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Abstract: Many empirical and theoretical studies indicate that Brownian motion and diffusion
models as its mean field counterpart provide appropriate modeling techniques for individual insect
movement. However, this traditional approach has been challenged, and conflicting evidence suggests
that an alternative movement pattern such as Lévy walks can provide a better description. Lévy walks
differ from Brownian motion since they allow for a higher frequency of large steps, resulting in a faster
movement. Identification of the ‘correct’ movement model that would consistently provide the best
fit for movement data is challenging and has become a highly controversial issue. In this paper, we
show that this controversy may be superficial rather than real if the issue is considered in the context
of trapping or, more generally, survival probabilities. In particular, we show that almost identical
trap counts are reproduced for inherently different movement models (such as the Brownian motion
and the Lévy walk) under certain conditions of equivalence. This apparently suggests that the whole
‘Levy or diffusion’ debate is rather senseless unless it is placed into a specific ecological context,
e.g., pest monitoring programs.

Keywords: diffusion; random walks; Brownian motion; Lévy walks; stable laws; individual movement;
trap counts; pest monitoring

1. Introduction

Pests form a significant threat to agricultural ecosystems worldwide, and therefore, effective and
reliable monitoring is required to ease the decision making process for intervention. In agro-ecosystems,
monitoring is an essential component of integrated pest management programs (IPM) [1,2],
where a control action is implemented if necessary. If the population abundance exceeds a certain
predefined threshold level, and given that resource effort and expense is readily available, then
intervention becomes imminent. Usually, the control action takes the form of pesticide application,
which has many negative implications, such as environmental damage in the form of air, soil and water
pollution. Such human-induced pressures on the environment often contribute towards bio-diversity
loss and affect the functioning of ecosystems [3–5]. Other major drawbacks, which are not necessarily
related, include cancer-related diseases for those handling such chemicals [6,7], increased consumer
costs [8], poor efficiency in reaching targeted pests [9], pest resistance to regular use [10] and
lethal effects on natural enemies [11], possibly leading to a resurgence of the pest population or
a secondary pest to emerge. Therefore, in order to avoid unnecessary pesticide application or the risk
of triggering pest outbreaks, accurate evaluation of population abundance is key [12]. Traps are usually
installed in the field under controlled experimental conditions as a means to estimate population
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abundance [13–15]. They are then exposed for the duration of study, insects are caught, traps are
normally emptied at regular intervals and the total number that falls into the trap is counted and forms
the trap counts. It is precisely these counts that are converted to the pest population density at trap
locations and then used to estimate the total pest population size [16,17].

A major ecological challenge is to develop relevant theoretical and mathematical models that
can explain patterns and observations obtained from field data [18–20]. This is primarily due to
the fact that inherent complexity found in the behavior of animals can be difficult to incorporate.
However, insects and some invertebrates are easier to model since they have been thought of as
non-cognitive. In the case of either single or multiple traps in the same field, individual insect
movement can be modeled successfully using a random walk framework [12]. The earliest attempts
were based on Brownian motion, which provided a framework to characterize patterns of movement
with broad applications to conservation [21,22], biological invasions [23–25] and, in particular, insect
pest monitoring [12,26–28]. Theoretical arguments supported by empirical observations suggest that
individuals with limited sensory capabilities tend to follow a Brownian movement pattern, more so
at large temporal and spatial scales [29–34]. The corresponding mean field counterpart describes the
spatial-temporal population dynamics, which is governed by the diffusion equation [12,27,28,35]. Recently,
both Brownian motion (BM) and the diffusion model have been often criticized and deemed to be
oversimplified descriptions [36]. Other revised models have attempted to account for possible intermittent
stop-start movement [37] or inherent intensive/extensive behavioral changes [38]. Simultaneously,
there are also other studies with growing empirical evidence that support an alternative description,
which postulates that animal movement can exhibit Lévy walking behavior [39,40]. Lévy walks (LW)
are differentiated from Brownian movement, since they allow for arbitrarily large steps, that is the
probability of executing a larger step is much higher; which results in a faster movement pattern
altogether [26,27,41,42].

The usage of the terms Lévy walks or Lévy flights can vary between disciplines. In the
physical sciences, a clear distinction is made, but in the ecological literature, the terminology is often
interchanged [43]. Some have stressed the crucial distinction between this [44], and others have taken
a more relaxed approach [40]. Lévy flights allow for arbitrarily large steps, which can theoretically result
in infinite velocities; which is an unphysical/unrealistic phenomenon. On the other hand, Lévy walks
ensure that steps are randomly drawn such that the velocity is constant, or nearly so. In order to avoid
confusion, we will use Lévy walks as a reference to a random walk whose step distribution has the
property of heavy power-law tails, although technically, this is a Lévy flight (see later Section 4.1 for
more details). Note that subsequent results and analysis within this study therefore apply indirectly to
Lévy walks.

The Lévy or diffusion controversy has arisen from ongoing debates that provide pro and con
arguments for each description [42]. Some cases that provide promising evidence for Lévy-type
movement [45] have been later classified as Brownian [41] and then have been reclassified as Lévy
afterwards [46]. The confusion arises partly due to different studies providing mixed and often
conflicting messages. For example, the movement pattern can switch from Brownian to Lévy in
a context-specific scenario where resources are scarce [47]. In another study, Lévy-type characteristics
can emerge as a consequence of the fundamental observation that individuals of the same species
are non-identical [48]. It is also possible that the underlying movement pattern can be misidentified,
since variation in the individual walking behavior of diffusive insects can create the impression of a Lévy
flight [49]. Furthermore, composite correlated random walks can produce similar movement patterns as
Lévy walks; therefore, current methods fail to reliably differentiate between these two models (although
recent attempts have been made to address this issue [50]). On the other hand, diffusive properties can
appear for a population of Lévy walking individuals due to strong interactions, e.g., if movement is
stopped when individuals encounter each other [51]. Even more recently, the diffusion and Brownian
framework has been revisited and shown to be in excellent agreement with field data [28]. In either
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case, it is still unclear which type of movement is adopted by insects, what conditions can alter the
pattern and which mathematical framework is most efficient; hence, the controversy persists.

The idea of using a modified diffusion model as an equivalent framework for Lévy walking
individuals was first introduced by Ahmed [35] and later further developed [26,27]. In particular, it was
demonstrated that in the context of pest monitoring, trap count patterns could be reproduced when
comparing a type of Lévy walk to time-dependent diffusion. Further discussions have highlighted that
the ecological basis behind incorporating time-dependent diffusion is not clearly understood and how
this is linked to the type of mechanisms [26,52,53]. Our study has been instigated by these fruitful
discussions leading to an extension to the previous study by Ahmed and Petrovskii [27]. Our aim
is two-fold; that is to propose a diffusion model that consists of parameters that are of ecological
significance and can be interpreted with reference to the diffusive properties; also, to investigate if
trap counts can be effectively reproduced for a broader class of Lévy walks using diffusion. If so,
we question the relative importance of identifying the underlying movement pattern. From a cost
perspective, it may make sense to concentrate more on the geometry and design of the experiment
rather than the particular movement model.

2. BM vs. LW: Equivalence I

2.1. Brownian Motion

Individual-based models provide a complementary cost-effective methodology to field experiments
and can be used to simulate movement and analyze trap counts [12,18,54]. The idea is to replicate these
experiments through a virtual environment where supplementary and even alternative information is
sought [55]. In the specific case of low-density populations, the magnitude of stochastic fluctuations can
be quite large, and an individual-based modeling framework can be particularly useful to describe the
movement dynamics, i.e., if dangerous pests are present. Note that movement patterns of the Lévy-type
have not been identified in field studies for insects, and therefore, our motivation is from a theoretical
viewpoint. Our interest is primarily based on understanding the underlying mechanisms that govern
movement; it is sufficient to focus on a 1D conceptual scenario. Despite the fact that this case is hardly
realistic in terms of modeling movement in a real field setting, however it does provide a theoretical
background for the more realistic 2D case [56]. Furthermore, any unnecessary additional complexity that
would arise due to the effects of trap and field geometries is then avoided.

The basic idea in 2D is to model walking or crawling insect movement along a continuous
curvilinear path, which can be mapped to a broken line with the position recorded at discrete
times [18]. In mathematical terms, the 1D analogue over unbounded space for a population of
N individuals records the position X(n)

i of the n-th individual at time t, which is discretized as

ti = {t0 = 0, t1, t2, · · · , tS = T}, i = 0, 1, · · · , S, n = 1, 2, · · · , N, so that X(n)
i = X(n)(ti). Here,

the script (n) is included to differentiate between movement tracks of different individuals of the same
insect. We assume that positions are recorded at regular intervals with constant time increment:

∆t = ti − ti−1 =
T
S

,

where the first observation is recorded at time t = 0 with the total number of steps S and total time
tS = T. Each individual moves from position X(n)

i−1 to X(n)
i with step length:

l(n)i = |X(n)
i − X(n)

i−1|

and velocity:

v(n)i =
|X(n)

i − X(n)
i−1|

∆t
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defined over each step. The n-th individual placed at some position X(n)
i can move either to the right

or to the left with resulting position X(n)
i+1. Assuming that each subsequent step is completely random 1

and generated according to a predefined probability distribution φ(ξ), then each further position can
be determined by:

X(n)
i+1 = X(n)

i + ξ, i = 0, 1, · · · , S, n = 1, 2, · · · , N, (1)

where ξ is a random variable. Trap counts can then be obtained if the individuals that fall within
a well-pre-defined region are removed from the system at regular intervals and counted [12,35].

Generally, animal movement is anisotropic due to the mere fact that animals have a front and
rear end [57], resulting in a correlated random walk [30]. For simpler movement modes, such as
that of insects, we can assume that the walk is uncorrelated and the direction of movement is
completely independent of previous directions. Each position is then solely dependent on the previous
location, and therefore essentially Markovian [58,59]. Under this assumption, the resulting movement
is isotropic, and there is no preferential direction, i.e., no advection or drift of any kind; which
can arise in the presence of an attractant. In relation to the step distribution, φ(ξ) is a symmetric
probability density function (pdf) with zero mean, that is φ(ξ) = φ(−ξ). In the case of Brownian
motion, the corresponding pdf is normal, which reads:

φn(ξ) =
1

σ
√

2π
exp

(
− ξ2

2σ2

)
(2)

with scale parameter σ, which can possibly be dependent on time (the subscript n refers to normal).
Alternatively, we write ξ ∼ N(0, σ2), which denotes that ξ is randomly drawn from a normal
distribution with mean zero and variance σ2. In realistic ecological applications, many insects
are released into the field instead of a single individual. Using the 1D scenario as a baseline case,
the corresponding analogy is to initially distribute N individuals along a finite spatial interval x ∈ (0, L).
Common release methods used in trap count studies are either of two types; that is uniform or a point
source. In the uniform case, we prescribe the initial position as X(n)

0 ∼ U(0, L), where U(a, b) denotes

the uniform distribution over the interval a < x < b. For a point source, we have X(n)
0 = x̃ for all

n = 1, 2, · · · , N at t = 0 with x = x̃ as the centralized location of the release point. The resulting
movement pattern is then completely determined by the type of initial condition and step distribution
φ(ξ). Note that the population distribution essentially becomes uniform for larger times, and therefore,
identical trap counts are obtained irrespective of the type of initial distribution. This effect is realized
due to the inherent random movement of individuals in the field. For more detailed information
on how the shape of the trap count profile is affected by the type of initial condition, the reader
is redirected to [35]. Generally, in most field applications, a uniform initial population distribution
can be reasonably assumed. Even in the case when the true release distribution is characterized by
multiple point source releases, the effect on trap count variation is somewhat minimal [28]. Henceforth,
all simulations in this paper adopt the uniform distribution as an initial condition.

To describe the individual-based model fully, boundary conditions are enforced and defined
as follows: an impermeable stop-go ‘sticky’-type boundary is installed at the external boundary at
x = L [60], such that at any instant in time, if the individual position exceeds this boundary, that is if
X(n)

i > L, then it remains at location x = L. The next position in the process is determined purely by (1),

and the individual continues to interplay with the dynamics of the system provided 0 < X(n)
i+1 < L at the

next step; otherwise, it either remains at the external boundary, if X(n)
i+1 ≥ L or is deemed to be trapped

if X(n)
i+1 < 0. The trap boundary at x = 0 introduces a perturbation to the movement and is incorporated

1 The randomness of animal movement is obviously an idealization, which, however, is well justified under certain conditions,
e.g., see [18] for a detailed discussion of this issue.
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in the following way: if X(n)
i < 0 at any instant in time, then the individual is removed from the

system and the total trap count increases by one, functioning as an absorbing boundary. Cumulative
trap counts Jt are obtained at each step over discrete times t = i∆t, resulting in a stochastic trap count
trajectory. It may be important to mention that the choice of time step ∆t has some significance, since it
is known that time scale invariance is lost in the presence of an absorbing and/or stop-go boundary,
possibly leading to noticeable differences in trap count recordings [60]. Therefore, ∆t is chosen small
enough so that trap counts are in line with counts obtained using alternative methods, such as the
mean field analytic or numerical solutions (see Section 3 and Appendix A for details). Furthermore,
at the same time, ∆t is chosen to be sufficiently large, so that the assumption that subsequent steps are
uncorrelated is feasible [12,31].

2.2. Condition of Equivalence

In many ecological applications (such as, for instance, conservation and monitoring), it is
important to know the probability that a given animal will remain inside a certain domain or area.
Since the movement is described by the probability distribution function (pdf) φ(ξ), one can expect
that the probability of remaining inside the domain depends on the properties of φ, in particular on its
rate of decay at large distances.

We first consider the case where φ(ξ) is fat-tailed, φ(ξ) ∼ |ξ|−(α+1) with 0 < α < 2, which is the
characteristic exponent for Lévy walks (see Section 4.1 for more details later). We focus on the special
case α = 1 as it is thought, based both on observations of movement patterns [61,62] and on some
evolutionary argument [51], to be ecologically the most relevant. In this case, the pdf for the Lévy walk
is described by the Cauchy distribution:

φc (x; γ) =
γ

π

1
x2 + γ2 , (3)

where γ is a scale parameter and the subscript c refers to Cauchy.
In the case that at t = 0, the animal is at x = 0, Function (3) gives the probability density of its

position after one step. It is straightforward to see that the pdf of the animal position after i steps,
i.e., at time ti = i∆t, is given by the same distribution, but with a re-scaled value of the parameter γ,
that is:

φc (x; iγ) =
iγ
π

1

x2 + (iγ)2 . (4)

From Equation (4), we may define a symmetric interval of interest xi (γ, ε), such that the integral
in this interval is always equal to a certain quantity ε,∫ xi

−xi

φc (x; iγ) dx = ε, (5)

and determine the limits of this interval as a function of the parameters of the process and the arbitrary
probability ε:

xi (γ, ε) = iγ tan
(πε

2

)
. (6)

Our goal is to obtain an alternative stochastic process, composed by the sum of random variables
from the Gaussian family, which may be comparable to this one in the sense that it replicates the
same probability ε over the interval of interest (e.g., see [28]). To do that, we will consider the sum
Ȳ = Y1 + Y2 + · · ·+ Yi of normally-distributed random variables, defined by the pdf:

φn (y; ∆i) =
1

∆i
√

2π
exp

(
− y2

2∆2
i

)
, (7)

where the variance ∆2
i is just the sum of the variances from each random variable Yk,
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∆2
i =

i

∑
k=1

σ2
k . (8)

As the relation between the two process is obtained by equating the integrals on the same domain
[−xi, xi], we may compute the probability ε over the Gaussian process using Equation (7),∫ xi

−xi

φn (y; ∆i) dy = erf
(

xi

∆i
√

2

)
= ε, (9)

and introducing the inverse error function as Φ (·) ≡ erf−1 (·) (see footnote2), we relate the
two processes by the following relation:

∆2
i (γ, ε) =

xi (γ, ε)

2Φ2 (ε)
=

i2γ2 tan2 (πε
2
)

2Φ2 (ε)
. (10)

In order to determine the behavior of the increments σ2
k (γ, ε), i.e., the variance of each additional

Gaussian variable required to be comparable to the original Cauchy process, we only need to write
Equation (8) as:

∆2
i = σ2

i + ∆2
i−1, (11)

which immediately leads to the expression:

σ2
i (γ, ε) =

(2i− 1) γ2 tan2 (πε
2
)

2Φ2 (ε)
. (12)

Now, we recall that i is the time of the movement (measured in steps). From Equation (12),
we therefore conclude that the probability ε to confine the insect performing the Lévy walk over
the spatial domain −L < x < L coincides exactly with the probability of the same event in the
case where the insect performs the Brownian motion, provided the variance of the Brownian motion
(i.e., essentially, the diffusion coefficient) increases linearly with time, σ2

t ∼ 2t.

3. Time-Dependent Diffusion

Insect movement is inherently more complex in nature, due to the contribution from both external
and internal factors. Typical external factors include environmental effects or stimuli, which can be
quite challenging to incorporate from a modeling perspective. Since our interest lies in the actual
mechanisms at play, we assume homogeneity in the sense that external factors are absent. In terms
of the underlying movement mechanisms, examples of internal factors include individual variation,
composite and/or intermittent movement or even time-density-dependent diffusive behavior [63,64].
The main challenge is then to develop a coherent model that can include these different processes
and accurately describe the population dynamics. Obviously, the issue becomes more difficult if
a combination of these features is present. In the context of insect pest monitoring, diffusion
models have been shown to provide a good theoretical framework and the means for trap count
interpretation [12,27,35]. In particular, time-dependent diffusion provides an adequate description for
more complicated behavior, at least where standard diffusion fails [26,27,35,65]. The notion of insect
movement with time-dependent diffusivity is not new and has been observed in field studies [19].

The 1D diffusion equation for the population density u(x, t) with time-dependent diffusion
coefficient D = D(t) over the semi-infinite domain 0 < x < ∞, with initial density u(x, t = 0) = u0(x)
and zero density condition u(x = 0, t) = 0 at the trap boundary, reads:

2 This is the inverse of the error function defined by erf(z) = 2√
π

∫ z
0 exp

(
−z′2

)
dz′



Mathematics 2018, 6, 77 7 of 27

∂u
∂t

= D(t)
∂2u
∂x2 , u(x, t = 0) = u0(x), u(x = 0, t) = 0, 0 < x < ∞, t > 0. (13)

By introducing a change of the time variable:

τ(t) =
∫ t

0
D(s)ds, (14)

the system of equations (13) transforms to:

∂u
∂τ

=
∂2u
∂x2 , u(x, τ = 0) = u0(x), u(x = 0, τ) = 0, 0 < x < ∞, τ > 0. (15)

The general solution [26,27,66] is then given by:

u(x, τ) =
∫ ∞

0

(
F(x− x′, τ)− F(x + x′, τ)

)
u0(x′)dx′ (16)

where:

F(x, τ) =
1√
4πτ

exp
(
− x2

4τ

)
(17)

is the fundamental solution of the diffusion equation in (15), which reduces to
F(x, t) = 1√

4πDt
exp

(
− x2

4Dt

)
in the specific case of constant diffusivity. The diffusive flux through the

boundary at x = 0 corresponds to trap counts j(τ), which can be determined by Fick’s law, that is
j(τ) = − ∂u(x,τ)

∂x

∣∣∣
x=0

with cumulative trap counts J(τ) (total flux) given by:

J(τ) =
∫ τ

0
j
(
τ′
)

dτ′ =
∫ ∞

0
u0(x′)erfc

(
x′√
4τ

)
dx′ (18)

where erfc(z) = 1− 2√
π

∫ z
0 exp

(
−z′2

)
dz′ is the complimentary error function. Therefore, the total

number of trap counts J(t) for the system (13) in normal time t is given by,

J(t) =
∫ ∞

0
u0(x′)erfc

 x′

2
√∫ t

0 D(s)ds

 dx′. (19)

In the case of a uniform distribution u0(x) = U0, (19) reduces to:

J(t) = 2U0

√
1
π

∫ t

0
D(s)ds (20)

with:

J(t) = 2U0

√
Dt
π

(21)

in the special case with constant diffusivity D, corresponding to standard diffusion.

Equivalence of Trap Counts: Brownian Motion vs. Diffusion in a Semi-Bounded Space

For the diffusion Equation (15), the mean location and mean squared displacement (MSD) are
useful statistics that characterize the movement,

〈x(τ)〉 =
∫ ∞

−∞
xF(x, τ)dx = 0,

〈
x2(τ)

〉
=
∫ ∞

−∞
x2F(x, τ)dx = 2τ, (22)
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where F(x, τ) is defined by (17). It is well known that diffusion is the macroscopic description of
Brownian motion [67], where the MSD is equal to the variance of the step distribution φ(ξ),〈

x2(τ)
〉
= E

(
ξ2
)

. (23)

From this, we obtain a link between the scale parameter in (2) and the diffusion coefficient,

σ2(t) = 2τ = 2
∫ t

0
D(s)ds. (24)

For a discrete time model, one can expect that this remains valid, at least approximately,
for a small, but finite value of ∆t, that is:

σ2(t) ≈ 2D(t)∆t. (25)

In the case of standard diffusion, the MSD grows linearly with time and is related to the scale
parameter by:

σ2(t) = 2Dt, (26)

which is known as the hallmark of Brownian motion [12,18,68]. More generally, for anomalous diffusion,
the MSD grows according to some power law relationship:〈

x2(t)
〉
∼ t2H , (27)

where H is the Hurst exponent. Here, H = 1
2 corresponds to standard diffusion (26), 1

2 < H < 1
corresponds to super-diffusion and H = 1 corresponds to ballistic or wavelike motion. A full
comprehensive summary of movement properties with reference to H can be found in [59].

To demonstrate equivalence between Brownian motion and an anomalous diffusion model,
consider as a baseline case:

D(t) = D0 + D1t2H−1, H ≥ 1
2

(28)

where D0 is the initial diffusivity and D1 controls the effect of time dependency for a larger time.
This structure is chosen as an example, so that the scale parameter (24) is in accordance with (27), i.e.,

σ2(t) = 2
∫ t

0

(
D0 + D1s2H−1

)
ds = 2D0t +

D1

H
t2H ∼ t2H provided H ≥ 1

2
. (29)

The analytical solution for the model with an initial uniform distribution can be derived from (20),
which reads:

J(t) = 2U0

√
D0t
π

(
1 +

D1

2D0H
t2H−1

) 1
2

(30)

and approximates the flux for constant diffusion (21) for small time.
In Figure 1, Plot (a), we find that there is almost identical agreement between trap counts obtained

from the Brownian individual-based model and the mean field diffusion model, as expected from
theory. More specifically, it is shown here that the diffusive flux can be used to reproduce trap count
patterns for standard diffusion H = 1

2 , super diffusion H = 3
4 and ballistic movement H = 1, to a high

level of accuracy. Intuitively, we expect that this holds for diffusion coefficients that have a more
complicated time-dependency. The diffusion coefficient consists of three unknown parameters, namely
D0, D1 and H. In terms of usage, if initial diffusivity can be measured through experiments, then other
parameters can be estimated using the tools outlined in [27], i.e., by approximating the flux rate in
the limit t → 0 and relating it to the expected number of individuals trapped after one time step.
Note that, since an analytical solution cannot be obtained for the diffusion model (15) over a finite
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domain, the numerical solution is also shown for consistency. See Appendix A for details on the
explicit finite difference scheme used and how the flux is computed at the trap boundary.

Figure 1. (a) Diffusive flux: Solid curves show the total flux J(t) obtained from the diffusion model
over time 0 < t < 5 with the analytic solution given by (30), with fixed diffusion constants D0 = 0.05,
D1 = 0.15 and varying Hurst exponents H = 1

2 (standard diffusion), H = 3
4 (super-diffusion) and H = 1

(ballistic). The solution is defined over the semi-infinite domain 0 < x < ∞ with initial uniform distribution
u(x, t = 0) = U0 = 200 and point trap u(x = 0, t) = 0. Trap counts: Bold dots plot cumulative trap counts
Jt for Brownian motion with total population N = 1000 recorded at times t = 0, 0.1, 0.2, · · · , 5. Discrete
time scale parameter is defined by combining (25) and (28), that is σ2(t) ≈ 2(D0 + D1t2H−1)∆t with
D0, D1, H given above. Each individual executes a total of S = 5000 steps with constant time step increment

∆t = 0.001 and total time T = S∆t = 5. Individuals initially uniformly distributed X(n)
0 ∼ U(0, L = 5).

The trap installed at position x = 0 and simulations are conducted with the external boundary condition
described in Section 2.1. Trap counts are replicated and averaged over ten realizations to reduce the effect
of stochasticity. Numerical solution: The green dashed line represents the mean field numerical solution
using the method of explicit finite differences. See Appendix A for further details on the numerical
scheme. (b) Absolute relative error: A(t) plotted at times t = hk, h = 0.1, k = 0, 1, 2, · · · , 50, with average
Ā = 0.306 (red), 0.157 (blue) and 0.167 (black), to illustrate the magnitude of the discrepancy between
the analytic solution and trap counts (for the interpretation of the references to color in this figure legend,
and all subsequent figures, the reader is referred to the web version of the article).

We introduce the average absolute error Ā as a means to quantify the discrepancy between the models.
Although advanced statistical tools exist to measure differences between stochastic and deterministic
processes, for our purposes, this simple statistical metric will suffice and will later prove to be effective.
The absolute error (relative to the total population) evaluated at discrete times t = hk is defined by,

A(tk) =
|Diffusive flux − Trap counts|

Total population
=
|J(hk)− Jhk|

N
, k = 0, 1, 2, · · · , K (31)

with time increment h and total time T = hK. The errors are then averaged over (K + 1) differences,

Ā(tk) =
1

N(K + 1)

K

∑
k=0
|J(hk)− Jhk|. (32)

Plot (b) illustrates the discrepancy using the absolute error, which lies within 0.6 and 0.7% of all
total trap counts. Theoretically, the Brownian and corresponding diffusion model are equivalent, and the
errors can be dismissed as somewhat negligible, partly due to the accumulation of small computational
errors. We expect this error to tend to zero, with the magnitude of stochastic fluctuations decreasing as
N−

1
2 in the limit N → ∞ [69]. Furthermore, longer time simulations (not shown) demonstrate that the

discrepancy increases as the effect of external boundary encounters is realized. Therefore, we require that
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the finite domain is large enough, that is L2

D is much larger than the typical characteristic trapping time.
The quantified errors in Table 1 are probably not useful on their own; however, for now, they function
as benchmark values, which indicate an extremely good fit; indicating equivalence. As a general rule
of thumb, we classify the level of fit as equivalent 0 < Ā ≤ 0.5, good fit 0.5 < Ā ≤ 1, moderate fit
1 < Ā ≤ 1.5 and poor fit Ā > 1.5. These will be useful later as a point of reference, when comparisons are
made between various diffusion models, in an attempt to reproduce Lévy trap count data.

Table 1. Tabulated values of the average absolute relative error Ā as defined by (32), to compare
the fit between the anomalous diffusion model (30) and trap counts obtained from Brownian motion
(see Figure 1).

Standard Diffusion H = 1
2 Super Diffusion H = 3

4 Ballistic Diffusion H = 1

Brownian trap counts 0.306 0.157 0.167

4. BM vs. LW: Equivalence II

4.1. Stable Laws

In the case of Brownian motion, the step distribution is normal (2), and the end tails decay
exponentially fast (thin tail). A large number of studies has shown that animal movement can follow
a more complicated movement pattern where the step distribution decays much more slowly according
to some type of inverse power law (heavy or fat tail), known as Lévy walks [32,45,70]. As a result,
individuals have a greater chance of executing ‘rare’ large steps, and therefore, the properties of the
random walk are altered. The biological consequence is such that the overall movement pattern is faster
in comparison to what is typically observed in Brownian motion. Lévy walks can be characterized by
Lévy α-stable distributions, simply known as stable laws. A distribution is said to be stable if the sum
(or, more generally, a linear combination with positive weights) of two independent random variables
has the same distribution up to a scaling factor and shift [44,71]. The mechanisms behind the resulting
movement are governed by the step distribution, which is completely described using four parameters,
namely a tail index α ∈ (0, 2], skewness parameter β ∈ [−1, 1], scale parameter γ ∈ (0, ∞) and location
parameter δ ∈ R. The asymptotic behavior of the end tails is,

φ(ξ) ∼ |ξ|−(α+1), ξ → ±∞, (33)

where α ∈ (0, 2] determines the rate at which the tails of the distribution taper off. For α ≤ 0,
the distribution cannot be normalized, and therefore, the pdf cannot be defined. For α ≥ 2, the
end tails decay sufficiently fast at large |ξ|, ensuring that all moments exist and the central limit
theorem (CLT) applies, that is the probability density of the walker after S steps converges to the
normal distribution as S → ∞. The generalized central limit theorem (gCLT) states that the sum of
identically-distributed random variables with distributions having inverse power law tails converges
to one of the stable laws, of which the normal distribution is a special case. For the range 0 < α < 2,
the gCLT applies, and the condition on the second moment is relaxed; that is, second moments diverge,
and the tails are asymptotically equivalent to a Pareto law. Since their first introduction, usage of
stable laws has been overlooked and somewhat neglected, mainly due to difficulties arising from
an infinite variance. However, there are now well-developed and readily-available algorithms that
can be exploited for simulation runs [72,73], and thus, stable laws are increasingly being considered,
particularly in movement ecology [40].

Stable laws can be parametrized in Z different, but equivalent ways, and currently, there exists at
least eleven different variations, which has led to much confusion [74,75]. Each type has an advantage
over the others, and the parameter Z is often chosen based on the purpose of use, i.e., simulation-based
studies, data fitting or the study of algebraic/analytic properties. Since our focus is primarily based on
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obtaining trap counts from simulations, we choose the Z = 0 parametrization and henceforth use this
setting. We adopt the notation introduced by [71]; that is, the random variable ξ is drawn from the
stable distribution:

S(α, β, γ, δ;Z).

Since explicit pdfs are not available for all values of α ∈ (0, 2], the distribution is often described
in terms of the characteristic function: the inverse Fourier transform of the pdf,

lnEeiωξ =

{
−γα|ω|α

[
1 + iβ tan απ

2 · sign(ω) · (|γω|1−α − 1)
]
+ iδω, α 6= 1

−γ|ω|
[
1 + 2iβ

π · sign(ω) · log |γω|
]
+ iδω, α = 1

(34)

For an isotropic random walk, the pdf of the step distribution is symmetrical, and therefore,
both the skewness and location parameters are fixed with β = δ = 0. The resulting distribution is
known as an α-stable symmetric Lévy distribution, which is then completely characterized solely by
the index α and scale parameter γ. For brevity, we adopt the notation:

S(α, β = 0, γ, δ = 0;Z = 0) = S(α, γ),

where it is understood that all parameters are zero except α and γ. The resulting characteristic function
in (34) reads:

Eeiωξ = exp (−γα|ω|α) , (35)

which is a useful way to mathematically describe all (symmetric) stable distributions, since a closed
form or analytical expression does not exist for all indices α, with the exception of the normal α = 2
and Cauchy α = 1 cases;

Normal ξ ∼ S(2, γn) φn(ξ) =
1

2γn
√

π
exp

(
− ξ2

4γ2
n

)
, γn =

σ√
2

(36)

Holtsmark ξ ∼ S
(

3
2

, γh

)
φh(ξ) Cannot be expressed in closed form (37)

Cauchy ξ ∼ S(1, γc) φc(ξ) =
γc

π(γ2
c + ξ2)

(38)

Symmetric-Lévy ξ ∼ S
(

1
2

, γl

)
φl(ξ) Cannot be expressed in closed form (39)

where the subscripts n, h, c, l have been included to distinguish between the different distributions.
For the normal distribution, σ is the standard deviation shown in the step distribution (2), with γn

defined in this way due to the choice of parametrization. This relation can be easily derived through
the characteristic function (35). Note that, some authors use the term ‘Lévy distribution’ to refer to
stable laws; however, more commonly, it refers to α = 1

2 , β = 1, which is a skewed distribution,
defined for ξ ≥ 0 [71]. Since we consider symmetric distributions, i.e., β = 0, we will refer to (39) as the
‘symmetric’-Lévy distribution. In some cases, the pdf can be expressed analytically, even if it cannot
be written in closed form, e.g., the Holtsmark distribution (37) can be written using hyper-geometric
functions (if symmetric) or the Whittaker function (if skewed). Furthermore, the symmetric-Lévy
distribution can be expressed in terms of special functions, such as Fresnel integrals [74]. However,
these representations are bulky and not useful in the context of this study.

Figure 2 illustrates pdfs for symmetric stable laws with the decay of end tails characterized by
different indices α = 1

2 , 1, 3
2 , 2, with faster decay rates as α increases and exponential fast decay in the

case of the normal distribution.
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Figure 2. (a) Probability density functions φ(ξ) for stable laws; normal α = 2, Holtsmark α = 3
2 ,

Cauchy α = 1 and symmetric-Lévy α = 1
2 with fixed scaling parameter γ = 1 chosen for illustrative

purposes (see (36)–(39)). (b) Comparison of end tails for different α, defined by (33).

4.2. Equivalence of Trap Counts: Cauchy Walk vs. Diffusion

Standard diffusion provides an oversimplified description [76], partly due to an underlying
assumption that all individuals are identical in terms of their movement capabilities. In reality, this is
not entirely true, and it is known that individuals in the field do not possess an equal ability for
self-motion. Even in the case of a population of an identical insect species type, distinct traits can
significantly affect movement abilities, such as body mass, length of wings or more generally shape and
size [77]. To overcome this assumption, modified diffusion models have been successfully introduced.
For example, [48] take into account that the diffusion coefficient can vary according to some type of
diffusivity distribution function, rather than being constant. As a result, it is shown that by introducing
the concept of a statistically-structured population, the fat tails that are inherent in Lévy walks can
appear due to the fact that individuals of the same species are non-identical. Therefore, the mechanism
of fat tails’ formation in a real population is always present, even if it can sometimes be induced by
a mixture of other processes. This is not the only approach that attempts to explain the phenomena of
fat tails appearing. We propose an alternative model (see later Section 4.3), where diffusivity varies
continuously with time. On an individual level, the interpretation is such that distinct diffusive
rates are adopted, and therefore, the model takes into account individual variation. However, at the
population level, when rates are aggregated, the movement is governed by time-dependent diffusion.

In Section 3, it was demonstrated that equivalent trap counts can be obtained for Brownian
movement using an anomalous diffusion model (30). Here, we test whether this same model can
explain trap counts from non-Brownian movement, with particular interest in the level of discrepancy.

Figure 3, Plot (a), compares trap counts Jt from the Cauchy walk 3 against the diffusive flux
J(t) for exponents; standard diffusion H = 1

2 , super-diffusion H = 3
4 and ballistic diffusion H = 1.

A non-linear curve fitting tool is used to determine the best-fit parameters D0, D1 by fitting the analytic
solution (30) against trap count recordings in the least squares sense (see Table B1 for the complete list
of trap count recordings). Plot (b) illustrates the discrepancy between the trap counts and diffusion
model. The relative error is shown (instead of the absolute relative error used previously in Figure 1)
to distinguish between the time intervals when trap counts are either over- or under-estimated; here,
a positive relative error corresponds to the diffusive flux forming an overestimation, and vice versa.

3 This specific type of random walk is of significant interest in foraging theory since an inverse square power-law distribution
of flight lengths provides an optimal strategy to detect target sites provided that the sites are sparse and can be revisited [61].
Furthermore, see Section 2.2.



Mathematics 2018, 6, 77 13 of 27

Table 2 quantifies the fit and compares whether the diffusion model can reproduce trap counts as
effectively as what was previously seen in the Brownian case (see Figure 1).

Figure 3. (a) Comparison of trap counts Jt for the Cauchy walk S(α = 1, γc = 0.002) (see (38))
against the diffusive flux J(t) for anomalous diffusion for the three cases; standard diffusion
H = 0.5, {D0, D1} = {0.1431, 1.6730}, super-diffusion H = 0.75, {D0, D1} = {0.7263, 1.1776} and
ballistic diffusion H = 1, {D0, D1} = {1.228, 0.5844} (see (30)). Trap counts were averaged over five
realizations to reduce the effect of stochasticity. Total number of individuals N = 1000 uniformly
distributed over a finite domain L = 5 with population density U0 = 200. Each individual executes
a total of S = 3000 steps with constant time step increment ∆t = 0.001 and total time T = S∆t = 3.
(b) Relative error (%) measures the discrepancy between trap counts for the random walk and diffusion
model defined by J(t)−Jt

N plotted at times t = 0, 0.1, 0.2, · · · , 3.

Table 2. Tabulated values of the average absolute relative error Ā as defined by (32), to compare
the fit between the anomalous diffusion model (30) and trap counts obtained from Brownian motion
(see Figure 1) and the Cauchy walk (see Figure 3).

Standard Diffusion H = 1
2 Super Diffusion H = 3

4 Ballistic Diffusion H = 1

Brownian trap counts 0.306 0.157 0.167
Cauchy trap counts 2.035 0.849 1.120

From Figure 3, Plot (b), it is clear that standard diffusion fails to predict trap counts adequately,
with a maximum relative error of about 5%. This is expected since standard diffusion corresponds to
the random walk model with a normal step distribution whose end tails decay exponentially, unlike
the Cauchy distribution. On comparison, Table 2 shows that both super diffusion and ballistic diffusion
provide a good/moderate fitting, respectively. Petrovskii et al. [26] demonstrated that in the case of
some simple diffusion models, such as linear dependency on time D(t) = at + b and its variation
D(t) = at + bt

1
3 (a, b constant), both of which constitute ballistic motion, provide a reasonable fit to

trap count data. Figure 3 also confirms a reasonable fit for the ballistic case where the relative error
lies within approximately 3%; however, still, an evident discrepancy is noticed. Trap counts are much
better reproduced by super-diffusion, in this case H = 3

4 with relative error within approximately
2%. This is somewhat expected, since it is well known that generally, super diffusion has long been
acquainted with Lévy walks [43,78]. Despite this promising accuracy, note that the diffusion flux
tends to alternate; in the sense that trap counts are overestimated for small time, underestimated for
intermediate time and overestimated again on a larger time scale; for both the super diffusive and
ballistic case. This phenomenon is also realized for other Hurst exponents in the super-diffusive and
ballistic regime (simulations not shown here), even when a variety of scale parameters is considered.
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Although the accuracy of the matching is somewhat ecologically acceptable in either case, a diffusion
coefficient that yields trap counts at a higher level of precision is sought.

In a recent study, Ahmed and Petrovskii [27] demonstrated that the time-dependency of the
diffusion coefficient could be inherently more complex than that proposed by anomalous diffusion.
Subsequently, a time-dependent diffusion model was developed to provide an alternative framework
for a Cauchy walk with the step distribution (38). In particular, passive trap counts were reproduced
effectively, and the study indicated that in the case of a Cauchy walk, the problem of trap count
interpretation can be addressed with a high precision based on the diffusion equation. However,
some drawbacks with this model 4 include, firstly, that the complicated structure of the diffusion
coefficient leads to practicality issues, since it is not expressed in closed form. Secondly, the model
consists of multiple unknown parameters with little room for interpretation, i.e., the ecological
significance of parameters or how they relate to the movement pattern is unclear. Finally, the study
is constrained to Cauchy walks, and it is not known whether the diffusion model is effective at
predicting trap counts for a broader range of tail indices α. With this background, we attempt to
address the following: Can trap counts obtained from a system of genuine Lévy walkers be accurately
reproduced using the diffusion equation, in particular, with a greater accuracy than what is observed
for anomalous diffusion in Figure 3? If so, what is the structure of the diffusion coefficient, and how can
the behavior of the resulting diffusion profiles be explained from an ecological viewpoint in relation to
any parameters?

4.3. Proposed Diffusion Coefficient

Observations of trap count patterns (such as those typically observed in Figure 3) suggest that the
coefficient proposed should consist of some type of growth function G(t), which should behave as
a controlling mechanism for diffusivity on a short and/or intermediate time scale. In addition to this,
a suitable decay function should also be introduced to induce a dampening effect to ensure that trap
counts are not overestimated for larger times, typically observed when the movement process grows
faster than standard diffusion. Intuitively, we propose the following structure:

D(t) = D0︸︷︷︸
Initial

diffusivity

+ G(t)︸︷︷︸
Growth
function

· e−νt︸︷︷︸
Exponential

decay

(40)

with G(0) = 0, i.e., growth is zero at t = 0 so that initial diffusivity is defined as D(0) = D0,
with obvious meaning. Here, the growth function is subject to exponential decay causing the diffusivity
to be damped over larger times with damping coefficient ν. Subsequently, the diffusivity returns
to an initial state D0 in the large time limit as t → ∞, provided the growth function is not faster
than exponential growth, that is limt→∞ G(t)e−νt = 0. The corresponding diffusive flux for an initial
uniform population density U0 across a semi-infinite domain x > 0 with zero density condition at
x = 0 (described in Section 3) can be derived using (20), which reads:

J(t) = 2U0

√
D0t
π

+
1
π

∫ t

0
G(s)e−νsds. (41)

A number of possible candidates for the growth function exist in the literature, but are often
applied to model population dynamics. Examples of such include logistic, Gompertz, von Bertalanffy
and generalized or hyper-logistic growth [79]. The simplest of these is the logistic type, and an example
of an application is the Rosenzweig and MacArthur [80] model for predator-prey interactions with

4 See Ahmed and Petrovskii [27] for a detailed description of the model previously proposed.
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logistically growing prey. We propose that the growth function G(t) in (40) grows logistically,
as a means to model diffusivity, rather than the typical use of modeling populations, so that:

G(t) = D1t
(

1− t
k

)
(42)

with corresponding diffusion coefficient:

D(t) = D0 + D1t
(

1− t
k

)
e−νt. (43)

The movement dynamics are then completely governed by set parameters {D0, D1, k, ν},
all positive. This growth function is a parabolic function of time, which increases from G = 0 at
time t = 0, until a maximum Gmax = 1

4 D1k is attained at time t = k
2 , and then decreases until

the growth diminishes, i.e., G = 0 at time t = k. The corresponding diffusion coefficient is still
valid for negative growth over the interval k < t < t∗ provided D(t) > 0, where t∗ is a solution of
ln D1(t∗ − k)− νt∗ = ln D0k. For fixed D1, the value of k controls the maximum growth capacity and
also determines the instant in time when growth alternates from positive to negative. In the special
case, for sufficiently small time with large k, the term t

k in (43) is negligible, and the growth function is
approximately linear G(t) ≈ D1t, and in the limiting case as k→ ∞,

G(t) = D1t (44)

with corresponding diffusion coefficient,

D(t) = D0 + D1te−νt (45)

which now depends on three parameters {D0, D1, ν}. The corresponding diffusive flux can be derived
for the logistic model (42) from (41), which results in:

Model 1: J(t) =
2U0√

π

(
D0t +

D1

ν2

[
1− (1 + νt)e−νt]+ D1

kν3

[
(ν2t2 + 2νt + 2)e−νt − 2

]) 1
2

(46)

and simplifies to:

Model 2: J(t) =
2U0√

π

(
D0t +

D1

ν2

[
1− (1 + νt)e−νt]) 1

2
(47)

in the reduced linear case (44). Henceforth, we will refer to this as Models 1 and 2, respectively.
Figure 4, Plot (a), illustrates the logistic growth function as a parabolic profile for different values

of k, with linear growth as k → ∞. Figure 4, Plot (b), shows how the diffusion coefficient behaves
for particular parameter values. In ecological terms, the mechanistic process is such that insect
diffusivity increases from the initial value D0 until maximum diffusivity Dmax is attained at time
t = k

2 + 1
ν −

k
2

√
1 + 4

(kν)2 . We presume that this increase in diffusion rate can induce faster movement,

which can be comparable (at some level) to the pattern inherent in Lévy walks. Following this, the
diffusivity begins to decrease until it reaches a minimum level Dmin at time t = k

2 + 1
ν + k

2

√
1 + 4

(kν)2

and then asymptotically approaches the initial state D0 in the large time limit. In the special case of the
linear growth function, insect diffusivity reaches Dmax = D0 +

D1
eν at time t = 1

ν with no subsequent
local minimum and the same asymptotic behavior as t→ ∞. Figure 4, Plot (c), illustrates the flux for
each corresponding diffusion coefficient in Plot (b), and it is precisely these diffusion Models 1 and 2
((46)–(47)) that will be tested in Section 4.4 against Lévy trap count data.
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Figure 4. (a) Growth function: Logistic G(t) = D1t
(
1− t

k
)
, which reduces to linear growth

G(t) = D1t as k→ ∞. (b) Diffusion coefficient: D(t) = D0 + D1t
(
1− t

k
)

e−νt, which reduces to
D(t) = D0 + D1te−νt as k → ∞. Parameter values (chosen for illustrative purposes): D0 = 2.5,
D1 = 10, ν = 0.8 with different values k = 1.5, 5, including the limiting case k→ ∞. (c) Diffusive flux
given by ((46)–(47)).

4.4. Reproducing Lévy Trap Counts Using Diffusion

In this section, we test Models 1 (46) and 2 (47) against Lévy trap count data (see Figure 5 and
Table B1). The simulation setting, alongside the initial and boundary conditions, is precisely that which
is outlined in Section 2.1, with the difference that the steps ξ are now randomly drawn from those
stable laws, defined in ((37)–(39)). Furthermore, the assumptions that the walk is uncorrelated and
unbiased in a homogeneous environment still apply. In a system of N individuals executing a Lévy
walk, the position of the n-th individual at the (i + 1)-th step can be described by:

X(n)
i+1 = X(n)

i + ξ, i = 0, 1, · · · , S, n = 1, 2, · · · , N, ξ ∼ S(α, γ), α ∈ (0, 2). (48)

The trap count is expected to grow faster with time, compared to what is usually recorded
for Brownian movement. This is due to the frequency of long jumps increasing, and therefore,
the contribution from remote parts of the population to the trap count also increases. For our purposes,
we simulate trap counts for the tail indices α = 3

2 , 1, 1
2 , referring to the Holtsmark (37), Cauchy (38)

and symmetric-Lévy (39) distributions, previously introduced in Section 4.1. The movement dynamics
are completely governed by the scale parameters γh, γc, γl . Although, comparing random walks
prior to simulation runs can reveal information on parameter selection [81] (also see Section 2.2),
for our purposes, it suffices to arbitrarily select three distinct scale parameters for each case,
i.e., γh = 0.01, 0.02, 0.04, γc = 0.0005, 0.002, 0.003 and γl = 1 × 10−6, 4 × 10−6, 2 × 10−5.
Here, parameters are chosen so that trap count data are obtained with a reasonable level of variation
(see Table B1). The diffusive flux curves J(t) given by Model 1 (46) and Model 2 (47) are then fitted
(in the least squares sense) against these trap counts using a non-linear curve fitting tool, and the
best-fit parameters are estimated, listed in Table 3.
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Figure 5. Simulation details: In accordance with the simulation setting in Section 2.1, N = 1000 individuals
are initially uniformly distributed along a 1D spatial domain 0 < x < L = 5. After one time step ∆t = 0.001,
each individual executes a single step, with the subsequent position defined by the recurrence relation (48).
A total number of S = 3000 steps is executed, with the total time of exposure T = S∆t = 3. Prior to the
simulation run, an impermeable external boundary is installed at x = 5 ensuring that no individual can

escape or enter the system at this end (no-migration/immigration), by forcing the condition: if X(n)
i > 5

at any instant in time, then X(n)
i = 5. The point trap at x = 0 functions in the following way: if X(n)

i < 0
at any instant in time, then the individual is removed from the system, and the accumulated trap count
increases by one. Consequently, the number of individuals in the population decrease as time flows, and an
increasing stochastic trap count trajectory is formed. Trap counts: Bold dots depict cumulative trap counts
Jt recorded for the cases (a) Holtsmark, (b) Cauchy and (c) symmetric-Lévy at times t = 0, 0.1, 0.2, · · · , 3.
Different scale parameters are considered for each respective case. Furthermore, trap counts are averaged
over five realizations to reduce the effect of stochasticity (for the full list of recordings, see Table B1).
Diffusive flux: Curves J(t) shown for Model 2 in all three cases (red, blue and black curves). Model 1
shown only for the case corresponding to Holtsmark S(α = 1.5, γh = 0.04) (magenta curve). All best-fit
parameters are listed in Table 3.

Table 3. Best-fit parameters using a non-linear curve fitting tool (in the least squares sense) by fitting
Model 1 (46) and Model 2 (47) against cumulative trap counts (see Table B1 for the complete list of
recordings). The diffusion coefficients in Figure 6 are those plotted with highlighted parameters in the
table below.

D0 D1 ν k D0 D1 ν

γh = 0.01 1.974 3.186 0.615 1286.032 1.9745 3.1834 0.6158
0.02 5.798 16.488 1.102 2846.675 5.7984 16.4881 1.1025

0.04 22.552 26.262 0.631 1.235 11.1403 133.0602 2.3539

γc = 0.0005 0.286 2.083 0.327 2598.906 0.2861 2.0828 0.3276
0.002 1.374 10.971 0.687 1918.029 1.3743 10.9709 0.6874
0.003 5.218 27.968 1.036 2589.831 5.2184 27.9676 1.0365

γl = 1× 10−6 0.271 11.137 0.541 2608.857 0.2715 11.1369 0.5405
4× 10−6 2.099 34.539 0.935 2613.735 2.0992 34.5388 0.9345
2× 10−5 4.671 152.605 1.847 5202.465 4.6706 152.6045 1.8471
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Figure 5 illustrates the fitting between the diffusive flux J(t) and Lévy trap count data Jt, for the
Holtsmark α = 3

2 , Cauchy α = 1 and symmetric-Lévy α = 1
2 distributions, respectively. Model 2

is shown and found to form an almost identical fit, with the exception of the Holtsmark case with
γh = 0.04. In this special case, we find that Model 2 eventually overestimates trap counts, which is
more apparent for larger γh. Here, we find that Model 1 forms a better fit, and this can also be realized
upon inspection of the best-fit parameters in Table 3. The parameter k is significant (compare the
order of magnitude of boxed value (k = 1.235) with other k), and therefore, the term t

k behaves as
some type of correction term, which slows the diffusivity rate. The corresponding growth function
is of the logistic type, with diffusion coefficient D(t) = D0 + D1t

(
1− t

k
)

e−νt. In all other cases, k is
relatively large, and therefore, on a short time scale, the term t

k in this diffusion coefficient is negligible.
As a result, the growth function is then approximately linear, and Model 1 reduces to Model 2 with
diffusion coefficient D(t) = D0 + D1te−νt.

Figure 6 shows a plot of the diffusion coefficients, corresponding to each case in Figure 5.
The diffusive profiles tend to follow a particular pattern. Typically, the diffusivity begins at some initial
value D0, begins to increase until it peaks at Dmax and then subsequently decays to re-approach the
initial value for a larger time (where the latter is not typically essential as the interest is in short time
dynamics). In the special case, seen in Plot (a), the rate of decay for Model 2 (black curve) is slower
than required, resulting in larger diffusivity and explains the overestimation previously observed in
Figure 5, Plot (a), for the Holtsmark case with γh = 0.04. On comparing the diffusion coefficients for
both models, we find that trap counts are better estimated using a profile with larger initial diffusivity,
a smaller peak and a faster decay (see the dashed curve).

Figure 6. Plots (a), (b), (c) Solid curves (red, blue black) show the diffusion coefficients given by (45)
for Model 2. Dashed curve in (a) shows the diffusion coefficient given by (43) for Model 1. Best-fit
parameters used are those highlighted in Table 3.

Figure 7 illustrates that a high level of accuracy is maintained, where the error lies roughly within
1% using (i) Model 1 for the Holtsmark case with γh = 0.04 (magenta circles in Plot (a)) and (ii) Model
2 for all other cases. On comparing the absolute relative error in Table 4, we find that the proposed
diffusion models significantly improve trap count prediction more than what is obtained from super
diffusion. Moreover, the numerical values in Table 4 are indicative of equivalence (compare the boxed
values to the others), since these values lie within the interval 0 < Ā ≤ 0.5, also previously seen when
comparing standard diffusion to Brownian motion, which are theoretically equivalent movement
processes (see Table 1). Evidently, these proposed diffusion models can be used effectively to reproduce
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trap counts for a system of Lévy walking individuals to a remarkable level of accuracy, yielding almost
identical counts.

Table 4. Tabulated values of the average absolute relative error Ā as defined by (32), to compare the
fit between Models 1 (46) and 2 (47) and trap counts. Ā is also included for the anomalous diffusion
model; see Figure 3 and Table 2. Boxed values signify ‘equivalence’ between the diffusion and Lévy
movement models.

Diffusion γh = 0.01 0.02 0.04 γc = 0.0005 0.002 0.003 γl = 10−6 4 × 10−6 2 × 10−5

Standard H = 1
2 2.035

Super H = 3
4 0.849

Ballistic H = 1 1.120
Model 1 (46) 0.139
Model 2 (47) 0.162 0.198 0.839 0.123 0.135 0.299 0.194 0.370 0.394

Figure 7. Absolute relative error between trap counts and diffusive flux for the cases (a) Holtsmark,
(b) Cauchy and (c) symmetric-Lévy. Each color corresponds to those cases with scale parameters shown
in Figure 5.

5. Discussion

The concept of Lévy walks emerging from time-dependent diffusion in the physical or biological
sciences in not uncommon. For example, Ott et al. [82] argued that anomalous diffusion of tracer
particles in systems of polymer-like breakable micelles (‘living polymers’) provides an experimental
realization of a Lévy walk. A more recent example is that of Chen et al. [83], who showed from
experiments that active transport within living cells described by time-dependent Brownian walks
can self-organize into (truncated) Lévy walks. Other examples demonstrating this concept can be
found elsewhere in the literature, e.g., swarming bacteria [84], pollen dispersal [85], etc. Despite
this, from an ecological viewpoint, such as insect trapping, the motivation behind time-dependent
diffusion, and how this is linked to the type of mechanisms involved, to date, has not been clearly
understood [52].

In this study, the diffusion coefficient introduced (43) consists of parameters of ecological
significance with obvious meaning, in the sense that they are not all arbitrary and are related to
the underlying movement dynamics. One possible explanation of the type of diffusive pattern seen
in Figure 6 can be arrived at through the concept of differential energetics [86–88]. If an individual
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executes a large step, then this will incur higher energy costs than a small step, so energy expenditure
for different step lengths is a given. In relation to basic individual traits, such as body mass, a heavier
body requires a larger force and a larger energy expense to change direction or execute a larger
step. Therefore, it may be expected that the frequency of moving long distances is lower for
heavier individuals. Furthermore, for those individuals that do prefer to take large steps, this could
possibly induce larger rest pauses contributing towards intermittent behavior [89], from which the
decrease in the rate of diffusivity can be explained. On the other hand, the mechanisms behind
the movement behavior could involve a degree of spatial synchronization of individual variation.
In the case of movement with a physiological origin, this could result from a diffusivity distribution as
indicated by Petrovskii and Morozov [48] or, alternatively, even time-dependent diffusion. Furthermore,
with reference to behavioral effects, a sudden event may trigger a change in behavior in one individual
that results in swarming behavior, leading to a change at the population level [90]. It must also be
realized that the build up of the insect population and following changes in diffusivity can also be
a result of transient environmental factors, e.g., temperature [91], as sudden temperature changes
can excite movement or even lead to erratic behavior. If one or more of these factors can bring about
diffusive movement varying with time, then as a consequence, the pattern produced by an insect
population performing Brownian motion may be indistinguishable from the pattern produced by
insects performing Lévy walks. Altogether, it seems that identifying a genuine Lévy walk may be more
challenging than previously thought. In light of this, it is not surprising that the Lévy or diffusion
controversy has been persistent, with strong evidence arguing for either side; in this study, we have
demonstrated that both sides are somewhat equivalent, at least in the context of trapping.

On a final note, we would like to mention some limitations and suggest possible further research
directions. Although this study is purely theoretical and attempts to answer some important issues
in movement ecology, it is limited to the 1D spatial scale. In a more practical scenario, it would be
interesting to see a similar study in a more realistic 2D domain, which would be more relevant to
field studies with the trapping of walking/crawling insects [12,28]. The problem would then have
enhanced complexity due to the introduction of a single trap of different possible shapes and sizes.
For example, Reynolds [92] suggests that trap size will become a relevant quantity when the analysis
is extended from the 1D case to higher dimensions. The movement pattern would then be altered,
as the effects of trap and field boundaries are realized by enforcing a confined or restricted space [60].
In particular, interest would lie in how the time-dependent diffusion model could be further refined in
order to produce trap counts at a high level of accuracy within these different geometries. The diffusion
model can then be checked and tested for good agreement against insect trap counts in the real field,
given that there is evidence of Lévy-type movement beforehand. Developing a corresponding model
in 2D would be the next obvious step to take.

Attempting to model more realistic scenarios would further increase the level of model complexity.
For example, in the real field, very rarely, a single trap is installed; rather, a multiple trapping system is
implemented [93]. In terms of modeling, the geometry of the domain becomes intrinsically complicated,
and the effects of perturbations from each trap may become difficult to unravel. In addition, removing
the assumption that the random walk is unbiased would result in directed movement. This can
be related to baited traps, which are widely used in practice to increase the frequency of captures
[94,95]. Application of a certain agent can induce behavioral responses and attract insects to the trap,
such as light, odors or pheromone. Since installation of baited traps considerably alters the insect
behavior, they are much more difficult to model [96], and the corresponding theory is largely absent.
In this case, the convenient mathematical framework would consist of advection-diffusion equations,
where possibly, a time-dependent diffusivity may be used.

6. Concluding Remarks

In this paper, we show that the diffusion coefficients (43) and the reduced version (45)
can be incorporated into a time-dependent diffusion model, which can then be used to predict,
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almost identically, trap counts from a system of individuals who undergo a Lévy walk. Moreover,
we show that this can be achieved for a broad range of Lévy tail indices. Furthermore, we find that these
proposed diffusion models are much more accurate and effective when compared to super diffusion.
Alongside the development of the models, we explore the biological basis for time-dependent diffusion
in more detail and interpret parameters in relation to diffusive patterns. We argue that, if these
inherently different movement models yield almost identical trap counts, then how important is the
movement pattern in the context of trapping? This study suggests that the movement pattern is not
that important after all, and rather, emphasis should be on the ecological context, at least in integrated
pest monitoring programs.
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Appendix A. Mean Field Numerical Solution

Consider the 1D diffusion equation for the population density u(x, t) with time-dependent
diffusion coefficient D = D(t) over the finite domain 0 < x < L, with initial uniform density
u(x, t = 0) = U0. The boundary conditions include the zero density condition u(x = 0, t) = 0 at the
trap boundary and no-flux condition ∂u(L,t)

∂x = 0 at the external boundary. To summarize,

∂u
∂t

= D(t)
∂2u
∂x2 , u(x, t = 0) = U0, u(x = 0, t) = 0,

∂u(L, t)
∂x

= 0 (A1)

An analytical solution can only be derived for the system (A1) over the semi-infinite domain
L = ∞, previously demonstrated in Section 3. In the case of finite L, a numerical solution can be sought
using the method of explicit finite differences [97,98] by introducing a uniform computational grid.
We discretize the spatial and temporal scales,

tk+1 = k∆t, k = 0, 1, 2, · · · (A2)

x1 = 0, xn+1 = xn + ∆x, n = 1, 2, · · · , N (A3)

with constant time ∆t and spatial ∆x increments. For brevity, using the notation:

u(xn, tk) = uk
n, u(xn, tk + ∆t) = uk+1

n and u(xn + ∆x, tk) = uk
n+1

we can approximate the partial derivatives as:

∂u
∂t
≈ uk+1

n − uk
n

∆t
,

∂2u
∂x2 ≈

uk
n+1 − 2uk

n + uk
n−1

(∆x)2 . (A4)
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Here, we have used a forward difference for ∂u
∂t and a central difference for ∂2u

∂x2 . The numerical
scheme is said to be explicit since the solution at the (k + 1)st time step, namely uk+1

n , is given explicitly
in terms of the values uk

n from the previous time layer tk. Discretizing the diffusion equation in (A1)
and rearranging, we obtain the recurrence relation:

uk+1
n = uk

n +
D(k∆t)∆t
(∆x)2 (uk

n+1 − 2uk
n + uk

n−1). (A5)

The theoretical approximation related to this numerical scheme is O(∆x2 + ∆t), and in the case of
short time dynamics of trap counts, we are interested in the solution for small time t, where we can
assume that the approximation error O(∆t) is negligible. The reader is redirected to [99] for a discussion
on local/global truncation and round-off errors. The spatial-temporal increments must also satisfy the
Courant–Friedrichs–Lewy condition:

D(k∆t)∆t
(∆x)2 <

1
2

. (A6)

to ensure stability. Other numerical schemes such as the method of implicit finite differences relax
this condition; however, since our interest lies in calculating the flux through the trap boundary for
small times, the explicit scheme suffices with simpler computation. The initial condition can be written
as u0

n = u(xn, t0) = U0, and the discretization of the trap boundary reads uk
1 = 0 with the no-flux

condition uk
N+1 = uk

N at the external boundary. The flux j(t) through the trap boundary at time t is

given by j(t) = −D ∂u(x=0,t)
∂x . To compute this, we approximate the derivative ∂u

∂x ≈
uk

n+1−uk
n

∆x , and at

the trap location x = 0 corresponding to grid node n = 1, this reduces to ∂u(x=0,t)
∂x ≈ uk

2−uk
1

∆x . Therefore,
the flux through the boundary at time tk is given by:

j(tk) = D(k∆t)
|uk

2 − uk
1|

∆x
(A7)

Here, we take the absolute value instead of omitting the ‘−’ sign, which would be required since
the flux is in the opposite direction of the positive x-axis. A linear approximation is used in (A7);
alternatively, a more accurate way to compute the flux uses a quadratic polynomial [56], which yields
an error in line with the numerical scheme, i.e., O(∆x2). For our simulations, the linear approximation
suffices, and we choose the spatial step ∆x to be sufficiently small to ensure that any accumulated
errors are negligible. The cumulative flux passing through the trap boundary between times tk and
tk+1 can be computed as:

Jk,k+1 = j(tk)∆t =
∆tD(k∆t)|uk

2 − uk
1|

∆x
(A8)

The cumulative flux Jk+1 from time t > 0 is then computed by summing:

Jk+1 = Jk +
∆tD(k∆t)|uk

2 − uk
1|

∆x
(A9)

It is precisely this flux through the trap boundary that is used to model the cumulative trap counts
in the diffusion model.
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Appendix B. Trap Count Recordings

Table B1. Trap count recordings for the cases (a) Holtsmark S(α = 3
2 , γh), (b) Cauchy S(α = 1, γc) and

(c) symmetric-Lévy S(α = 1
2 , γl), with tail exponent α and scale parameter γ. Simulation details with

all parameter values are given in the caption of Figure 5.

Time (t) γh = 0.01 0.02 0.04 γc = 0.0005 0.002 0.003 γl = 1 × 10−6 4 × 10−6 2 × 10−5

0.1 54 93.8 188 21.6 48.6 91 32.6 69.4 134.2
0.2 83.2 147.2 283.4 36.4 86.4 147.8 60.6 123.4 241.6
0.3 106.6 195.6 355.2 53.2 120.2 206.2 94 173 324.8
0.4 127.6 235.6 413.8 68.4 145 252.6 123.2 222.2 399.4
0.5 146.2 270.6 466 78.4 171 291.2 147.4 263.6 460.8
0.6 163.2 299.6 510.4 91.6 194.4 328.4 171.6 305 513
0.7 180.6 326.2 551.8 103.8 218.6 364.4 196 340.4 560.
0.8 195.6 351.6 588.8 116.6 240.2 394.8 219.6 376.4 603.
0.9 209.8 376.8 629.6 126 262.6 425.4 238.4 409.6 645.8
1.0 225.6 400.8 661 133.8 282.2 451.6 258 438.2 686.4
1.1 238.2 421.8 689.6 143.2 302.6 476 279 466.2 717.4
1.2 251.4 442.4 715.2 155.4 321.6 498.4 298.6 491.6 746.4
1.3 260.8 460.4 740.6 166.4 335.8 521.2 321.4 513 773.2
1.4 271 482 760.4 175.2 355 545 341.4 536.2 797
1.5 282.6 499 783 184.2 372.6 563.8 358.6 555.2 820.2
1.6 290.6 516.2 804 194.2 384.6 584 374.8 575.8 839
1.7 301 531.4 821.2 204.8 398 600.8 390.2 596 856.8
1.8 311 546.4 836.4 214.2 413 617.4 407.8 612.2 871.2
1.9 323 562.8 851.6 222.6 427 633.8 422.8 632 883
2.0 333.2 574 864 231.8 439.6 652.6 435 648.6 894.8
2.1 342.6 586.2 877.2 333.2 574 864 446.6 668.4 904.6
2.2 350.4 599 888.8 241.8 452.2 669 462 681 912.4
2.3 359.2 609.2 898.8 246.4 465.2 683.8 474.2 694.2 919.4
2.4 369.4 620.2 907.6 254.2 476.6 695.2 488.6 704 928.2
2.5 376.2 631 914.8 263 488.2 708.2 502.6 716.4 934.6
2.6 386.2 645.8 921.8 271.6 499.2 721.2 515 730.4 941.6
2.7 394.4 655.4 928.4 280 509 735.2 525.6 747.4 946.2
2.8 399.4 666.8 934.4 288 518.2 745.8 538 756.4 950.2
2.9 407.6 678.2 938.8 294.2 527.2 757 550 768.2 956.2
3.0 415 686.8 943.8 301.2 536.8 766.8 560.8 779.2 961.2
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useful tool for sampling of soil dwelling millipedes and centipedes. Zookeys 2015, 510, 197–207. [CrossRef]
[PubMed]

96. Yamanaka, T.; Tatsuki, S.; Shimada, M. An individual-based model for sex-pheromone-oriented flight
patterns of male moths in a local area. Ecol. Model. 2003, 161, 35–51. [CrossRef]

97. Morton, K.; Mayers, D. Numerical Solution of Partial Differential Equations: An Introduction; Cambridge
University Press: Cambridge, UK, 1994.

98. Holmes, M. Introduction to Numerical Methods in Differential Equations; Springer: Berlin, Germany, 2006.
99. Strauss, W. Partial Differential Equations: An Introduction; John Wiley and Sons: Hoboken, NJ, USA, 2008.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/ncomms9396
http://www.ncbi.nlm.nih.gov/pubmed/26403719
http://dx.doi.org/10.1098/rsif.2016.0889
http://www.ncbi.nlm.nih.gov/pubmed/28123097
http://dx.doi.org/10.1038/s41559-016-0009
http://www.ncbi.nlm.nih.gov/pubmed/28812570
http://dx.doi.org/10.1242/jeb.133256
http://www.ncbi.nlm.nih.gov/pubmed/27207950
http://dx.doi.org/10.1093/icb/41.2.137
http://dx.doi.org/10.1016/j.plrev.2014.06.009
http://www.ncbi.nlm.nih.gov/pubmed/24954731
http://dx.doi.org/10.1098/rspa.2015.0123
http://www.ncbi.nlm.nih.gov/pubmed/26346221
http://dx.doi.org/10.1023/A:1009682527012
http://dx.doi.org/10.1603/EC09322
http://www.ncbi.nlm.nih.gov/pubmed/21510197
http://dx.doi.org/10.3897/zookeys.510.9020
http://www.ncbi.nlm.nih.gov/pubmed/26257543
http://dx.doi.org/10.1016/S0304-3800(02)00291-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	BM vs. LW: Equivalence I
	Brownian Motion
	Condition of Equivalence

	Time-Dependent Diffusion
	BM vs. LW: Equivalence II
	Stable Laws
	Equivalence of Trap Counts: Cauchy Walk vs. Diffusion
	Proposed Diffusion Coefficient
	Reproducing Lévy Trap Counts Using Diffusion

	Discussion
	Concluding Remarks
	Mean Field Numerical Solution
	Trap Count Recordings
	References

