi implies that whenever
x(n) ∈ Z′t = ZM

t , there is a feasible sequence bounded in Z′t that reaches the optimal steady state in M
steps. This further implies that the exact penalty for tracking the modified target zone Z′t will act as
hard constraint and prevent the system from leaving the modified target zone Z′t.

(ii) Let the optimal solution at time instant n be denoted by u∗(i|n) and x∗(i|n),
i ∈ IN−1

0 . The corresponding terminal state is x∗(N|n) = xs because of the terminal
constraint Equation (8). A feasible solution at time instant n + 1 can be constructed
as follows: [u∗(1|n), u∗(2|n), · · · , u∗(N − 1|n), us], with the corresponding state trajectory:
[x∗(1|n), x∗(2|n), · · · , x∗(N − 1|n), xs]. Let V(n) denote the optimal value function at time n, the value
function V(n + 1) is upper bounded by the above feasible solution, which yields:

V(n + 1) ≤ `e(x∗(1|n), u∗(1|n)) + `e(x∗(2|n), u∗(2|n)) + ... + `e(xs, us)

= V(n)− `e(x∗(0|n), u∗(0|n)) + `e(xs, us)

Rearranging the above and replacing x∗(0|n), u∗(0|n) with x(n), u(n), we have:

`e(x(n), u(n))− le(xs, us) ≤ V(n)−V(n + 1)

Summing both sides from n = K to ∞:

∞

∑
n=K

(
`e(x(n), u(n))− `e(xs, us)

)
≤ V(K)−V(∞) (21)

If (x(K), u(K)) ∈ Z′t, from Algorithm 1 and Equation (20), there exist state and input trajectories
which satisfy:

`e(x(i|K), u(i|K)) ≤ `e(xs, us) + α,
(

x(i|K), u(i|K)
)
∈ Z′t i ∈ IM−1

0

`e(x(i|K), u(i|K)) = `e(xs, us),
(

x(i|K), u(i|K)
)
= (xs, us) i ∈ IN−1

M

The above implies that
V(K) ≤ N · `e(xs, us) + M · α (22)

Moreover, under Assumptions 1 and 2, we know from Theorem 1 that lim
n→∞

x(n) = xs. This means

that the optimal solution
(

x∗(i|n), u∗(i|n)
)
= (xs, us) as n→ ∞. Thus we have

V(∞) = N · `e(xs, us) (23)

Theorem 4 (ii) is proved by substituting Equations (22) and (23) into Equation (21).
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Remark 6. The tuning parameters M and α in Algorithm 1 may have significant impacts shaping the
modified target zone. The parameter α can be thought of as the instantaneous acceptable performance loss
and M · α the total transient economic performance loss in the modified target zone. Under the same M,
larger α may, but not necessarily, result in larger modified target zone. The parameter α is useful only if
α ≤ max{`e(x, u) | (x, u) ∈ Z′t}. Similarly, under the same α, larger M may result in larger modified target
zone. It is possible that the modified target zone is finitely determined. That is, for some K ∈ IN

0 , ZM = ZK
for all M ≥ K. In this case Algorithm 1 may be stopped after K steps. In the extreme case where M = 1,
the modified target zone is a singleton of the optimal steady state (xs, us). The proposed approach becomes the
conventional set-point tracking MPC. On the other hand if both M and α are sufficiently large then the modified
target zone equals or approaches the maximal control invariant set in the target zone. We note that the modified
target zone based on the tuning parameters M and α essentially provides a means to make parameter tuning of
the original problem more transparent.

Remark 7. Note that step (3) of Algorithm 1 involves set projection and set intersection operations.
These operations could be computationally difficult for generic nonlinear systems. For linear systems with
polyhedral target set Zt and polyhedral performance level set {(x, u) : `e(x, u) ≤ α}, Equation (20) can be
computed using Fourier–Motzkin elimination as well as the redundancy removal method in ([21]). Note also
that large M or a large number of system states may result in complex representations of the modified target zone
(a set characterized by many inequalities) in Algorithm 1. Therefore computation complexity of the modified
EMPC also needs to be taken into consideration while choosing parameters M and α.

5. Simulation

5.1. Example 1

The first example is a linear scalar system:

x(n + 1) = 1.25x(n) + u(n)

With state and input constraints X = [−5, 5], U = [−5, 5] respectively. The target set is
Zt = {(x, u) | x ∈ [−5, 5], u ∈ [−1, 1]}. The economic cost is `e = (u − 0.9)2 which corresponds
to an optimal steady state (xs, us) = (−3.6, 0.9). Two different initial states: x(0) = −5 and x(0) = 5
are considered to indicate the asymmetric closed-loop performance. The control horizon is N = 20
when not specified. The simulations and discussions are carried out as follows: first, we will simulate
the EMPC in Section 3 which tracks the original target zone. Exact zone tracking penalty is used and
special attention is paid to the difficulties in parameter tunning. Then we will simulate EMPC with
modified target zone in Section 4 to demonstrate the advantage of the proposed approach.

5.1.1. EMPC Tracking the Original Target Zone

Figure 1 shows the closed-loop input trajectories of the EMPC of Equation (10) with c1 = 104 and
c2 = 102, 103, 104, 105 respectively. The corresponding economic performances are shown in Figure 2.
It is seen that all closed-loop trajectories reach the target zone in finite steps and asymptotically
converge to the optimal value us = 0.9. As the quadratic zone tracking penalty c2 increases, the control
action gets milder, the magnitude of zone tracking violation becomes smaller but it takes longer to
reach the target zone.
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n

-2

-1

0

1

2

u(
n)

x(0) = -5

x(0) = 5

Figure 1. Closed-loop input trajectories of EMPC of Equation (10) with c1 = 104 and c2 = 102 (solid),
c2 = 103 (dotted), c2 = 104 (dashed), c2 = 105 (dash dotted), respectively. Shaded area depicts the input
target zone. The upper and lower part correspond to initial state x(0) = −5 and x(0) = 5, respectively.

Another interesting observation is the target boundary riding. That is, the closed-loop input
trajectories reach the target zone and stay on the zone boundary (at u = −1 or u = 1) for some time
before approaching the optimal steady state value. Similar phenomena of zone boundary riding due
to l1 norm penalty was observed in [7]. The occurrence of boundary riding is due to the exact zone
tracking penalty and inconsistency between the zone tracking and economic objective (which also
includes setpoint tracking).

0 10 20 30 40

n

0

2

4

6

8

10

12

l e(n
)

Figure 2. Closed-loop economic performance of EMPC of Equation (10) with c1 = 104 and c2 = 102

(solid), c2 = 103 (dotted), c2 = 104 (dashed), c2 = 105 (dash dotted), respectively. The upper and lower
part correspond to initial state x(0) = 5 and x(0) = −5, respectively.
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Comparing the trajectories emitting from x(0) = −5 and x(0) = 5 with the same zone tracking
penalty, we can see that they are (almost) symmetric outside or on the zone boundary, and asymmetric
inside the target zone. Again, this is due to the large zone tracking penalty. The transient economic
performance of different trajectories are summarized in Table 1. From Figure 2 and Table 1, we can see
that economic performance is less of concern if the initial state is x(0) = −5. In this case we may pick
the zone tracking penalty regardless of the transient economic performance. If smaller zone tracking
violation is desirable, a large quadratic penalty, c2 = 105, may be picked. However, if the initial state is
x(0) = 5, transient performance varies significantly under different quadratic penalties. In this case it
might be desirable to pick smaller quadratic zone tracking penalty to achieve better transient economic
performance. This shows that the difficulty of parameter tuning is intrinsic to the system.

Table 1. Transient economic performance
50
∑

n=0
`e(x(n), u(n)) of EMPC of Equation (10).

c2 = 102 c2 = 103 c2 = 104 c2 = 105

x(0) = −5 2.0195 2.0225 1.2560 1.2465
x(0) = 5 76.1218 79.5542 86.5742 103.0781

Figure 3 shows the input trajectories under different control horizons N = 10, 20, 30, 40. It is
seen that with poor choices of the penalties c1 and c2, increasing the control horizon N may result in
longer duration of target boundary riding and deteriorated economic performance. This also indicates
difficulty in parameter tuning and controller design since one would expect larger control horizon to
result in better performance.

0 10 20 30 40 50 60

n

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

u(
n)

Figure 3. Closed-loop input trajectories of EMPC in Equation (10) with x(0) = 5, c1 = 104 and c2 = 104,
N = 10 (solid), N = 20 (dotted), N = 30 (dashed), N = 40 (dash dotted), respectively.

5.1.2. EMPC Tracking the Modified Target Zone

Apply Algorithm 1 to the example with M = 10 and α = 1, the modified target zone is obtained
as follows:

Z′t = {(x, u) | Ex + Fu ≤ G} (24)
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where E = [1.25,−1.25, 0, 0]T , F = [1,−1, 1,−1]T , G = [−0.7436, 3.9571, 1.0000, 0.1000]. The constraint
set Z, target zone Zt and modified target zone Z′t are illustrated in Figure 4.

5

::::::l 0 

-5
-5 o

x

 

5

Figure 4. The constraint set Z (box), target zone Zt (shaded rectangle) and modified target zone Z′t
(parallelogram). The circle indicates the optimal steady state (xs, us).

Figures 5 and 6 show the closed-loop input trajectories and economic performances of the
EMPC tracking the modified target zone Z′t in Equation (24). Comparing Figures 5 and 6 with
Figures 1 and 2, we can see that EMPC tracking the modified target zone Z′t leads to more balanced
economic performance in the target zone while accomplishing fast zone tracking for the target zone Zt.
Boundary riding takes place at the boundary of the modified target zone Z′t which corresponds to the
economic performance bound specified by `e(x, u) ≤ α = 1. This makes α a good tuning parameter.

0 10 20 30 40 50

n

-5

-4

-3

-2

-1

0

1

2

3

u(
n)

Figure 5. Closed-loop input trajectories of EMPC of Equation (10) with modified zone Z′t in
Equation (24), with c1 = 104 and c2 = 102 (solid), c2 = 103 (dotted), c2 = 104 (dashed), c2 = 105 (dash
dotted), respectively. Shaded area depicts the input target zone. The upper and lower part correspond
to initial state x(0) = −5 and x(0) = 5, respectively.
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Figure 6. Closed-loop economic performance of EMPC of Equation (10) with modified zone Z′t in
Equation (24), with c1 = 104 and c2 = 102 (solid), c2 = 103 (dotted), c2 = 104 (dashed), c2 = 105

(dash dotted), respectively. The upper and lower part correspond to initial state x(0) = 5 and
x(0) = −5, respectively.

Table 2 compares the transient economic performance of the EMPC tracking the target zone Zt

and EMPC tracking the modified target zone Z′t. It is seen that both EMPCs achieve almost the same
economic performance for the initial state x(0) = −5. When x(0) = 5, EMPC tracking the modified
target zone Z′t results in improved transient economic performance with less variations under different
tuning parameter c2. This implies that we can now use c2 to tune for zone tracking (magnitude versus
duration) and use α and M associated with the modified target zone to tune for economic performance.
Tracking the modified target zone effectively decomposes the zone tracking and economic objectives.

Table 2. Comparison of the transient economic performance
50
∑

n=0
`e(x(n), u(n)) of EMPC tracking the

target zone Zt and EMPC tracking the modified zone Z′t.

Tracking Zt c2 = 102 c2 = 103 c2 = 104 c2 = 105

x(0) = −5 2.0195 2.0225 1.2560 1.2465
x(0) = 5 76.1218 79.5542 86.5742 103.0781

Tracking Z′
t c2 = 102 c2 = 103 c2 = 104 c2 = 105

x(0) = −5 2.0195 2.0225 1.2560 1.2465
x(0) = 5 57.4483 52.7305 54.9608 64.2366

5.2. Example 2

The second example is a building heating control system taken from [22]. The heating system is
modeled as the following discrete-time linear system:

xk+1 = Axk + Buk + Edk

yk = Cxk

(25)
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where x = [Tr Tf Tw]T , u = Wc and d = [Ta φs]T are the state, input and disturbance vectors,
respectively. The process variables are described in Table 3. The sampling time of the system is 0.5 h.
The system matrices are

A =

 0.6822 0.3028 0.0007
0.0740 0.9213 0.0040
0.0007 0.0159 0.9834

 E =

 143.1277 4.6253
6.9283 0.3671
0.0401 0.0025

× 10−4

B =
[

0.6822 0.3028 0.0007
]T
× 10−4 C =

[
1 0 0

]
Table 3. Building heating control system variable description.

Variable Unit Description

Tr
◦C Room air temperature

Tf
◦C Floor temperature

Tw
◦C Water temperature in floor heating pipes

Wc W Heat pump compressor input power
Ta

◦C Ambient temperature
φs W Solar radiation power

The control objective is to keep the room temperature between 20 ◦C and 21 ◦C while reducing
energy consumption from the heat pump compressor. The target zone is thus Zt = {x1 | 20 ≤ x1 ≤ 21},
the economic cost is `e = p · u where p is the electricity price. Without loss of generality in the
simulation results, we assume that the electricity price p = 0.1 USD/kW·h. We assume constant
ambient temperature and solar radiation d = [5 0]T . The control input is subject to the constraint
0 ≤ u ≤ 2000 W. The optimal steady state which solves Equation (3) is: xs = [20.0 20.7 35.7]T ,
us = 140.0.

In the simulation, we compare three different control schemes: (i) a set-point tracking MPC which
tracks the optimal steady state with a stage cost `t = ‖x− xs‖2

Q + ‖u− us‖2
R where Q = diag(106, 1, 1)

and R = 1; (ii) the EMPC of Equation (10) with c1 = 104 and c2 = 0 which is equivalent to the EMPC
in [22] with a large zone tracking penalty; and (iii) EMPC with modified target zone by Algorithm 1
with α = 200 and M = 12. The initial state is x(0) = [19.00, 19.64, 33.89]T . The control horizons of all
controllers are N = 96 (48 h). The room temperature and heat input profiles are shown in Figure 7,
the phase space plot of the system is shown in Figure 8, transient economic performances or the
additional electricity cost ∑72

n=0 `e(x(n), u(n))− `e(xs, us) of the three control schemes are summarized
in Table 4. It is seen that EMPC with prioritized zone tracking is able to reach the desired room
temperature zone in the shortest period of time of 10 h but at a higher electricity cost of $411.1 with a
significant overshoot. The conventional setpoint tracking MPC has the slowest response and reaches
the desired temperature in 24 h with an additional electricity cost of $363.3. EMPC with the modified
target zone yields a balanced solution which reaches the desired room temperature in 16 h with an
additional electricity cost of $369.8.
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Figure 7. Room temperature and heat input profiles under different control schemes.

Table 4. Additional electricity cost of the three control schemes.

MPC Tracking (xs, us) EMPC Tracking Zt EMPC Tracking Z′
t

Additional electricity cost (USD) 363.3 411.1 369.8

Moreover, we investigated the closed-loop performance of the EMPC with modified target zones
under varying parameters α and M in Algorithm 1. It was found that in this example, the closed-loop
behavior is more sensitive to M than to α. Figure 9 shows the room temperature and heat input
profiles of EMPC with modified target zone Z′t by Algorithm 1 with α = 2000 and M = 1, 6, 12, 18. It is
seen that as M increases, the time to reach the desired room temperature deceases from 24 to 15 h,
which suggests that M is a good tuning parameter.
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Figure 8. Phase space plot of different control schemes. The polyhedron depicts the modified target
zone Z′t.
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Figure 9. Room temperature and heat input profiles of EMPC with modified target zone Z′t by
Algorithm 1 with α = 2000 and M = 1, 6, 12, 18.

6. Conclusions

In this work, we proposed an EMPC framework with integrated zone control. The proposed EMPC
design is essentially a multi-objective optimization problem in which the magnitude and duration
of zone objective violation as well as the economic performance are traded off. Asymptotic stability
of the optimal steady state and prioritized zone tracking with exact penalty function were discussed.
An algorithm to modify the target zone is proposed which simplifies the parameter tuning procedure
and decouples the zone tracking and economic objective. Future research will consider the proposed
approach for time-varying and uncertain systems.
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