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Abstract: This paper develops an upper bound design method of the Lipschitz constant for
the generalized Fermi–Dirac information entropy operator with a polyhedral admissible set.
We introduce the concept of a normal operator from this class in which the constraint matrix has
normalized columns. Next, we establish a connection between the normal and original operator.
Finally, we demonstrate that the normal operator is majorized by the linear one and find numerical
characteristics of this majorant.
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1. Introduction

Mathematical modeling methods based on constrained optimization of parameterized entropy
functions (or functionals) are widely used in different applications such as image recognition in
computerized tomography [1,2], dynamic regression models estimation [3], and randomized machine
learning [4], to name a few.

Entropy functions and admissible sets depend on basic variables and parameters, some being
fixed while others take values from their definitional domains. An entropy operator is an operator that
maps the definitional domains of variable parameters into a set of entropy-optimal basic variables.
In general form an entropy operator can be written as

u(v, g) = arg maxu (H(u, v)|u ∈ D(g)) ,
u ⊂ Rm

+, v ∈ V ⊂ Rm
+, g ∈ Q ⊂ Rr

+,
(1)

where H(u, v) denotes an entropy function of basic variables u and parameters v while D gives
an admissible set with parameters g.

This paper deals with the so-called FG(ν, q)-entropy operators defined by

uF(ν, q) = FG(ν, q) = arg maxu (HF(u, ν)|u ∈ D(q)) ,
u ⊂ Rm

+, ν ∈ N ⊂ Rm
+, q ∈ Q ⊂ Rr

+,
(2)

where HF(u, ν) denotes the generalized Fermi–Dirac information entropy,N andQ are m-dimensional
unit and r-dimensional parallelepipeds, respectively, and

D(q) = {u : Bu = q} , (3)

where
B ≥ 0. (4)
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In what follows, we will suggest an upper bound design method for the local Lipschitz constant
(over a compact set) of the entropy operators belonging to this class.

The Lipschitz constant plays an important role in theory of dynamic systems, including for the
systems with entropy operator [5], in dynamic procedures of computerized tomography [6], and others.

2. Problem Statement and Logical Scheme of Solution

Consider the entropy operator FG(ν, q) (2) with the entropy function

HF(u, ν |G) = −
m

∑
i=1

ui ln
ui
νi

+ (Gi − ui) ln(Gi − ui), (5)

and the matrix B (3) of full rank r. The definitional domains of the variables have the form

S = N
⊗
Q,

N = {ν : 0 < σi ≤ νi ≤ ν∗i < 1, | i = 1, m}, (6)

Q = {q : 0 < εk ≤ qk ≤ q∗k < ∞, | k1, r},

with constants σ1, . . . , σm, ν∗1 , . . . , ν∗m, and ε1, . . . , εr; q∗1 , . . . , q∗r are small fixed values.
The local Lipschitz constant of the FG(ν, q)-entropy operator (2) and (5) over the set S (6) is

a value LF
S that satisfies the inequality

‖uF(ν1, q1)− uF(ν2, q2)‖ ≤ LF
S
(
‖q1 − q2‖+ ‖ν1 − ν2‖

)
,

(q1, ν1), (q2, ν2) ∈ S .
(7)

The problem is to find an upper bound L̂F
S for the Lipschitz constant LF

S .
The upper bound design method for the Lipschitz constant of the FG(ν, q)-entropy operator

involves three main ideas as follows. The first idea is to select a suitable operator from the same
class for which (1) there exists a close relation to the original operator and (2) it is simpler to obtain
an upper bound for the Lipschitz. Such a suitable operator will be called normal and denoted by
F0

G(ν, q) (Sections 3 and 4). The second idea concerns majorant design: in the beginning, the normal
operator F0

G(ν, q) is majorized by the normal operator B̃0(ν, q) (with the Boltzmann entropy) and then
an appropriate majorant in form of a linear operator is constructed for it (Section 5). Finally, the third
idea deals with the estimation and localization of the eigenvalues of the linear majorant operator
(Section 6).

3. Normal Form of Entropy Operator

The normal entropy operator F0
G(ν, q) is given by

xF(ν, q) = arg max
x

(HF(x, ν) | x ∈ W ⊂ Rm
+, q ∈ Q ⊂ Rr

+, ν ∈ N ⊂ Rm
+) , (8)

where

•
HF(x, ν) = −

m

∑
i=1

xi ln
xi
νi

+ (Gi − xi) ln(Gi − xi) (9)

denotes the generalized Fermi–Dirac information entropy [7];
•

W = {x : Wx = q}, W ≥ 0, (10)

means an admissible set;
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• the matrix W has full rank r, normalized columns

Wᵀe(r) = e(m), (11)

e(r), e(m) are unit vectors with r and m-dimensions, respectively, and the dominant diagonal of
the matrix WWᵀ, i.e.,

m

∑
i=1

w2
ki −

r

∑
j 6=k

m

∑
i=1

wkiwji ≥ $ > 0, k = 1, . . . , r; (12)

• the definitional domain of the vectors ν, q is

S = N ⊗Q,

N = {ν : 0 < σi ≤ νi ≤ ν∗i < 1 | i ∈ [1, m]}, (13)

Q = {q : 0 < εk ≤ qk ≤ q∗k < ∞ | k ∈ [1, r]},

with constants σ1, . . . , σm, ν∗1 , . . . , ν∗m, and ε1, . . . , εr; q∗1 , . . . , q∗r are small fixed values.

4. Relationship between FG(ν, q) and F0
G(ν, q)

Theorem 1. There exists a matrix P ≥ 0 of dimensions m× r that satisfies the conditions

eᵀ
(r)BP = e(r) (14)

and
uF(ν, q) = xF(ν, Pq), (15)

Proof. Consider system (3):
Bu = q. (16)

Premultiplying this equality by a nondegenerate matrix P of dimensions m× r yields

PBu = Pq. (17)

Select the matrix P so that the conditions of Theorem 1 hold. This is a system of r equations
with respect to (m × r) variables—the elements of the matrix P. Because the matrix B in (16) is
nondegenerate, this system has a set of solutions.

For example, choose the solution that maximizes the entropy

E(P) = −
m

∑
i=1

r

∑
j=1

pij ln pij (18)

subject to (14).

5. Majorants of F0
G(ν, q)-Entropy Operator

Let us use the B0(ν, q)-entropy operator as a majorant for the F0
G(ν, q)-entropy operator, defining

some domain S̃ ⊂ S (6) where this can be done:

S̃ = Ñ
⊗
Q̃,

Ñ = {ν : 0 < σ̃i ≤ νi ≤ ν̃∗i < 1, | i = 1, m}, (19)

Q̃ = {q : 0 < ε̃k ≤ qk ≤ q̃∗k < ∞, | k = 1, r},
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The B0(ν, q)-entropy operator has the form

xB(ν, q) = arg max
x

(HB(x, ν) | x ∈ W ⊂ Rm
+, q ∈ Q ⊂ Rr

+, ν ∈ N ⊂ Rm
+) , (20)

where

HB(x, ν) = −
m

∑
i=1

xi ln
xi
νi

(21)

denotes the generalized Boltzmann information entropy.
The characteristics of the admissible set are the same as for the F0

G(ν, q)-entropy operator (10)–(12).
The Lagrange function of the B0(ν, q)-entropy operator is written as

L(x, λ) = HB(x, ν |G) +
r

∑
j=1

λj(qj −
m

∑
i=1

wjixi), (22)

where λ1, . . . , λr indicate Lagrange multipliers.
The first-order optimality condition for this function leads to the following system of equations

with respect to the dual variables z = exp(−λ):

B(ν, z(ν, q)) = 1. (23)

Here the vector B consists of the elements

B0
k(ν, z(ν, q)) =

1
qk

m

∑
i=1

νiwki

r

∏
s=1

zwsi
s , k = 1, r. (24)

Similar equations hold for the F0
G(ν, q)-entropy operator. In accordance with (A6),

F(ν, z(ν, q)) = 1, (25)

where the vector F consists of the elements

F0
k (ν, z(ν, q)) =

1
qk

m

∑
i=1

Gitki ∏r
s=1 zwsi

s

bi + ∏r
s=1 zwsi

s
, k1, r. (26)

Theorem 2. The vector function B(ν, z(ν, q)) (23) and (24) is a majorant in the variable z for the function
F(ν, z(ν, q)) (25) and (26), i.e.,

F(ν, z(ν, q)) ≤ B(ν, z(ν, q)), (27)

in the domain S̃ (19) described by the parameters

z ≥ z0 ∈ Rr
+, z0 = {z0, . . . , z0},

z0 =

(
Gmin − (1− σmin)

νmax

)1/rwmax

, (28)

Gmin = min
i

Gi, σmin = min
i

σi, νmax = max
i

ν∗i , wmax = max
s,i

wsi,

N̂ = {ν : 0 < σmin ≤ νi ≤ νmax},
Q̂ = {q : qk ≥ εmin, k = 1, r}, (29)

εmin = r
Gminwminz0σmin

1− σmin + z0σmin , wmin = min
si

wsi. (30)
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Proof. Consider inequality (27):

m

∑
i=1

Giwki ∏r
s=1 zwsi

s

bi + ∏r
s=1 zwsi

s
≤

m

∑
i=1

νiwki

r

∏
s=1

zwsi
s , k = 1, r. (31)

Since the terms in the above sums are positive, it suffices that

Gi

bi + ∏r
s=1 zwsi

s
≤ νi, i = 1, m. (32)

Consequently,

r

∏
s=1

zwsi
s ≥

r

∏
j=1

v
1
r
i , vi =

Gi − (1− νi)

νi
� 1, i = 1, m. (33)

This system of inequalities holds if each term in the left-hand side of each inequality is smaller
than its counterpart in the right-hand side, i.e.,

zs ≥ v1/rwsi
i = h(s, i), s = 1, r; i = 1, m. (34)

Denote

z0 = min
s,i

h(s, i) =
(

Gmin − (1− σmin)

νmax

)1/rtmax

, (35)

where the variables Gmin, σmin, νmax, and tmax are defined by Equalities (28).
Now, get back to the system of Equation (25). This system has a nonzero solution z0 = {z0, . . . , z0}

(35) if

qk =
r

∑
i=1

Gitkiz0

bi + z0 , k = 1, r. (36)

Here we have utilized the property (11) of the normal F0
G(ν, q)-entropy operator.

Then, Expression (36) gives

min
k

(
r

∑
i=1

Gitkiz0

bi + z0

)
≥ r

Gmintminz0σmin

1− σmin + z0σmin = εmin. (37)

Assume
εmin < q∗min = min

k
q∗k . (38)

This condition guarantees the non-emptiness of the set Q (29).

Thus, we have proved that the operator B0(ν, q) majorizes the operator F0
G(ν, q) in the domain

S̃ (19).

Theorem 3. For the B0(ν, q)-entropy operator (20) and (21), there exist two r-dimensional positive vectors
z̃0 and z̃∗ such that the nonzero solution z(ν, q) to the system of Equations (23) and (24) belongs to the
vector interval

0 < z̃0 5 z(ν, q) 5 z̃∗, (ν, q) ∈ S̃ , (39)

where

• the vector
z̃0 = z(σ, ε) (40)

is the solution to the system of Equations (23) and (24) that corresponds to the boundary of the set S̃ (19),
i.e., ν = σ = {σ1, . . . , σm} and q = ε = {ε1, . . . , εr}, where σi and εk are small values; and
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• the vector
z̃∗ = max

k=1,r
max

(ν,q)∈S̃
z̃k(ν, q), (41)

where z̃(ν, q) is the solution to the equation

C(ν)z = q, z = 0, (42)

with the matrix

C(ν) =
[
ckj|(k, j) = 1, r

]
, ckj =

m

∑
i=1

νiwkiwji > 0. (43)

Proof. Consider Equation (23), reducing it to the form

A(ν, q, z) = z, A(ν, q, z) = z⊗ B(ν, q, z). (44)

Equation (44) contains a nonnegative strictly monotonically increasing function A(ν, q, z) in its
left-hand side (see [8]). To explore the properties of its solutions, we will employ Theorem 3.1 from [9]
for the equations with monotonicoperators. In accordance with this theorem, if there are two vectors
z0 5 z∗ such that

A(ν, q, z0) = z0, A(ν, q, z∗) 5 z∗, (ν, q) = fix, (45)

then the solution to Equation (44) belongs to the vector interval [z0, z∗]. In our case, z0 = z(σ, ε).
For obtaining an appropriate vector z∗, let us construct a majorant for the function A(ν, q, z)

under fixed ν and q. Using the inequality

r

∏
i=1

uαi
i ≤

r

∑
i=1

αiui, (46)

where

ui ≥ 0, αi ≥ 0,
r

∑
i=1

αi = 1, (47)

from [10], we get the upper bound

Ak(ν, q, z) ≤ zk
1
qk

r

∑
j=1

ckjzj, k = 1, r, (48)

where ckj are the elements of the matrix C (43).
By Theorem 3.1 from [9], the nonzero solutions to Equation (44) can be majorized by the nonzero

solutionsto Equation (42), i.e.,

z(ν, q) 5 z̃(ν, q) under fixed (ν, q) ∈ S (49)

6. Upper Bound L̂F
S

On the strength of Theorems 2 and 3 (also see [8]), we may write the following upper bound for
the local Lipschitz constant:

L̂F
S =

xmax

m

(
1

σmin +
wE
M

)
, (50)

where

M = xmin σmin

νmax min
k

(
m

∑
i=1
|w2

ki −
r

∑
j 6=k

wkiwji|
)

, (51)
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wE =

√
r

∑
k=1

m

∑
i=1

w2
ki,

xmin = m
Gminνminz0

1− νmax + νminz0 ,

xmax = m
Gmaxνmaxz∗

1− νmin + νmaxz∗
. (52)

In these formulas, the variables z0 and z∗ are defined by Equalities (40) and (41), respectively.

7. Conclusions

The method of upper bound design for the Lipschitz constant of the FG(ν, q)-entropy operator is
developed. It is based on the normal entropy operator, and the definition of relation between normal
and original operators. Then, the linear majorant of the normal operator is defined, and estimation of
the Lipschitz constant for the original operator is performed.

The linear majorant method is important for investigation of the properties of entropy
operators, for instance, for Boltzmann and Einstein operators [7]. The FG(ν, q)-entropy operator
is characterized by the parametrical problem for conditional maximization. Also, there exists a wide
class of entropy operators that are described by mathematical programming problems. Development
of the method of the upper bound design for these operators will represent interesting progress.

Acknowledgments: This work was supported by the Russian Foundation for Basic Research (Project
No. 16-07-00743).
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Appendix A. Properties of the Normal F0
G(ν, q)-Entropy Operator

1. Optimality conditions. The Lagrange function of the F0
ν,q-entropy operator has the form

L(x, λ) = HF(x, ν |G) +
r

∑
j=1

λj(qj −
m

∑
i=1

wjixi), (A1)

where λ1, . . . , λr are Lagrange multipliers.
The first-order optimality conditions of this function yield a system of equations with respect to

the direct x and dual λ variables. By the properties of entropy functions, the direct variables possess
an analytical relationship to the dual ones, and the optimality conditions are written as the following
system of equations with respect to the dual variables (the Lagrange multipliers λ1, . . . , λr):

xF
i (ν, λ(ν, q)) =

Gi exp(−∑r
s=1 λs(ν, q)wsi)

bi + exp(−∑r
s=1 λs(ν, q)wsi)

, i1, m, (A2)

where
bi =

1
νi

, (A3)

Ω0
k(ν, λ(ν, q)) =

m

∑
i=1

Giwki exp(−∑r
s=1 λs(ν, q)wsi)

bi + exp(−∑r
s=1 λs(ν, q)bsi)

= qk, k1, r. (A4)

Sometimes, it is convenient to use similar conditions in terms of the exponential Lagrange
multipliers zj(ν, q) = exp(−λ(ν, q)) ≥ 0, j ∈ [1, r], i.e.,

xF
i (ν, z(ν, q)) =

Gi ∏r
s=1 zwsi

s

bi + ∏r
s=1 zwsi

s
, i1, m, (A5)
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Θ0
k(ν, z(ν, q)) =

m

∑
i=1

Gitki ∏r
s=1 zwsi

s

bi + ∏r
s=1 zwsi

s
= qk, k1, r. (A6)

2. Monotonicity of the function Ω0
k(ν, λ), Θ0

k(ν, z).

Lemma A1. For the Fν,q-entropy operator (8)–(11), the nonnegative functions Ω0
k(ν, λ)(k = 1, r) ((A4) are

strictly monotonically decreasing in the variables λ ∈ Rr) and strictly monotonically decreasing in the variables
ν ∈ N while the nonnegative functions Θ0

k(ν, z)(k = 1, r) (A6) are strictly monotonically increasing in both
variables ν ∈ N , z ∈ Rr

+.

Proof. It suffices to check the signs of corresponding derivatives. Consider Equalities (A4).
The derivatives of the function Ω0

k(ν, λ) with respect to the variables λ are given by

∂Ω0
k

∂λj
= −

m

∑
i=1

Gibi(νi)wkiwji exp(−∑r
s=1 λswsi)

[bi + exp(−∑r
s=1 λswsi)]2

≤ 0, k = 1, r. (A7)

Differentiation of the function Ω0
k(ν, λ) with respect to the variable ν yields

∂Ω0
k

∂νp
=

m

∑
i=1

Giwki exp(−∑r
s=1 λswsi)

ν2
i [bi + exp(−∑r

s=1 λswsi)]2
≥ 0, k = 1, r. (A8)

These expressions vanish if at least one of the variables λp = +∞. This establishes the first part of
Lemma A1.

In a similar fashion, for the functions Θk(ν, z) (A6) we obtain

∂Θ0
k

∂zj
=

m

∑
i=1

biGiwkitjiz−1
j ∏r

s=1 zwsi
s

[bi + ∏r
s=1 zwsi

s ]2
≥ 0, k = 1, r, (A9)

∂Θ0
k

∂νp
=

m

∑
i=1

Giwki ∏r
s=1 zwsi

s

ν2
i [bi + ∏r

s=1 zwsi
s ]2

≥ 0, k = 1, r. (A10)

These expressions vanish if at least one of the variables zs = 0. The proof of Lemma A1
is complete.

Lemma A2. Under the assumptions of Lemma A1, the systems of Equations (A4) and (A6) determine the
explicit functions λ(ν, q) and z(ν, q), respectively.

The proof of this result can be found in [7].
Lemmas A1 and A2 allow us to draw an important conclusion: for two pairs (ν1, q1) and (ν2, q2),

such that ν1 ≤ ν2 and q1 ≤ q2,
z(ν1, q1) ≤ z(ν2, q2) (A11)
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