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Abstract: Let Kn be a complete graph on n vertices. Denote by SKn the set of all subgraphs of Kn.
For each G, H ∈ SKn, the ring sum of G and H is a graph whose vertex set is V(G) ∪ V(H) and
whose edges are that of either G or H, but not of both. Then SKn is a semigroup under the ring sum.
In this paper, we study Green’s relations on SKn and characterize ideals, minimal ideals, maximal
ideals, and principal ideals of SKn. Moreover, maximal subsemigroups and a class of maximal
congruences are investigated. Furthermore, we prescribe the natural order on SKn and consider
minimal elements, maximal elements and covering elements of SKn under this order.

Keywords: complete graph; Green’s relations; ideal; natural order; maximal subsemigroup;
maximal congruence
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1. Introduction and Preliminaries

One of several ways to study the algebraic structures in mathematics is to consider the relations
between graph theory and semigroup theory known as algebraic graph theory. It is a branch of
mathematics concerning the study of graphs in connection to semigroup theory in which algebraic
methods are applied to problems about graphs. Cayley graphs of semigroups are special graphs such
that many authors have widely studied, see for examples [1–3]. Studying on characterization of those
graphs is a way of considering the relations between graphs and semigroups in the sense that such
graphs are constructed from semigroups. On the other hand, the construction of a semigroup from
a given graph is also interesting to study. However, there are no authors considering the properties of
semigroups which are constructed from graphs. Certain special types of connected graphs are also
interesting to study and look for some applications, especially a complete graph which is a graph in
which every two distinct vertices are adjacent. Some authors considered a complete graph for applying
its structure to complete their research, see for examples [4,5]. Furthermore, an algebraic formation on
connected graphs has been studied in the sense of defining some binary operations among a pair of
such graphs. Several authors investigated some properties of families of graphs together which graph
operations, see for examples [6–8].

In this paper, we consequently construct a new semigroup from a complete graph and study some
valuable properties of such a semigroup. We need to consider that all sets mentioned in this paper
are assumed to be finite sets. Some basic preliminaries, useful notations, and valuable mathematical
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terminologies needed in what follows are prescribed. Note that a graph G is an order pair (V(G), E(G))

of a nonempty vertex set V(G) and an edge set E(G). For all undefined notions and notations, we refer
the reader to [9,10].

Now, we give the description of the semigroup focused in this paper. Let Kn be a complete graph
on n vertices and SKn the set of all subgraphs of Kn. For each G, H ∈ SKn, the ring sum G⊕ H of G and
H is a graph whose vertex set V(G⊕ H) = V(G) ∪V(H) and whose edges are that of either G or H,
but not of both, that is, E(G⊕ H) = [E(G) ∪ E(H)]\[E(G) ∩ E(H)]. It is easy to verify that (SKn,⊕) is
a commutative semigroup. For convenience, we write GH instead of G⊕ H.

Throughout this paper, we shall denote the set of n vertices of Kn by the set Xn = {v1, v2, . . . , vn}.
For each a nonempty subset A of Xn, denote by φA a graph with a vertex set V(φA) = A and
E(φA) = ∅ which is called an empty graph. For convenience, if A = {v}, then we write φv instead of
φ{v}. We obviously obtain that G2 = φV(G) and GφA = G for every G ∈ SKn and A ⊆ V(G).

In this section, we consider the regularity and Green’s relations on the semigroup SKn. Moreover,
we also determine the rank of SKn.

Proposition 1. SKn is a regular semigroup.

Proof. Let G be an element of SKn. We will show that G3 = G. It is obvious that
V(G3) = V(G). Consider

E(G3) = E(G2G)

= [E(G2) ∪ E(G)]\[E(G2) ∩ E(G)]

= [∅ ∪ E(G)]\[∅ ∩ E(G)]

= E(G),

we conclude that G3 = G which implies that G is regular.

Moreover, we observe that the set of all empty graphs in SKn forms the set of all idempotents
of SKn, denoted by E(SKn), that is,

E(SKn) = {φA ∈ SKn : ∅ 6= A ⊆ Xn}.

Clearly, |E(SKn)| = 2n − 1. Furthermore, since SKn is regular and its idempotents commute,
it follows from Theorem 5.1.1 [9] (p. 145) that SKn is an inverse semigroup.

Next, we will describe Green’s relations on SKn.

Proposition 2. Let G, H ∈ SKn. Then G = KH for some K ∈ SKn if and only if V(H) ⊆ V(G).
Consequently, GLH if and only if V(G) = V(H).

Proof. Assume that G = KH for some K ∈ SKn. Then V(G) = V(KH) = V(K) ∪ V(H).
Hence V(H) ⊆ V(G). Conversely, assume that V(H) ⊆ V(G). Define K to be the graph with
the vertex set V(K) = V(G) and the edge set E(K) = [E(G)\E(H)] ∪ [E(H)\E(G)]. We will show that
G = KH. It is easy to see that V(KH) = V(K) ∪V(H) = V(G) ∪V(H) = V(G) and

E(KH) = [E(K) ∪ E(H)]\[E(K) ∩ E(H)]

= [E(G) ∪ E(H)]\[E(H)\E(G)]

= E(G).

Therefore, G = KH.

Furthermore, we can directly obtain that L = R = H = D = J since SKn is commutative.
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Given a nonempty subset A of a semigroup S, denote by 〈A〉 the subsemigroup of S generated
by A. The rank of S, denoted by rank(S), is the minimum cardinality of a generating set for
a semigroup S.

In order to consider the rank of SKn, we shall denote by H[e] an induced subgraph of H induced by
e where e ∈ E(H). Let Tij denote a graph in SKn with V(Tij) = {vi, vj}where i 6= j and E(Tij) = {vivj}.

Theorem 1. rank(SKn) =

(
n
2

)
+ n.

Proof. LetM = {Tij : i 6= j} and N = {φv : v ∈ Xn}. We claim that every element of SKn can be
generated by some elements ofM∪N . Let T ∈ SKn. If T contains isolated vertices, then those isolated
vertices can be generated by corresponding elements in N . So we now consider in the case where T
has no isolated vertices. It is not difficult to verify that the set of all subgraphs T[e] where e ∈ E(T) is
a subset ofM and T = ⊕

e∈E(T)
T[e]. This means that T can be written as a product of some elements of

M under the operation ⊕. HenceM∪N is a generating set of SKn which implies that

rank(SKn) ≤ |M∪N | =
(

n
2

)
+ n.

Moreover, we can easily observe that both of H ∈ N and G ∈ M cannot be written as a product
of other elements in SKn. Therefore, all elements in M∪N must belong to every generating set
of SKn. Consequently,

rank(SKn) =

(
n
2

)
+ n.

2. Ideals of SKn

This section presents the characterizations of ideals, minimal ideals, maximal ideals, and principal
ideals of SKn.

Let C be a nonempty subset of a power set P(Xn). The set C is said to be an upper set of P(Xn) if C
satisfies the condition that if A ∈ C and A ⊆ B for some B ∈ P(Xn), then B ∈ C. Note that if A ∈ C,
then A ∪ B ∈ C for all B ∈ P(Xn).

Now, we present the characterization of ideals of SKn as follows.

Theorem 2. The ideals of SKn are precisely the sets

IC = {G ∈ SKn : V(G) ∈ C}

where C is an upper set of P(Xn).

Proof. Let C be an upper set of P(Xn). We will show that IC is an ideal of SKn. Since C 6= ∅, we get
IC 6= ∅. Let G ∈ IC and H ∈ SKn. Then V(G) ∈ C and hence V(GH) = V(G) ∪ V(H) ∈ C by the
previous note which implies that GH ∈ IC .

Conversely, let I be any ideal of SKn and let A = {V(G) : G ∈ I}. Then A is a nonempty subset
of P(Xn). We will prove that A is an upper set of P(Xn). Let V(G) ∈ A and A ∈ P(Xn) in which
V(G) ⊆ A. We get that φAG ∈ I since I is an ideal of SKn. Thus A = A ∪ V(G) = V(φAG) ∈ A.
Hence A is an upper set of P(Xn). Therefore, IA = {G ∈ SKn : V(G) ∈ A} = {G ∈ SKn : G ∈ I} = I.
This certainly completes the proof of our assertion.

In what follows, we define a subset of SKn,

S(r) = {G ∈ SKn : |V(G)| = r} where 1 ≤ r ≤ n,
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which plays an essential role for characterizing minimal ideals and maximal ideals of SKn.
The following lemma shows some facts about ideals of SKn which are useful for proving the

next theorem.

Lemma 1. Let I be an ideal of SKn. If S(1) ⊆ I, then I = SKn.

Proof. We assume that S(1) ⊆ I. Let T ∈ SKn. For each v ∈ V(T), we obtain that T = Tφv.
Since φv ∈ S(1) ⊆ I and I is an ideal of SKn, we have T ∈ I which certainly implies that I = SKn,
as required.

An ideal M of a semigroup S is said to be minimal if every ideal I of S contained in M coincides
with M. Further, M is said to be maximal if every proper ideal of S containing M coincides with M.

The following results describe the characterizations of minimal ideals and maximal ideals
of SKn, respectively.

Theorem 3. S(n) is the unique minimal ideal of SKn.

Proof. We first show that S(n) is an ideal of SKn. It is easy to investigate that {Xn} is an upper set.
By Theorem 2, we obtain that I{Xn} is an ideal of SKn.

Consider I{Xn} = {G ∈ SKn : V(G) ∈ {Xn}}

= {G ∈ SKn : V(G) = Xn}
= {G ∈ SKn : |V(G)| = n}
= S(n),

we can conclude that S(n) is an ideal of SKn. Next, let I be an ideal of SKn such that I ⊆ S(n).
Let H ∈ S(n). Thus V(H) = V(G) and H = HφV(G) ∈ I for any G ∈ I which implies that S(n) ⊆ I.

Therefore, S(n) = I, that is, S(n) is a minimal ideal of SKn.
We now let J be a minimal ideal of SKn and G ∈ J. Hence φV(G) ∈ J and φXn = φXn φV(G) ∈ J.

Let K ∈ S(n). Then K = KφXn ∈ J, we obtain that S(n) ⊆ J. It follows that S(n) = J by the minimality
of J.

Theorem 4. Maximal ideals of SKn are precisely the sets SKn\{φv} where v ∈ Xn.

Proof. We first prove that SKn\{φv} is an ideal of SKn. Let T denote the set SKn\{φv} where v ∈ Xn.
Let G ∈ T and H ∈ SKn. Suppose to the contrary that GH = φv. Then V(G) ∪ V(H) = {v}.
Hence V(G) = {v} which implies that G = φv, a contradiction. Therefore, GH ∈ T, this means that T
is an ideal of SKn. It is uncomplicated to investigate that T is maximal.

Next, let I be a maximal ideal of SKn. If S(1) ⊆ I, then I = SKn by Lemma 1 which contradicts to
the maximality of I. Hence S(1) * I, that is, there exists φv /∈ I for some v ∈ Xn which implies that
I ⊆ SKn\{φv}. Since I is maximal in SKn, we can conclude that I = SKn\{φv}.

Let S be a semigroup and a ∈ S. The smallest ideal of S containing a is S1aS1 where
S1 is the monoid obtained from S by adjoining an identity 1 if necessary. We shall call it
the principal ideal of S generated by a. The following theorem provides the necessary and sufficient
conditions for ideals of SKn to be principal.

Theorem 5. IC is a principal ideal of SKn if and only if there exists unique A ∈ C such that |A| = k where
k = min{|C| : C ∈ C} and A ⊆ X for all X ∈ C.

Proof. Assume that IC is a principal ideal of SKn. Then IC = (SK1
n)G(SK1

n) for some G ∈ SKn.
Let A ∈ C be such that |A| = k. Suppose that there exists B ∈ C such that |B| = k. Hence
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φA, φB ∈ IC = (SK1
n)G(SK1

n), that is, φA = G1GG2 and φB = H1GH2 for some G1, G2, H1, H2 ∈ SK1
n.

Thus A = V(G1) ∪V(G) ∪V(G2) and B = V(H1) ∪V(G) ∪V(H2) which implies that V(G) ⊆ A and
V(G) ⊆ B. Since G ∈ IC and A, B are elements of C having the minimum cardinality k, we obtain that
A = V(G) = B. We next let X ∈ C. Hence φX ∈ IC . So there exist G3, G4 ∈ SK1

n in which φX = G3GG4.
Then X = V(G3) ∪V(G) ∪V(G4) which implies that A = V(G) ⊆ X, as desired.

Conversely, assume that the conditions hold. Since A ∈ C, we have φA ∈ IC which leads to the
fact that (SK1

n)φA(SK1
n) ⊆ IC . Now, let G ∈ IC . Then V(G) ∈ C and A ⊆ V(G) by our assumption.

Therefore, G = GφAφA ∈ (SK1
n)φA(SK1

n) which follows that IC = (SK1
n)φA(SK1

n). Consequently, IC is
a principal ideal of SKn generated by φA which completes the proof of our assertion.

Remark 1. Let A be a nonempty subset of Xn. Define A to be the family of all supersets of A. By Theorem 5,
we can conclude that IA is a principal ideal of SKn. It is not difficult to verify that if A 6= B, then IA 6= IB .
Therefore, the number of principal ideals of SKn equals the number of nonempty subsets of Xn which equals
2n − 1, certainly.

Example 1. This example illustrates the ideal, minimal ideal, maximal ideal, and principal ideal of SK3.
All elements of SK3 are shown in Figure 1 where each block is an L-class of SK3. In addition, we observe that

S(1) = {G1, G2, G3},
S(2) = {G4, G5, G6, G7, G8, G9} and

S(3) = {G10, G11, G12, G13, G14, G15, G16, G17}.

• SK3\{G2, G3} is an ideal of SK3.
• S(3) is the unique minimal ideal of SK3.
• SK3\{G1}, SK3\{G2} and SK3\{G3} are all maximal ideals of SK3.
• {G4, G5, G10, G11, . . . , G17} is a principal ideal of SK3 generated by G4.

1v 1v 1v

2v 3v

2v 3v

1v

2v 3v

2v

3v 3v

2v

1v

2v 3v

1v

2v 3v

1v

2v 3v

1v

2v 3v

1v

2v 3v

1v

2v 3v

1v

2v 3v

1v

2v 3v

1v

3( )G2( )G1( )G

8( )G
6( )G

4( )G 9( )G7( )G
5( )G

12( )G
10( )G 13( )G

11( )G

16( )G14( )G
17( )G15( )G

Figure 1. All elements of SK3.
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3. Maximal Subsemigroups and a Class of Maximal Congruences of SKn

This section presents the results of maximal subsemigroups and maximal congruences of SKn.
A nonempty proper subset M of a semigroup S is called a maximal subsemigroup if M is

a subsemigroup of S and any proper subsemigroup of S containing M must be M.

Theorem 6. A maximal subsemigroup of SKn is one of the following forms.

(i) SKn\{φv} for some v ∈ Xn;
(ii) SKn\{Tij} for some i 6= j.

Proof. We have known that SKn\{φv} is a subsemigroup of SKn for all v ∈ Xn by Theorem 4. So we
need to prove that SKn\{Tij} is a subsemigroup of SKn for any distinct i, j ∈ {1, 2, . . . , n}. Let i 6= j and
G, H ∈ SKn\{Tij}. Suppose that GH = Tij. Thus V(G)∪V(H) = {vi, vj} and E(GH) = {vivj}, that is,
V(G) and V(H) are subsets of {vi, vj}. If both E(G) and E(H) contain {vivj}, then E(GH) 6= {vivj}
which is impossible. Then there exists only one of them containing {vivj}. Without loss of generality,
suppose that E(G) contains {vivj}. Since V(G) ⊆ {vi, vj}, we have G = Tij which is a contradiction.
Consequently, SKn\{Tij} is a subsemigroup of SKn. It is easy to see that SKn\{φv} and SKn\{Tij}
are maximal.

Let S be a maximal subsemigroup of SKn. We consider the following two cases.
Case 1: {φv : v ∈ Xn} ⊆ S. Then there exists Tij ∈ SKn\S, otherwise {Tij : i 6= j} ⊆ S which

implies that S = SKn since {φv : v ∈ Xn} ∪ {Tij : i 6= j} is a generating set of SKn, a contradiction.
So S ⊆ SKn\{Tij} and by the maximality of S, we get S = SKn\{Tij}, that is, S is of the form (ii).

Case 2: {φv : v ∈ Xn} * S. Then φv /∈ S for some v ∈ Xn. Thus S ⊆ SKn\{φv} and hence
S = SKn\{φv} since S is a maximal subsemigroup of SKn. Therefore, S is of the form (i).

Let ρ be a congruence on a semigroup S. We call ρ a maximal congruence if δ is a congruence on S
with ρ ( δ ⊆ S× S implies δ = S× S.

Theorem 7. Let v ∈ Xn. Then ρ = [(SKn\{φv})× (SKn\{φv})] ∪ {(φv, φv)} is a maximal congruence
on SKn.

Proof. It is clear that ρ is an equivalence relation on SKn. Let G, H, K ∈ SKn be such that (H, K) ∈ ρ.
Then (H, K) ∈ (SKn\{φv})× (SKn\{φv}) or H = φv = K. If (H, K) ∈ (SKn\{φv})× (SKn\{φv}),
then GH, GK ∈ SKn\{φv} since SKn\{φv} is an ideal of SKn. Thus (GH, GK) ∈ (SKn \{φv}) ×
(SKn\{φv}) ⊆ ρ. If H = φv = K, then GH = Gφv = GK. Thus (GH, GK) ∈ ρ which implies that ρ is
a congruence on SKn.

Next, we show that ρ is a maximal congruence on SKn. Assume that δ is a congruence on SKn such
that ρ ( δ ⊆ SKn × SKn. Then there exists (φv, K) ∈ δ where K ∈ SKn\{φv}. Let (G, H) ∈ SKn × SKn.
If G, H ∈ SKn\{φv}, then (G, H) ∈ ρ ⊆ δ. If G = φv = H, then (G, H) ∈ ρ ⊆ δ. If G = φv

and H ∈ SKn\{φv}, then (H, K) ∈ (SKn\{φv}) × (SKn\{φv}) ⊆ ρ ⊆ δ. From (φv, K), (K, H) ∈ δ,
we obtain by the transitivity of δ that (G, H) = (φv, H) ∈ δ. Thus δ = SKn × SKn, as required.

4. Natural Order on SKn

In this section, we prescribe the natural order on SKn and investigate minimal elements and
maximal elements of SKn with respect to this order. Furthermore, we consider lower covers and upper
covers of elements that are not minimal and maximal, respectively. We also give the necessary and
sufficient conditions for the existence of an infimum and a supremum of a nonempty subset of SKn.

On an inverse semigroup S, the natural order is defined in a natural way. For given a, b ∈ S,
we define a ≤ b if there exists an idempotent e ∈ S such that a = be. The following theorem
characterizes the natural order on SKn.

Theorem 8. Let G, H ∈ SKn. Then G ≤ H if and only if V(H) ⊆ V(G) and E(H) = E(G).
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Proof. Assume that G ≤ H. Then there exists K ∈ E(SKn) such that G = HK. Thus V(H) ⊆
V(H) ∪V(K) = V(G) and

E(G) = [E(H) ∪ E(K)]\[E(H) ∩ E(K)]

= [E(H) ∪∅]\[E(H) ∩∅]

= E(H).

Conversely, assume that V(H) ⊆ V(G) and E(H) = E(G). Therefore, φV(G) ∈ E(SKn).
It is obvious that V(G) = V(H) ∪ V(φV(G)) = V(HφV(G)) since V(H) ⊆ V(G). Since E(G) =

E(H) = [E(H) ∪ E(φV(G))]\[E(H) ∩ E(φV(G))] = E(HφV(G)), we obtain that G = HφV(G).
Consequently, G ≤ H.

In particular, we write G < H for G ≤ H but G 6= H, that is,

G < H if and only if V(H) ( V(G) and E(H) = E(G).

Remark 2. In fact, the order relation ≤ is compatible with the multiplication on a semigroup S which can be
seen in [9] (p.152).

Let (P,≤) be a partially ordered set. An element a of P is called minimal if for each p ∈ P, p ≤ a
implies p = a. For the definition of a maximal element, we can define in an analogous manner of
a minimal element.

We now present the characterizations of minimal elements and maximal elements
of SKn, respectively.

Theorem 9. Let G ∈ SKn. Then G is minimal if and only if V(G) = Xn.

Proof. Assume that G is minimal. We have known that V(G) ⊆ Xn. Suppose that there exists
v ∈ Xn\V(G). Let H be a graph such that V(H) = V(G)∪ {v} and E(H) = E(G). Thus V(G) ( V(H)

and then H < G which contradicts to the minimality of G. Hence V(G) = Xn.
Conversely, assume that V(G) = Xn. Let H ∈ SKn be such that H ≤ G. By Theorem 8, we have

Xn = V(G) ⊆ V(H) and E(G) = E(H). Hence V(H) = Xn = V(G) which leads to H = G. Therefore,
G is minimal.

Theorem 10. Let G ∈ SKn. Then G is maximal if and only if either G = φv for some v ∈ Xn or G contains no
isolated vertices.

Proof. Assume that G is maximal. Suppose that G 6= φv for all v ∈ Xn and G contains an isolated
vertex, say v, that is, deg(v) = 0. Let H be a graph such that V(H) = V(G)\{v} and E(H) = E(G).
Then V(H) ( V(G) which implies that G < H by Theorem 8. This contradicts the maximality of G.

Conversely, it is easy to verify that G is maximal when G = φv for all v ∈ Xn. Now, we assume
that G contains no isolated vertices. Let H ∈ SKn be such that G ≤ H. Then V(H) ⊆ V(G) and
E(H) = E(G). Let v ∈ V(G). Since deg(v) > 0, there exists u ∈ V(G) such that vu ∈ E(G) = E(H),
and thus v ∈ V(H). Hence V(H) = V(G) which leads to H = G. Therefore, G is maximal in SKn.

Let (P,≤) be a partially ordered set. A lower cover of p ∈ P is an element l of P such that l < p
and there is no l′ ∈ P in which l < l′ < p. An upper cover of p ∈ P is an element u ∈ P such that p < u
and there is no u′ ∈ P in which p < u′ < u.

The following lemma describes the existence of lower covers and upper covers of elements in SKn.
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Lemma 2. Let G ∈ SKn. Then the following statements hold:

(i) if G is not minimal, then G has a lower cover;
(ii) if G is not maximal, then G has an upper cover.

Proof. (i) Let G ∈ SKn be not minimal. Thus Xn\V(G) 6= ∅ by Theorem 9. Let v ∈ Xn\V(G). Define H
to be a graph with a vertex set V(H) = V(G)∪ {v} and an edge set E(H) = E(G). Thus V(G) ( V(H)

which implies that H < G. Suppose that there exists K ∈ SKn in which H < K < G. We obtain that
V(G) ( V(K) ( V(H) = V(G) ∪ {v}, which is impossible. Consequently, H is a lower cover of G.

(ii) Assume that G is not maximal. Then |V(G)| > 1 and G must contain an isolated vertex,
say v, by Theorem 10. Define H to be a graph with V(H) = V(G)\{v} and E(H) = E(G).
Then V(H) ( V(G), that is, G < H. Suppose that there exists K ∈ SKn such that G < K < H.
Hence V(G)\{v} = V(H) ( V(K) ( V(G), which is impossible. Therefore, H is an upper cover
of G.

Theorem 11. Let G ∈ SKn be such that G is not minimal. Then H ∈ SKn is a lower cover of G if and only if
V(H) = V(G) ∪ {v} for some v ∈ Xn\V(G) and E(H) = E(G). Consequently, the number of lower covers
of G equals |Xn\V(G)|.

Proof. By Lemma 2, G has a lower cover. Assume that H is a lower cover of G. Then H < G which
implies that V(G) ( V(H) and E(H) = E(G). We will show that |V(H)\V(G)| = 1. Suppose to
the contrary that there exist two different vertices v1, v2 ∈ V(H)\V(G). Define K to be a graph
with V(K) = V(G) ∪ {v1} and E(K) = E(G). Then V(G) ( V(K) which implies that K < G.
Since V(K) = V(G) ∪ {v1} ( V(G) ∪ {v1, v2} ⊆ V(H) and E(K) = E(H), we have H < K which is
a contradiction. Hence |V(H)\V(G)| = 1. Therefore, V(H) = V(G) ∪ {v} for some v ∈ Xn\V(G).

Conversely, assume that the conditions hold. By the same proof as given in Lemma 2(i), we obtain
that H is a lower cover of G.

Now, we define the notation which is useful for proving the following theorem. Let G be a graph
and v any vertex of G. Then G− {v} denotes the subgraph of G by deleting the vertex v and all edges
of G which are incident with v.

Theorem 12. Let G ∈ SKn be such that G is not maximal. Then H ∈ SKn is an upper cover of G if and only if
H = G− {v} where v is an isolated vertex of G. Consequently, the number of upper covers of G equals the
number of isolated vertices in G.

Proof. By Lemma 2, G has an upper cover. Let H ∈ SKn be an upper cover of G. Then G < H,
that is, V(H) ( V(G) and E(H) = E(G). It follows that V(G)\V(H) 6= ∅ and every element in
V(G)\V(H) is an isolated vertex of G. Suppose that |V(G)\V(H)| ≥ 2. Let v1, v2 ∈ V(G)\V(H)

be different. Define K to be the graph such that V(K) = V(H) ∪ {v1} and E(K) = E(G) = E(H).
Then V(H) ( V(K) ( V(G) since v2 ∈ V(G)\V(K). Hence G < K < H which is a contradiction since
H is an upper cover of G. Thus |V(G)\V(H)| = 1, that is, H = G− {v} where v is an isolated vertex.

Conversely, let H = G − {v} where v is an isolated vertex. By the same proof as given in
Lemma 2(ii), we obtain that H is an upper cover of G.

If X is a nonempty subset of a partially ordered set (P,≤), an element a of P is said to be an infimum
of X if a satisfies the following conditions:

(i) a ≤ x for every x ∈ X;
(ii) for each p ∈ P in which p ≤ x for all x ∈ X, if a ≤ p, then a = p.

Similarly, we leave it to the reader to provide the analogous definition of a supremum of X.
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Theorem 13. Let A be a nonempty subset of SKn. Then A has an infimum if and only if E(G) = E(H) for all
G, H ∈ A.

Proof. Assume that A has an infimum, say N. Hence N ≤ G for all G ∈ A which implies that
E(N) = E(G) for all G ∈ A. Thus E(G) = E(H) for all G, H ∈ A.

Conversely, assume that E(G) = E(H) for all G, H ∈ A. Define N to be a graph with a vertex
set V(N) =

⋃
G∈A

V(G) and an edge set E(N) = E(T) for some T ∈ A, that is, E(N) = E(G) for

all G ∈ A. It is clear that V(G) ⊆ V(N) for all G ∈ A which implies that N ≤ G for all G ∈ A.
Let K ∈ SKn be such that K ≤ G for all G ∈ A and N ≤ K, that is, V(G) ⊆ V(K) ⊆ V(N) and
E(N) = E(G) = E(K) for all G ∈ A. Hence V(N) =

⋃
G∈A

V(G) ⊆ V(K), it follows that K = N.

Consequently, N is an infimum of A which completes the proof of our assertion.

Theorem 14. Let A be a nonempty subset of SKn. Then A has a supremum if and only if
⋂

G∈A
V(G) 6= ∅ and

E(G) = E(H) for all G, H ∈ A.

Proof. Assume that A has a supremum, say M. Then G ≤ M for all G ∈ A, that is, V(M) ⊆ V(G)

and E(M) = E(G) for all G ∈ A. Hence V(M) ⊆ ⋂
G∈A

V(G) which implies that
⋂

G∈A
V(G) 6= ∅ and

E(G) = E(H) for all G, H ∈ A.
Conversely, assume that the statements hold. Let M be a graph such that V(M) =

⋂
G∈A

V(G) and

E(M) = E(H) for some H ∈ A. We will show that M is a supremum. It is clear that V(M) ⊆ V(G)

and E(M) = E(G) for all G ∈ A. Thus G ≤ M for all G ∈ A. Next, let K ∈ SKn be such that G ≤ K
for all G ∈ A and K ≤ M. Thus V(M) ⊆ V(K) ⊆ V(G) and E(K) = E(G) = E(M) for all G ∈ A.
It follows that V(K) ⊆ ⋂

G∈A
V(G) = V(M) and then M = K. This means that M is a supremum of A,

as required.

Example 2. The Figure 2 shows the Hasse diagram of SK3 in which elements of SK3 are illustrated in Example 1.

1G 2G 3G

4G 6G 8G

10G

5G 7G 9G

11G 12G 13G

15G 16G 17G14G

Figure 2. The Hasse diagram of SK3.

5. Conclusions

In summary, we have found that Green’s relations on an inverse semigroup SKn coincide.
All ideals, maximal ideals, and principal ideals have been characterized. In particular, the minimal ideal
of SKn is unique. Moreover, we have investigated maximal subsemigroups and maximal congruences
on SKn. Furthermore, the natural order on SKn has been defined for considering the characterizations
of minimal and maximal elements in SKn. The necessary and sufficient conditions for a nonempty
subset of SKn to have an infimum and a supremum have been provided with certainty.

Author Contributions: All authors contributed equally to this manuscript.

Funding: This research received no external funding.



Mathematics 2018, 6, 76 10 of 10

Acknowledgments: This research was supported by Chiang Mai University.

Conflicts of Interest: The authors declare that there are no conflicts of interest.

References

1. Khosravi, B.; Khosravi, B. A characterization of Cayley graphs of Brandt semigroups. Bull. Malays. Math.
Sci. Soc. 2012, 35, 399–410.

2. Panma, S. Characterizations of Clifford semigroup digraphs. Discrete Math. 2006, 306, 1247–1252.
3. Wang, S.; Li, Y. On Cayley graphs of completely 0-simple semigroups. Cent. Eur. J. Math. 2013, 11, 924–930.
4. Takemura, K.; Kametaka, Y.; Nagai, A. A Hierarchical Structure for the Sharp Constants of Discrete Sobolev

Inequalities on a Weighted Complete Graph. Symmetry 2018, 10, 1, doi:10.3390/sym10010001.
5. Naduvath, S.; Augustine, G. A Study on the Nourishing Number of Graphs and Graph Powers. Mathematics

2015, 3, 29–39.
6. Khosravi, B.; Ramezani, E. On the Additively Weighted Harary Index of Some Composite Graphs.

Mathematics 2017, 5, doi:10.3390/math5010016.
7. Nilanjan, D.; Anita, P.; Abu, N. The Irregularity of Some Composite Graphs. Int. J. Appl. Comput. Math. 2016,

2, 411–420.
8. Abdo, H.; Dimitrov, D. The Total Irregularity of Graphs Under Graph Operations. Miskolc Math. Notes 2014,

15, 3–17.
9. Howie, J.M. Fundamentals of Semigroup Theory; Oxford University Press: New York, NY, USA, 1995.
10. Pirzada, S. An Introduction to Graph Theory; Universities Press: Orient Blackswan, India, 2012.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction and Preliminaries
	Ideals of SKn
	Maximal Subsemigroups and a Class of Maximal Congruences of SKn
	Natural Order on SKn
	Conclusions
	References

