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Abstract: Prey–predator models with variable carrying capacity are proposed. These models are more
realistic in modeling population dynamics in an environment that undergoes changes. In particular,
prey–predator models with Holling type I and type II functional responses, incorporating the idea of
a variable carrying capacity, are considered. The carrying capacity is modeled by a logistic equation
that increases sigmoidally between an initial value κ0 > κ1 (a lower bound for the carrying capacity)
and a final value κ1 + κ2 (an upper bound for the carrying capacity). In order to examine the effect
of the variable carrying capacity on the prey–predator dynamics, the two models were analyzed
qualitatively using stability analysis and numerical solutions for the prey, and the predator population
densities were obtained. Results on global stability and Hopf bifurcation of certain equilibrium points
have been also presented. Additionally, the effect of other model parameters on the prey–predator
dynamics has been examined. In particular, results on the effect of the handling parameter and the
predator’s death rate, which has been taken to be the bifurcation parameter, are presented.
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1. Introduction

Prey–predator dynamic is an essential tool in mathematical ecology, specifically for our
understanding of interacting populations in the natural environment. This relationship will continue
to be one of the dominant themes in both ecology and mathematical ecology due to its universal
existence and importance. These problems may appear to be mathematically simple at first sight.
However, they are, in fact, often very challenging and complicated. Moreover, although much progress
has been made to the prey–predator theory in the last 40 years, many long standing mathematical and
ecological problems remain open, such as modeling transient dynamics, environmental variability,
complex ecological networks, and biodiversity extrapolation techniques [1]. All populations are
affected by changes in their environment; therefore, there is a need to treat the carrying capacity as
a system variable (i.e., function of time) in order to model population dynamics in an environment that
undergoes changes [2]. In particular, in resource management, where the carrying capacity is often
assumed to be constant and unchanging [3]. Many efforts to predict the world’s carrying capacity,
the maximum sustainable population, are based on this assumption [4]. However, technological
developments have raised crop yields, allowing a greater population to be supported by a smaller land
area [5]. Thus, for the human population, a constant carrying capacity is not realistic [6]. Similarly,
in nature, the inherent variability of natural systems [7] means that assuming an unchanging carrying
capacity fails to adequately represent the environment.

Meyer et al. [8] proposed the carrying capacity to be modeled by a logistic equation that increases
sigmoidally between an initial value κ0 > κ1 and a final value κ1 + κ2. They studied the effect of this
dynamic carrying capacity on the trajectories of simple growth models, and they use the new model to
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re-analyze two actual cases of the growth of human populations; English and Japanese examples with
two pulses, or one change in limit, appear to verify their model.

A periodic form of carrying capacity has also been considered. For example, Shepherd et al. [9]
has considered the following expression for the carrying capacity

κ(εt) = κ0 + δsin(εt)

where κ0 and δ are positive constants such that δ < κ0, ensuring the positive of κ(t), and ε is small
and positive.

They demonstrated that, when the carrying capacity varies slowly with time, a multiple time scale
analysis leads to approximate closed form solutions that, apart from being explicit, are comparable to
numerically generated ones and are valid for a range of parameter values.

In this paper, we will consider prey–predator models with Holling type I and type II functional
responses, incorporating the idea of a variable carrying capacity. Note that Meyer et al. [8] and
Shepherd et al. [9] only consider the variable carrying capacity within a single population, and here
we consider prey–predator models with variable carrying capacity.

The rest of the paper is organized as follows: in the second section, we present and analyze
a prey–predator model with Holling type I functional response and variable carrying capacity.
In Section 3, we present and analyze a prey–predator model with Holling type II functional response
and variable carrying capacity. Finally, a conclusion is given in Section 4.

2. Prey–Predator Model with Holling Type I Functional Response

If the predator eats essentially one type of prey, then the functional response should be linear at
low prey density. Hence, in this section, we will take the Lotka–Voltera model with the concept of
variable carrying capacity.

2.1. Model Building

The prey–predator model with Holling type I functional response with logistic carrying capacity
is governed by the following system of equations:

dN(t)
dt

= rN(t)
(

1− N(t)
κ(t)

)
− aN(t)P(t)

dκ(t)
dt

= α (κ(t)− κ1)

(
1− κ(t)− κ1

κ2

)
dP(t)

dt
= bN(t)P(t)− cP(t)

(1)

subject to the initial conditions: N(0) = N0, κ(0) = κ0, P(0) = P0, where N, P denote prey and predator
population densities, respectively, r represents prey’s per capita growth rate, c is the death rate of the
predator, b represents the increment of predator and a represents decrements of prey and κ is the carrying
capacity that increases sigmoidally between an initial value κ0 > κ1 and a final value κ1 + κ2 with a growth
rate α.

2.2. Mathematical Analysis of the Model

System (1) has the following equilibrium points:
E1 = (0, κ1, 0), E2 = (κ1,κ1, 0), E3 = (0, κ1 + κ2, 0), E4 = (κ1 + κ2, κ1 + κ2, 0),

E5 =

(
c
b

, κ1,
r(bκ1 − c)

abκ1

)
, and E6 =

(
c
b

, κ1 + κ2,
r(b(κ1 + κ2)− c)

ab(κ1 + κ2)

)
.

Note that E5 and E6 exist iff bκ1 − c > 0 and b(κ1 + κ2)− c > 0, respectively.
Obviously, the carrying capacity, κ(t), is independent of the other two variables and always

tends to κ1 + κ2; therefore, the instability of the equilibrium points E1, E2, and E5 immediately follows.
The local stability of the remaining equilibrium points is illustrated in the following theorem.
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Theorem 1. The stability of the equilibrium points E3, E4, and E6 of System (1) is given by

(i) E3 = (0, κ1 + κ2, 0) is unstable.
(ii) E4 = (κ1 + κ2, κ1 + κ2, 0) is locally asymptotically stable if b(κ1 + κ2) < c.

(iii) E6 =

(
c
b

, κ1 + κ2,
r(b(κ1 + κ2)− c)

ab(κ1 + κ2)

)
is locally asymptotically stable if b(κ1 + κ2) > c.

Proof. The Jacobian matrix of System (1) is

J =



r− 2rN
κ
− aP

rN2

κ2 −aN

0 α− 2ακ

κ2
+

2ακ1

κ2
0

bP 0 bN − c


.

Therefore,

(i) the eigenvalues of the Jacobian at E3 are r , −α, and −c, which implies that E3 is also unstable;
(ii) the eigenvalues of the Jacobian at E4 are−r,−α, and b(κ1 + κ2)− c, so E4 is stable if b(κ1 + κ2) < c;

(iii) the Jacobian matrix at E6 is given by

J|( c
b ,κ1+κ2, r(bκ1+bκ2−c)

ab(κ1+κ2)

) =



−cr
b(κ1 + κ2)

rc2

b2(κ1 + κ2)2
−ac

b

0 −α 0

r(bκ1 + bκ2 − c)
a(κ1 + κ2)

0 0


.

Clearly, −α is one of the eigenvalues, so the remaining two eigenvalues are the eigenvalues of the
reduced matrix: 

−cr
b(κ1 + κ2)

−ac
b

r(bκ1 + bκ2 − c)
a(κ1 + κ2)

0

 ,

which has the characteristic polynomial:

λ2 +
cr

b(κ1 + κ2)
λ +

r(bκ1 + bκ2 − c)
a(κ1 + κ2)

= 0.

Using Routh–Hurwitz Criteria [10], the local stability is guaranteed if

b(κ1 + κ2) > c.

The following theorem shows the global stability of the equilibrium point E4 in the N − κ plane.

Theorem 2. The equilibrium point E4 is globally asymptotically stable in the positive quadrant of N − κ plane
if b(κ1 + κ2) < c.

Proof. In the N − κ plane, the system is reduced to
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dN(t)
dt

= rN(t)
(

1− N(t)
κ(t)

)
= g1(N, κ)

dκ(t)
dt

= α (κ(t)− κ1)

(
1− κ(t)− κ1

κ2

)
= g2(N, κ)

. (2)

Let D =
1

N(κ − κ1)
. Clearly, D > 0 in the interior of the positive quadrant of N − κ plane, as κ > κ1 in

the interior. Now let
∆(N, κ) =

∂

∂N
(Dg1) +

∂

∂κ
(Dg2)

=
−r

κ(κ − κ1)
− α

Nκ2

.

Therefore, ∆ does not change sign and it is not identically zero in the positive quadrant of N − κ

plane; therefore, from Dulac’s criteria [11], there exists no limit cycle in the positive quadrant of N − κ

plane. From the local stability of E4, we conclude the proof.

Note that, although E4 is globally stable in the N − κ phase plane of the system (2), it can still be
unstable in the 3D phase space of the full System (1)

2.3. Numerical Simulation and Discussion

Numerical simulations of System (1) are illustrated in Figure 1 for (i) b(κ1 + κ2) < c and (ii)
b(κ1 + κ2) > c.

Figure 1(i) illustrates the case when the prey and the predator reach the stable equilibrium point
E4 = (κ1 + κ2, κ1 + κ2, 0); that is, the prey follows the curve of carrying capacity, whereas the predator
is extinct if c > b(κ1 + κ2). Figure 1(ii) demonstrates the case where the prey and the predator reach

the stable equilibrium point E6 =

(
c
b

, κ1 + κ2,
r(b(κ1 + κ2)− c)

ab(κ1 + κ2)

)
with c < b(κ1 + κ2). The prey and

predator populations exhibit damped oscillations before reaching the asymptotically stable spiral
equilibrium point. These dynamics are similar to the constant carrying capacity case. However, if the
growth rate of variable carrying capacity is very small, then the periodicity in the solutions of the
systems decrease its magnitude. Additionally, the solutions reach the stable equilibrium faster compared
to the constant carrying capacity case and compared to the variable carrying capacity case with a higher
growth rate, as illustrated in Figure 2. In addition, Figure 3 illustrates the effect of variable carrying
capacity on the phase space of the model, which confirms that less time is needed for the prey and
predator populations to reach their equilibrium values when the growth rate of carrying capacity is
very small, which can be seen from the trajectories in the neighbourhood of the asymptotically stable
spiral point.

(i) a = b = 0.00025, c > b(κ1 + κ2) (ii) a = b = 0.0025, c < b(κ1 + κ2)

Figure 1. Prey–predator model with Holling type I functional response and logistic carrying capacity,
stability of E4 and E6 for κ1 = 300, κ2 = 500, r = c = 0.25, α = 0.2.
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(i) Constant capacity, κ = 800 (ii) κ(t), α = 0.4 (iii) κ(t), α = 0.008

Figure 2. Effect of the logistic variable capacity on the prey–predator model with linear response for
κ1 = 300, κ2 = 500, r = c = 0.25, a = b = 0.0025.

(i) Constant capacity, κ = 800 (ii) κ(t), α = 0.4 (iii) κ(t), α = 0.008

Figure 3. Effect of the logistic variable varying capacity on the phase space of the prey and predator
model with linear response for κ1 = 300, κ2 = 500, r = c = 0.25, a = b = 0.0025.

3. Prey–Predator Model with Holling Type II Functional Response

A predator has to devote a certain time to search, catch, and consume its prey. If the prey
density increases then searching becomes easier, but consuming prey takes the same amount of time.
The functional response is therefore an increasing function of the prey density, obviously equal to zero
at zero prey density, approaching a finite time at high densities. If the predator hunts different types of
prey, then the functional response should increase as a power greater than 1 (usually 2). According to
functional response, it can be expressed that there should exist a saturation effect; that is, the predator’s
birth rate should tend toward a finite limit at high prey densities.

Here, in this section, we consider the prey–predator model with Holling type II functional
response with variable carrying capacity.

3.1. Model Building

The prey–predator model with Holling type II functional response with logistic carrying capacity
is governed by the following system of equations:
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dN(t)
dt

= rN(t)
(

1− N(t)
κ(t)

)
− aN(t)P(t)

1 + γN(t)
dκ(t)

dt
= α (κ(t)− κ1)

(
1− κ(t)− κ1

κ2

)
dP(t)

dt
=

bN(t)P(t)
1 + γN(t)

− cP(t)

(3)

where γ is the handling parameter.

3.2. Mathematical Analysis of the Model

System (3) has six equilibrium points; namely: E1 = (0, κ1, 0), E2 = (κ1,κ1, 0), E3 = (0, κ1 + κ2, 0),
E4 = (κ1 + κ2, κ1 + κ2, 0), E5 =

(
c

(b−cγ)
, κ1, rb[κ1(b−cγ)−c)]

aκ1(b−cγ)2

)
, E6 =

(
c

(b−cγ)
, κ1 + κ2, rb[(κ1+κ2)(b−cγ)−c)]

a(κ1+κ2)(b−cγ)2

)
.

Note that E5 and E6 exist iff (b− cγ) > 0 and (κ1 + κ2)(b− cγ) > c, respectively.
As noted before, the carrying capacity is independent of the other two variables, so the equilibrium

points E1, E2, and E5 are unstable; the local stability of the remaining equilibrium points is illustrated
in the following theorem.

Theorem 3. The local stability of the equilibrium points E3, E4, and E6 of System (3) is given by the following.

(i) E3 = (0, κ1 + κ2, 0) is unstable.
(ii) E4 = (κ1 + κ2, κ1 + κ2, 0) is locally asymptotically stable if (κ1 + κ2)(b− cγ) < c.

(iii) E6 =
(

c
(b−cγ)

, κ1 + κ2, rb[(κ1+κ2)(b−cγ)−c)]
a(κ1+κ2)(b−cγ)2

)
is locally asymptotically stable if γ(κ1 + κ2)(b − cγ) −

b− cγ < 0.

Proof. The Jacobian matrix of the system is given by

J =



r− 2rN
κ
− aP

1 + γN

(
1− Nγ

1 + γN

)
rN2

κ2
−aN

1 + γN

0 α

(
κ2 + 2κ1 − 2κ

κ2

)
0

bP
1 + γN

(
1− γN

1 + γN

)
0

bN
1 + γN

− c


.

By evaluating the Jacobian matrix at each equilibrium point, we have the following.

(i) The eigenvalues of the Jacobian matrix of System (3) at E3 are r, −α, and−c, so E3 is also unstable.
(ii) The eigenvalues of the Jacobian matrix of System (3) at E4 are −r, −α, and (κ1 + κ2)(b− cγ)− c.

Clearly, if (κ1 + κ2)(b− cγ)− c < 0, then E4 is stable.
(iii) The Jacobian matrix of the system at the equilibrium point E6 is given by

J|(
c

(b−cγ)
,κ1+κ2, rb((b−cγ)(κ1+κ2)−c)

a(b−cγ)2(κ1+κ2)

) =


cr(γ(κ1+κ2)(b−cγ)−b−cγ)

b(κ1+κ2)(b−cγ)
rc2

(b−cγ)2(κ1+κ2)2
−ac

b

0 −α 0
r((b−cγ)(κ1+κ2)−c)

a(κ1+κ2)
0 0

 .

Clearly, −α is one of the eigenvalues. The other two eigenvalues are the eigenvalues of the
reduced matrix:

J∗ =



cr (γ(κ1 + κ2)(b− cγ)− b− cγ)

b(κ1 + κ2)(b− cγ)

−ac
b

r ((b− cγ)(κ1 + κ2)− c)
a(κ1 + κ2)

0

 .
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where its characteristic polynomial is

λ2 − rc (γ(κ1 + κ2)(b− cγ)− b− cγ)

b(κ1 + κ2)(b− cγ)
λ +

rc ((κ1 + κ2)(b− cγ)− c)
b(κ1 + κ2)

= 0

Using Routh–Hurwitz Criteria, in order for this point to be locally stable, we should have:
(κ1 + κ2)(b− cγ)− c > 0 and γ(κ1 + κ2)(b− cγ)− b− cγ < 0.

The global stability for the equilibrium point E4 is stated in the following theorem.

Theorem 4. The equilibrium point E4 = (κ1 + κ2, κ1 + κ2, 0) is globally stable if (b− cγ)(κ1 + κ2) < c in
the positive quadrant of the N − κ plane.

Proof. The proof is similar to the proof of Theorem 2.

Note that, although E4 is globally stable in the 2D phase plane, it can still be unstable in the 3D
phase space of the full System (3)

The following theorem states the possibility of occurrence of Hopf bifurcation.

Theorem 5. System (3) undergoes a Hopf bifurcation at the positive equilibrium E6 when c = c0 =
b (γ(κ1 + κ2)− 1)
γ ((κ1 + κ2) + 1)

.

Proof. The eigenvalues of the linearized system around the equilibrium point E6 are −α and
µ1,2 = α(c)± iβ(c)
where

α(c) =
1
2

trac(J∗)

β(c) =
√

det(J∗)− (α(c))2
.

Now, at c0,

α(c0) = 0, β(c0) =
rb (γ(κ1 + κ2)− 1)

γ ((κ1 + κ2) + 1) (κ1 + κ2)γ2 6= 0

and
dα

dc
|c=c0 =

−r (1 + γ(κ1 + κ2)) (γ(κ1 + κ2)− 1)
4b(κ1 + κ2)

6= 0.

Therefore, from Hopf Theorem [12], the proof is concluded.

3.3. Numerical Simulation and Discussion

Numerical simulations of System (3) are illustrated in Figure 4 for (i) b(κ1 + κ2)(b− cγ) < c and
(ii) γ(κ1 + κ2)(b− cγ)− b− cγ < 0.

Figure 4(i) illustrates the case where the prey and the predator reach the stable equilibrium
point E4 = (κ1 + κ2, κ1 + κ2, 0); that is, the prey follows the curve of carrying capacity,
whereas the predator is extinct if c > (b − cγ)(κ1 + κ2). While Figure 4(ii) demonstrates the
stability of E6 =

(
c

(b−cγ)
, κ1 + κ2, rb[(κ1+κ2)(b−cγ)−c)]

a(κ1+κ2)(b−cγ)2

)
if c < (b − cγ)(κ1 + κ2) with b − cγ > 0,

and γ <
b + cγ

(κ1 + κ2)(b− cγ)
. We can see from Figure 4 that the predator and prey populations exhibit

damped oscillations. Moreover, these oscillations decrease in magnitude for smaller values of the
carrying capacity growth rate as illustrated in Figure 5. This effect can also be seen in Figure 6,
which demonstrates the phase space of the model where we have a stable limit cycle. However,
when we reduce the growth rate to be much smaller, the effect of the variable carrying capacity is to
convert the stable limit cycle into a spirally stable equilibrium point as shown in Figure 7. In addition,
when we reduce the handling parameter γ, the prey and the predator populations exhibit damped
oscillations before reaching an asymptotically stable spiral equilibrium point and the effect of variable
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carrying capacity is the same as in the Holling type I, that is, the periodicity in the solutions of the
systems decrease its magnitude and reach to the stable equilibrium faster than the systems with
constant carrying capacity as shown in Figures 8 and 9. The effect of the death rate of the predator,
which is the bifurcation parameter, on the prey and predator population dynamics is illustrated
in Figures 10 and 11. It can be seen that, when the death rate is small (up to around c = 0.3) the
populations are periodic and reach a stable limit cycle. If the death rate is higher (up to around c = 0.7),
the populations exhibit damped oscillations and reach the asymptotically stable spiral equilibrium
point E6, which represents the co-existence of both populations. If the death rate is even higher than
around 0.75, then the two populations reach the asymptotically stable point E4, which represents the
extinction of the predator and the existence of only the prey.

(i) a = b = 0.00025 (ii) a = b = 0.0025

Figure 4. Prey–predator model with Holling type II functional response and logistic carrying capacity,
stability of E4 and E6, κ1 = 300, κ2 = 500, r = c = 0.25, γ = 0.002, α = 0.2.

(i) Constant capacity, κ = 800 (ii) κ(t), α = 0.4 (iii) κ(t), α = 0.008

Figure 5. Effect of logistic carrying capacity on prey–predator model with Holling type II functional
response for κ1 = 300, κ2 = 500, r = c = 0.25, a = b = 0.0025, γ = 0.002.
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(i) Constant capacity, κ = 800 (ii) κ(t), α = 0.4 (iii) κ(t), α = 0.008

Figure 6. Effect of the logistic variable carrying capacity on the phase space of the prey–predator model
with Holling type II functional response for κ1 = 300, κ2 = 500, r = c = 0.25, a = b = 0.0025, γ = 0.002.

(i) κ(t), α = 0.002 (ii) κ(t), α = 0.002

Figure 7. Effect of logistic carrying capacity on prey–predator model with Holling type II functional
response, κ1 = 300, κ2 = 500, r = c = 0.25, a = b = 0.0025, γ = 0.002.

(i) Constant capacity, κ = 800 (ii) κ(t), α = 0.4 (iii) κ(t), α = 0.008

Figure 8. Effect of logistic carrying capacity on prey–predator model with Holling type II functional
response, κ1 = 300, κ2 = 500, r = c = 0.25, a = b = 0.0025, γ = 0.0002.
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(i) Constant capacity, κ = 800 (ii) κ(t), α = 0.4 (iii) κ(t), α = 0.008

Figure 9. Effect of the logistic variable carrying capacity on the phase space of the prey and predator model
with Holling type II functional response for κ1 = 300, κ2 = 500, r = c = 0.25, a = b = 0.0025, γ = 0.0002.

(i) κ(t), c = 0.28 (ii) κ(t), c = 0.38 (iii) κ(t), c = 0.77

Figure 10. Effect of the bifurcation parameter on the prey–predator model with Holling type II
functional response, κ1 = 300, κ2 = 500, r = 0.3, a = b = 0.0025, γ = 0.002, m = 0.2, α = 0.02.

(i) κ(t), c = 0.28 (ii) κ(t), c = 0.38 (iii) κ(t), c = 0.77

Figure 11. Effect of the bifurcation parameter on the phase space of the prey–predator model with Holling
type II functional response with κ1 = 300, κ2 = 500, r = 0.3, a = b = 0.0025, γ = 0.002, m = 0.2, α = 0.02.

4. Conclusions

Our aim in this paper is to examine the effect of variable carrying capacity on the prey–predator
dynamics. For this purpose, two prey–predator models with logistic carrying capacity have been
considered, namely, prey–predator models with Holling type I and type II functional responses.
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Stability analysis and numerical solutions of the two models were obtained, and the results were
displayed graphically. Our results show that, when interaction between the prey and the predator
populations was considered to be of Holling type I functional response, the prey and predator
populations exhibit damped oscillations before reaching the asymptotically stable spiral equilibrium
point. However, if the growth rate of the variable carrying capacity is very small, then the oscillations
decrease in magnitude. The solutions were also found to reach the stable equilibrium faster compared
to the constant carrying capacity case and compared to the variable carrying capacity case with higher
growth rate. In addition, the equilibrium point representing existence of prey and the extinction of
the predator with maximum carrying capacity was found to be globally asymptotically stable under
a certain condition in the N − κ plane; however, it might not be stable in the 3D plane.

In the case when the interaction between the prey and the predator was considered to follow
Holling type II functional response, our results showed that, when a limit cycle exists and when the
growth rate of the logistic variable carrying capacity is very small, the stable limit cycle converted
into a spirally stable equilibrium point. Our results also showed that this system undergoes a Hopf
bifurcation at the positive equilibrium representing the co-existence of prey and predator with the
maximum carrying capacity under a certain value of death rate. The equilibrium point representing
the existence of prey and the extinction of predator with the maximum carrying capacity was found to
be globally asymptotically stable under a certain condition in the N − κ plane. It is worth nothing that
this might not be the case in the 3D plane.

Moreover, when the handling parameter was reduced, the prey and the predator were found
to exhibit damped oscillations and then reached an asymptotically stable spiral equilibrium point.
The effect of variable carrying capacity in this case is the same as in in Holling type I; that is,
the periodicity in the solutions of the system decreases in magnitude and reaches the stable equilibrium
faster than the system with constant carrying capacity. Finally, when the death rate of predators,
which was taken to be the bifurcation parameter, was increased, the prey and the predator dynamics
changed from having periodic behaviour that, by exhibiting damped oscillations and reaching an
asymptotically stable spiral equilibrium point representing the co-existence of both populations,
reached a stable limit cycle for small values of the death rate of the predator to a situation where the
two populations reach an asymptotically stable point representing the existence of the prey population
only in the case of the higher predator’s death rate.
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