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Abstract: In this paper, we study the dynamics of a certain Hodgkin-Huxley model describing the
action potential (AP) of a cardiac muscle cell for a better understanding of the occurrence of a special
type of cardiac arrhythmia, the so-called early afterdepolarisations (EADs). EADs are pathological
voltage oscillations during the repolarisation or plateau phase of cardiac APs. They are considered as
potential precursors to cardiac arrhythmia and are often associated with deficiencies in potassium
currents or enhancements in the calcium or sodium currents, e.g., induced by ion channel diseases,
drugs or stress. Our study is focused on the enhancement in the calcium current to identify regions,
where EADs related to enhanced calcium current appear. To this aim, we study the dynamics of
the model using bifurcation theory and numerical bifurcation analysis. Furthermore, we investigate
the interaction of the potassium and calcium current. It turns out that a suitable increasing of the
potassium current adjusted the EADs related to an enhanced calcium current. Thus, one can use
our result to balance the EADs in the sense that an enhancement in the potassium currents may
compensate the effect of enhanced calcium currents.
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1. Introduction

The aim of this manuscript is the mathematical and numerical investigation of a three-dimensional
Hodgkin-Huxley model from [1] to study early afterdepolarisations (EADs) in a cardiac muscle cell.
Here, we are interested in the dynamics of this system and mainly in reasons for the occurrence of
EADs. More precisely, we are interested in the sudden change from a normal action potential (AP)
to this special type of cardiac arrhythmia. In general, EADs are additional small amplitude spikes
during the plateau or the repolarisation phase of the AP. The presence of EADs strongly correlates with
the onset of dangerous cardiac arrhythmias, including torsades de pointes (TdP), which is a specific
type of abnormal heart rhythm that can lead to sudden cardiac death, see [2–4]. Please see for more
(biological/physiological) details [5–11]. In this paper, we will use the bifurcation analysis similar
to [12–14] to study the system introduced in [1]. We want to highlight that we can use our approach to
investigate also more complex models, see for instance [15–17]. The numerical effort will be higher but
we can use this basic principle for further studies. Moreover, our approach can be utilised to study
the ion current interaction of all ion currents; this approach is not restricted to the investigation of
the potassium–calcium current interaction. In addition, the general aim is to extend this research to
models of the complete heart, cf. [18,19]. The main novelty of this paper is the consideration of a
bifurcation problem depending on two bifurcation parameters to investigate the ion current interaction
and the occurrence of EADs related to the calcium current. Furthermore, we want to mention that
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the intention of our manuscript is to present our results to a wide range of scientific researcher with
different background in biology, mathematics, physics and physiology.

In last decades, the mathematical investigation of phenomena from life science, especially
mathematical modelling and mathematical analysis, aroused more and more importance, as well
as interdisciplinary research involving mathematics. A very important topic in recent years is the
mathematical investigation of (human) diseases, e.g., tumor growth as well as diseases in neurons or
cardiac muscle cells. Also here we have the aim to push forward this progress using our knowledge
from mathematics to refine and extend existing theory and results. To this goal we choose the model
from [1] for our study of EADs, where the authors studies two types of cardiac arrhythmias for instance
EADs related to a deficit in the potassium current. Later we will give more details on their approach
and how it differs from our ansatz, please see Section 3.2. In this paper, the authors chose the model
from [20] and considered a modified reduced version, which they final reduced to a two-dimensional
model (fast subsystem) for their investigation. Using their approach the authors in [1] have shown that
EADs can occur during the transition between stable steady states. Moreover, they argued their study
shows that a stable limit cycle in the fast subsystem is not required for EAD generation. In Section 3.2,
we will explain and show why this approach is not applicable to study and to understand EADs
related to an enhancement in the calcium current.

Moreover, there are several cardiac cell models available, e.g., the famous Luo-Rudy model [17]
describing a cardiac muscle cell of guinea pigs. Furthermore, we want to refer to the review article on
cardiac cell modelling [16], where the authors give a nice overview on existing cardiac cell models,
as well as to the review article on cardiac tissue modelling [15].

In addition to the modelling of phenomena in the real life it is very important to analyse
the behaviour of the corresponding model and to study its dynamics. To this aim we are using
the bifurcation theory, since this theory provides a strategy for investigating the bifurcations
and the behaviour of the system, please see Section 3. Furthermore, we want to highlight the
monographs [12–14]. These monographs give a very good introduction and nice overview on this
topic. In [12] the author does not only explain and discuss the bifurcation theory, he also provides the
numerical background for the numerical bifurcation analysis. Moreover, the books [13,14] are focused
on the qualitative study of high-dimensional nonlinear dynamical systems and chaos. Beside these
books there are plenty of further good books dealing with the topics of dynamical systems, bifurcations
and chaos, but we cannot cite them all in this manuscript.

The paper is organised as follows. First of all in Section 2, we will give a brief introduction
into the topic of cardiac APs and arrhythmia, i.e., afterdepolarisations. Then, we will go on with the
mathematical modelling of the cardiac AP using a Hodgkin-Huxley type formalism, which is the
usual approach for the modelling of AP for neurons and cardiac muscle cells. In Sections 3 and 4,
we will explain the behaviour of the considered model using the bifurcation analysis. The desired
bifurcation diagram we will derive utilising MATLAB together with the toolboxes MATCONT and
CL_MATCONT [21–23], which are numerical continuation packages for the interactive bifurcation
analysis of dynamical systems. In Section 5, we show how we can compensate or control the occurrence
of EADs. Finally, we will finish this paper with a discussion.

2. Biological Background and Mathematical Modelling

Action potential. An AP is a temporary, characteristic variance of the membrane potential of an
excitable biological cell, e.g., neuron or cardiac muscle cell, from its resting potential. The molecular
mechanism of an AP is based on the interaction of voltage-sensitive ion channels. The reason for the
formation and the special properties of the AP is established in the properties of different groups
of ion channels in the plasma membrane. An initial stimulus activates the ion channels as soon as
a certain threshold potential is reached. Then, these ion channels break open and/or up such that this
interaction allows an ion current, which changes the membrane potential. A normal AP is always
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uniform and the cardiac muscle cell AP is typically divided in four phases, i.e., the resting phase,
the upstroke phase, the (long) plateau phase and the repolarisation phase, see Figure 1:
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Figure 1. One example of a normal characteristic action potential (AP) of a cardiac muscle cell.

The resting phase/potential is designated by high potassium (K+) currents, while after the initial
stimulus the sodium (Na+) conductance increases rapidly and the Na+ current flux into the cardiac
muscle cell until a spike potential (ca. +30 mV) is achieved. This spike potential is the so-called
upstroke or overshot. Then, the Na+ current inactivates rapidly followed by the activation of L-type
calcium (Ca2+) current. The Ca2+ current is more slowly than the Na+ current and plays a key role in
maintaining the long plateau phase, which is characteristic for the cardiac muscle cell. The overall
duration of this long AP is at 220–400 ms. Moreover, while the Ca2+ conductance increases the K+

conductance decreases. The plateau phase is followed by the repolarisation phase, where the intrinsic
K+ ion channels are activated and this is connected with the reduction of the Ca2+ conductance.
Finally, the K+ current increases until the resting potential respectively the resting phase is reached.
In contrast to the Na+ and Ca2+ currents is the K+ current an outward current.

Afterdepolarisation. If there are depolarising variations of the membrane voltage, then we
are speaking about afterdepolarisations. These afterdepolarisations are divided in early afterde-
polarisations (EADs) and delayed afterdepolarisations (DADs). This division depends on the timing
obtaining of the AP. EADs occur either in the plateau or the repolarisation phase of the AP. EADs are
benefited by an elongation of the AP, while the DADs occur after the repolarisation phase is completed.
EADs are additional small amplitude spikes during the plateau or the repolarisation phase of the AP,
cf. Figure 2.

0 500 1000 1500 2000
time t (ms)

-80

-60

-40

-20

0

20

40

60

V
o

lt
ag

e 
V

 (
m

V
)

early afterdepolarisation (EAD)

depolarisation phase
resting phase

repolarisation phase

Figure 2. One example of an early afterdepolarisations (EADs).

They are resulting, e.g., from a reduction of the repolarising K+ currents or from an intensification
of depolarising Na+ currents or Ca2+ currents. Triggers for this are congenital disorders of the ion
channels (congenital Long- QT-Syndrome) or the ingestion of some medicaments. The elongation
of the AP could generate afterpolarisations by reactivation L-type Ca2+ influx. Also chronic cardiac
insufficiency could appear with an elongation of the AP by a reduction of the repolarising K+ currents.
This means, EADs are often associated with deficits in the potassium currents or enhancements in the
calcium currents.
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The model. In general, APs of excitable biological cells such as neurons and cardiac muscle
cells are often modelled as an ODE system using a Hodgkin-Huxley type formalism, please see the
paper of Hodgkin and Huxley [24] and the book of Izhikevich [25]. In this paper, we will study the
model from [1]—a toy model—which depends only on two ion currents, the potassium (K+) current
and the calcium (Ca2+) current, as a simplification for the study of EADs. Please notice that in this
model the sodium current is not considered. Furthermore, the system is self-oscillating, which means
that we do not need an initial stimulus. Nevertheless, this is a suitable starting point for the study
of EADs, since EADs appear either in the plateau or the repolarisation phase. Here, the potassium
(K+) and the calcium (Ca2+) currents are important, see [1,26]. The model is a three-dimensional
ODE system, which contains the potassium current IK = GK · x · (V − EK) and the calcium current
ICa = GCa · f · d∞(V) · (V − ECa), where V denotes the membrane voltage, d∞(V) is the steady state
of the gating variable d given in (2), GK = 0.05 mS

cm2 and GCa = 0.025 mS
cm2 denote the ion current

conductances, while x and f represent the gating variables, which are important for the opening and
closing of the different ion channels. Moreover, EK and ECa denote the Nernst potential of the ion
currents, cf. Table 1. The physical system (Figure 3) one has in mind is the following

Cm

EK

GK

ECa

GCa

extracellular

intracellular

IK ICa

V

Figure 3. Physical system.

and the corresponding mathematical model read as follows:

dV
dt

= − IK + ICa

Cm
=: F1(V, f , x),

d f
dt

=
f∞(V)− f

τf
=: F2(V, f , x),

dx
dt

=
x∞(V)− x

τx
=: F3(V, f , x),

(1)

where τf = 80 ms and τx = 300 ms denote the relaxation time constant of the corresponding channel
gating variables. Further, the membrane capacitance is given by Cm = 1 µF/cm2, cf. [1,20,27]. As we
already mentioned, the gating variables are important for the opening and closing of the different ion
channels. This means (for instance explained for IK and x ∈ [0, 1]) that if x = 0 the potassium channel
is closed, i.e., there is no potassium current flow (IK = 0), while if x = 1 the potassium channel is
complete open. We have also to mention that the calcium current is depending on a second gating
variable d, which is assumed to be equal to its equilibrium, cf. (2).

Conductance-based models are based on an equivalent circuit representation of a cell membrane.
These models represent a minimal biophysical interpretation for an excitable biological cell in which
current flow across the membrane is due to charging of the membrane capacitance and movement
of ions across ion channels. Ion channels are selective for particular ionic species, such as calcium
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or potassium, giving rise to currents ICa or IK, respectively. In addition, the equilibria of the gating
variables are represented by

y∞(V) :=
(

1 + exp
(V −VTy

ky

))−1

, (2)

where y represents the gating variables d, f and x we will use the abbreviations y∞ := y∞(V) with

Table 1. System parameters of model (1).

Abbr. Value Unit Abbr. Value Unit Abbr. Value Unit

VTd −35.0 mV kd −6.24 mV EK −80.0 mV
VTf −20.0 mV k f 8.6 mV ECa 100.0 mV
VTx −40.0 mV kx −5 mV V (−80; 100) mV

In this setting there are no EADs, but it is well known that the reduction of the potassium or the
enhancements in the calcium current or a combination of both may yield EADs. In this manuscript we
are focused on the enhancements in the ICa current and the resulting behaviour of system (1).

3. Bifurcation Theory

A bifurcation of a dynamical system is a qualitative change in its dynamics produced by varying
parameters. We consider an autonomous system of ordinary differential equations, where the right
hand side of this system is depending on several state variables and parameter(s), cf. system (1).
V, f and x denote the state variables, while GK and GCa are the parameters of our interest. Since we
study the occurrence of EADs induced by an enhancement in the calcium current ICa, we will choose
the conductance GCa as the bifurcation parameter to be able to simulate the decreasing or mainly
the increasing of the current ICa. In general, a bifurcation occurs at some parameter p (in our case
GCa), if there are parameter values arbitrarily close to p with dynamics topologically inequivalent
from those at p. For example, an equilibrium of the considered system may lose or win stability at
a bifurcation, or a limit cycle may occur. The bifurcation theory provides a strategy for investigating
the bifurcations and the behaviour of the system. This basic idea we will use to study the dynamics
of (1) and the reasons for the appearing of EADs. Therefore, we choose the conductance GCa as
bifurcation parameter and we start determining the equilibrium of model (1). This yields f ≡ f∞(V)

and x ≡ x∞(V). Moreover, we have the following condition for the equilibrium of the voltage V:

−GK · x∞(V) · (V − EK)− GCa · f∞(V) · d∞(V) · (V − ECa) = 0. (3)

Please note that in system (1) we have at least four system parameters, which are important for
the behaviour of the system, i.e., GCa, GK, τf and τx. Here, we are focused mainly on the dependences
on GCa but also on GK. Further, we want to emphasise, if we change τf and/or τx, then this has also
an effect on the behaviour of the model (1).

At this stage, we see—cf. condition (3)—that the choice of GCa has a direct influence on the location
of the equilibrium and its stability (considering the corresponding eigenvalues). Therefore, varying the
bifurcation parameter GCa yields different equilibria with probably different stability. Figure 4 shows
the bifurcation diagram of system (1), where we use GCa as the bifurcation parameter for fixed
GK = 0.05 mS

cm2 . For our bifurcation analysis and the calculation of our bifurcation diagram we
are using MATCONT in combination with MATLAB. Please notice that all figures are produced
using MATLAB. Figure 4a shows the bifurcation diagram (GCa, V) with two limit cycle branches,
while Figure 4b shows the bifurcation diagram (GCa, f , V) with (only) the first limit cycle branch.
Furthermore, in Figure 4c we state the zoom of Figure 4a around the LPCs (lower limit cycle branches)
including two vertical dashed lines for an easier comprehension.
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(c)Zoom of Figure 4a around the LPCs (lower branch).

Figure 4. Bifurcation diagram of system (1) with GCa as bifurcation parameter. The black line denotes
the stable branch of the equilibrium curve, while the black dashed line the unstable one. The grey line
and grey dashed line represent the stable or unstable limit cycle branches, respectively.

This bifurcation diagram shows that the equilibrium curve loses stability via a subcritical
Andronov-Hopf bifurcation (grey dot) and wins stability via a supercritical Andronov-Hopf bifurcation
(black dot)—Figure 4a from right to left and Figure 4b from left to right. Moreover, an unstable limit
cycle branch bifurcates from the subcritical Andronov-Hopf bifurcation (positive first Lyapunov
coefficient), which becomes stable via a limit point bifurcation (LP) of cycles (also known as fold
or saddle-node bifurcation of cycles, which generically corresponds to a turning point of a curve
of limit cycles) and finally, disappears via the supercritical Andronov-Hopf bifurcation (negative
first Lyapunov coefficient). Please notice that after the supercritical Andronov-Hopf bifurcation the
steady state becomes an unstable saddle-focus for GCa values approximately between (0.080; 0.0138).
For values approximately between (0.0138; 0.0320) it turns into a saddle before it becomes again
an unstable saddle-focus and gains again stability via the subcritical Andronov-Hopf bifurcation.
Please note that the saddle has always two positive and one negative (real) eigenvalue, i.e., we have a
two-dimensional unstable and an one-dimensional stable manifold. From this bifurcation diagram it is
obvious that oscillations (in the sense of periodic orbits, which are not converging into an equilibrium
or which no more reach the resting potential) can occur only between the two Andronov-Hopf
bifurcations—also trajectories, which are not related to EADs. Notice that the system (1) exhibits also
oscillations for values of GCa close to the right hand side of the subcritical Andronov-Hopf bifurcation,
but the trajectory will either converge into a stable focus after a certain amount of time, which would
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be related to the sudden death if this behaviour spread over the heart, or oscillations occur, which
exhibit no resting phase and oscillate continuously (depending on the initial values). Since the aim
of this paper is to identify the region, where EADs appear, to be able to control them and to prevent
the sudden death, we are focused on the distinction of the spiking regions (related to normal AP) and
the bursting region (with periodic orbits related to EADs). However, EADs are in general complex
oscillatory phenomena and could have one or more additional small oscillations. For simplicity we
will analyse and point out, where system (1) have no additional small oscillations and for which values
of GCa EADs appear.

At this stage, we have to notice that increasing of GCa and therefore, increasing of the calcium
current ICa may yields EADs, which was expected. Moreover, this bifurcation diagram implies
that EADs can appear only for values of GCa between the subcritical Andronov-Hopf bifurcation
(GCa ≈ 0.0372 mS

cm2 ) and LP of cycles (GCa ≈ 0.0275 mS
cm2 ), which is the separatrix between EADs and

no EADs, since "after" the first LP of cycles there are no additional small oscillations. From this LP of
cycles we have the stable limit cycle branch, while from the first period doubling bifurcation again an
unstable limit cycle branch bifurcates, which becomes stable after a further LP of cycles, again unstable
via a third LP of cycles before this branch converges into the first unstable limit cycle branch. Please
notice that we do not have isolas as in [28] but we also have a similar splitting into a spiking and a
bursting region, see Figure 4c and its refined view in Figure 5.
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Figure 5. Refined view on Figure 4c at the transition of the first two limit cycle branches.

In Figure 5 we plot the continuation from the first PD (the second limit cycle branch) as a solid
blue line to illustrate in a better way the situation we mentioned above. Furthermore, we want
to highlight that such models (which exhibit one or more PD) might exhibit isolas as in [28] or a
PD cascade as in [27]. In the case that there exists a (stable) PD cascade then the model contains
chaos depending on the value of the bifurcation parameter. This is depending on the choices of the
system parameters, e.g., τf and τx. However, the (unforced) system (1) exhibits no chaotic pattern or
trajectories. But, chaotic trajectories may occur for different values of τf and τx. Please see for more
details [27], where we have shown that system (1) may have a (stable) PD cascade, which is usually
the route to chaos.

3.1. Bifurcation Analysis with GK as Bifurcation Parameter

Our next observation is, if we choose GCa = 0.03 mS
cm2 and GK = 0.05 mS

cm2 , since we know from
Figure 4c that we have two small oscillations (second LPC at GCa ≈ 0.029976 mS

cm2 ), i.e, an EAD—cf.
Figure 6a—and we use now GK as bifurcation parameter with fixed GCa = 0.03 mS

cm2 , it turns out that
increasing of the potassium current can balance the effect of an enhanced calcium current. From the
bifurcation diagram in Figure 6b, we get that there are no EADs for GCa = 0.03 mS

cm2 and GK values
greater than GK ≈ 0.0548 mS

cm2 (LP of cycles), while for values between GK ≈ 0.0408 mS
cm2 (subcritical

Andronov-Hopf bifurcation) and GK ≈ 0.0548 mS
cm2 there are EADs, similar to the discussion from
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above. Therefore, the effect of an enhanced calcium current ICa can be compensated by an increasing
of the potassium current IK.
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Figure 6. Bifurcation diagram of (1) for the case GCa = 0.03 mS
cm2 and GK used as bifurcation parameter.

Regarding Figure 6b, we see that if we choose a GK value too close to the supercritical
Andronov-Hopf bifurcation, then the voltage does not reach the resting potential. This indicates
that we have normal AP as long as we choose a GK value such that this value is greater than the value
of the LP of cycles and the lower branch of the limit cycle branch is equal to the resting potential of
the voltage.

3.2. Multiple Time Scales

Here, we want to remark that for instance in [1,26] the occurrence of EADs via the reduction of
the potassium current is studied. The authors used a time scale separation argument (not explicit) to
identify the gating variable x as the slowest variable and then, they argued in principle that EADs
are Hopf-induced, cf. [29–31], by considering a fast subsystem using x as bifurcation parameter.
This approach is not applicable in our situation, since the gating variable f is much faster than x.
This one can realise since τf � τx, but we can show this also by the following time scale separation
argument. To this aim we introduce a new (dimensionless) time variable τ satisfying t := kt · τ, where
kt is a reference time we have to choose. Choosing kt = τx and re-writing system (1) we get:

ε
dV
dτ

= −(IK + ICa),

δ
d f
dτ

= ( f∞(V)− f ),

dx
dτ

= (x∞(V)− x),

(4)

where we divided also the first equation by G := max {GK, GCa} and defined ḠK := GK
G and ḠCa := GCa

G
to derive the dimensionless singular perturbation parameters ε := Cm

τx ·G and δ :=
τf
τx

. Please note that
we chose as reference time kt the maximum of all relaxation time constants. Using the setting from
above we have that 0 ≤ ε < δ� 1, i.e., three different time scales. Furthermore, we want to highlight
that also different choices of the singular perturbation parameters yield that the gating variable x is
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always the slowest variable and the corresponding fast subsystem is either 1 dimensional (if ε→ 0 and
δ 6= 0 fixed), i.e., it cannot exhibit an Andronov-Hopf bifurcation, or 2 dimensional (if δ ≡ ε, ε→ 0):

dV
dτfast

= −(IK + ICa),

d f
dτfast

=
G

τf Cm
( f∞(V)− f ),

x = const.,

where we rescaled in time, i.e., τfast = τ/ε, and considered the singular limit τx → ∞ yielding ε→ 0.
Therefore, EADs appearing in system (1) via an enhanced calcium current are not Hopf-induced in the
sense of geometric singular perturbation theory, please see the book of Kuehn [31] for more details.
Again, we want to highlight that EADs may occur as Hopf-induced mixed mode oscillations via a
reduction of the potassium current, but not via an enhancement in the calcium current.

4. Two bifurcation problem

Our next aim is to use the previous result to investigate the ion current interactions by considering
a two bifurcation problems. First of all, we have to notice that varying simultaneous the conductances
GK and GCa yields the equilibrium curves in Figure 7. For suitable values of GK and GCa the stable
equilibrium branch loses stability via an Andronov-Hopf bifurcation (sub- or supercritical) and
becomes stable via a further (supercritical) Andronov-Hopf bifurcation. The range, where system (1)
oscillates, increases for increased values of GK and GCa.

Figure 7. Bifurcation problem with GK and GCa as bifurcation parameters.

This has also a huge influence on the behaviour of the complete system. Moreover, for each new
limit cycle branch the trajectory has a further small oscillation (via a PD cascade or isolas), depending
on the choice of GCa. This means—cf. Figure 4—that the trajectory has one small oscillation for GCa

values approximately between [0.02754; 0.02997]. At this stage, we emphasise that our approach can be
extended to a multiple bifurcation problem of system (1) with up to five main important parameters,
i.e., GK, GCa, Cm, τf and τx. While the shape of the equilibrium curves are depending on GK and GCa,
the shape of the equilibrium curves remain the same by varying Cm, τf or τx, but the behaviour is
depending on these parameters, cf. Figure 8. Moreover, the Andronov-Hopf bifurcations in Figures 7
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and 8 form two “Hopf-curves”, which continuously depend on GK and GCa. This we can also prove
by the Routh-Hurwitz criterion, see [13]. For this aim we determine the characteristic equation

−det(A− λ13) = λ3 + a1λ2 + a2λ + a3 = 0, (5)

where A denotes the Jacobian of system (1) evaluated at the equilibrium of system (1). The Routh-
Hurwitz criterion implies that all characteristic exponents of Equation (5) have negative real parts if
and only if the conditions

∆1 = a1 > 0, ∆2 = a1a2 − a3 > 0 and ∆3 = a3(a1a2 − a3) > 0

(a)Setting: τf = 80 ms, τx = 300 ms & Cm = 4 µF
cm2 . (b)Setting: τf = 18 ms, τx = 100 ms & Cm = 1.4 µF

cm2 .

Figure 8. 2-bifurcation problem: equilibrium curves of (1) for different settings showing the shape of
the equilibrium curves remain the same but the behaviour of the curves is depending on the choices of
the parameters τf , τx and Cm.

are satisfied, which implies that the equilibrium is asymptotically stable, where a1 =
(

1
τf

+ 1
τx
− ∂F1

∂V

)
,

a2 =
(

1
τf τx
−
(

1
τf

+ 1
τx

)
∂F1
∂V −

1
τf

∂ f∞
∂V

∂F1
∂ f −

1
τx

∂x∞
∂V

∂F1
∂x

)
, a3 = − 1

τf τx

(
∂x∞
∂V

∂F1
∂x + ∂ f∞

∂V
∂F1
∂ f + ∂F1

∂V

)
and

∆2 =
1
τf

(
1
τf
− ∂F1

∂V

)(
1
τx
− ∂F1

∂V
− ∂ f∞

∂V
∂F1

∂ f

)
+

1
τx

(
1
τx
− ∂F1

∂V

)(
1
τf
− ∂F1

∂V
− ∂x∞

∂V
∂F1

∂x

)
.

Moreover, if ∆1 > 0, ∆2 = 0 and a3 > 0 the equilibrium of system (1) is an Andronov-Hopf
bifurcation with λ1,2 = ±iω0, where ω2

0 = a2 > 0 and λ3 = −a1, since

λ3 + a1λ2 + a2λ + a3 = λ3 + a1λ2 + a2λ + a1a2 = (λ2 + a2)(λ + a1) = 0,

where we used ∆2 = 0, cf. [14]. Furthermore, a1 > 0 implies that λ3 is negative. Especially, if ∆2 < 0
oscillations occur, which implies that X(t)− X(t + T) = 0, where X = {V, f , x} and T denotes the
period of the periodic orbit. Thus, the conditions a1 > 0, ∆2 = 0 and a3 > 0 with condition (3), f = f∞

and x = x∞ yields (numerically) in dependence on GK and GCa the “Hopf-curves” in Figure 7 or
Figure 9, respectively. Mainly, we are interested in the separatrix between EADs and no EADs.
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Figure 9. The two black lines represent the two “Hopf-curves”. Between these lines oscillations occur
(light grey area), while outside this area (dark grey areas) no oscillations (in the sense we mentioned in
Section 3) appear. Here, we have stable equilibria of system (1). Furthermore, the third area in Figure
9b represents the values of GK and GCa, where EADs appear.

In Figure 9 we see that also the region, where EADs appear, is linearly depending on GCa and
GK. Moreover, the dangerous region is also growing if we increase the two conductances GCa and GK.
Nevertheless, this investigation shows that one can balance EADs utilising the ion current interaction.

5. Controlling the Early Afterdepolarisations

Our final aim is to control the EADs. To this goal we use our observations from above and the
knowledge of the ion current interaction. From Figure 9 we know how we have to shift GK to smooth
out the impact of the enhanced calcium current. However, there are several possibilities to achieve
this. First, we can control the EADs by varying the conductance GK in the potassium current IK (in the
case that the choice of GCa yields an EAD) or we can introduce a control parameter pcontrol and replace
GK by

ḠK := (GK − pcontrol). (6)

Then, using pcontrol as control or bifurcation parameter, respectively, we can balance the EAD.
A further approach is to replace GCa and GK by

ḠCa := (GCa + pcontrol) and ḠK := (GK − pcontrol), (7)

respectively. In this case we control simultaneous both ion currents ICa and IK, i.e., we exploit the
ion current interaction. Here, we are now able to study the two bifurcation parameter problem
from above, but in this bifurcation problem we only vary one bifurcation parameter, i.e., the control
parameter. Moreover, we want to emphasise that we shift GCa and GK simultaneous. This yields
the same, which we showed exemplary in Figure 6 and corresponds to the regions in Figure 9.
Furthermore, we have to highlight that we have to choose the sign of pcontrol opposed in ḠCa and ḠK,
since we know that decreasing of IK and increasing of ICa may yield in both cases EADs. This means
that these ion currents behave in same sense reverse (outward and inward currents) and this we
want to exploit. The advantage in this approach is also that we do not have to change one current
“dramatically”. Please notice in both cases using (6) or (7) we get different values of pcontrol. However,
utilising the definitions of ḠK (and ḠCa) in (6) or (7) and relabelling ḠK (and ḠCa) by GK (and GCa)
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we get the conclusion of Figure 9. Finally, we are utilising a further approach, i.e., we consider the
following system 

dV
dt

= − ĪK + ICa

Cm
=: F1(V, f , x),

d f
dt

=
f∞(V)− f

τf
=: F2(V, f , x),

dx
dt

=
x∞(V)− x

τ̄x
=: F3(V, f , x),

(8)

with

ĪK := ḠK · x · (V − EK), ḠK := (GK − pcontrol), τ̄x := 0.75 · (τx + pcontrol).

Here, we again consider only the potassium current to control the effect of the enhanced calcium
current. However, we are not only focused on the conductance GK, we are paying attention also to
the relaxation time constant τx. This has influence on the gating variable x and therefore, again on the
potassium current, i.e., decreasing of pcontrol increases ḠK and x. The choices of the signs of the control
parameter in ḠK and τ̄x is again related to the aim to increase the potassium current. This yields the
regions in Figure 10.
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(a)2D projection on the (GCa, ḠK) plane.
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0.40.4
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0.6 0.8 01

(b)3D view on the oscillation area.

Figure 10. The black lines represent the two "Hopf-curves" of system (8) including the oscillatory area.

Here, we see that choosing the approach from (8) yields different region, where oscillations appear,
i.e., EADs and no EADs, please cf. Figure 9. We see that – regarding Figure 10a—we have a much
bigger range with respect to the conductances GCa and ḠK, where no EADs appear. To achieve this a
reduction of the time relaxation constant τx or τ̄x, respectively, is necessary, cf. Figure 10b. Moreover,
as a general remark we want to emphasise that all these approaches can be modified, i.e., we can add
weight to the control parameter depending on the system specific properties, as we already did in
system (8). In system (8), e.g., we can modify ḠK and τ̄x as follows

ḠK := (GK − a · pcontrol) and τ̄x := b · (τx + c · pcontrol), (9)

where a, c ∈ R+, a 6= c and 0 < b or similar modifications. Especially, in this paper we are focused on
balancing the enhanced calcium current via the increasing the potassium current. Please remark also
that all these approaches we have for pcontrol = 0 and b = 1 the initial situation. Moreover, we know
that we can compensate the enhancement of the calcium current by increasing the potassium current.
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Furthermore, notice that to balance an EAD induced by an enhanced calcium current the control
parameter pcontrol in system (8) has to be negative. Using the approach (8) together with (9) and the
choices a = b = c = 1 yields also a different regions as in Figure 9, but the ”Hopf-curves” are still less
steep as in Figure 10. This means we can control the slope of the “Hopf-curves”.

Finally, we want to remark that this approach we can also use for more general systems,
e.g., including the sodium current INa or relaxation time constants, which are depending on the
voltage V, cf. [17]. This yields then more possible choices of the parameters and the parameter space
will grow, but this has also potential to study and to control cardiac arrhythmia in a more specific way.

6. Discussion

In this paper, we studied the Hodgkin-Huxley model from [1] to investigate the occurrence of
EADs related to an enhanced calcium current and the ion current interaction of the potassium and
calcium current. For this aim we used the bifurcation theory and the numerical bifurcation analysis to
derive a separatix between EADs, i.e., mixed mode oscillations [30,31] with one large and one or more
small oscillations, and no EADs in system (1), cf. Figure 9. It turns out that our system loses stability
and oscillates (in the sense of periodic orbits mentioned in Section 3) between two Andronov-Hopf
bifurcations, where EADs as well as no EADs appear (periodic orbits). In this region stable periodic
orbits occur, where the number of small oscillations are depending on the numbers of (unstable) limit
cycle branches, cf. Figure 4 and [28], where we adumbrated this fact.

Moreover, we showed that no EADs occur in a region between the supercritical Andronov-Hopf
bifurcation (related to small values of the conductance GCa) and the first LP of cycles of the first Hopf
continuation—which generically corresponds to a turning point of a curve of limit cycles—from this
supercritical Andronov-Hopf bifurcation, cf. Figure 4. This corresponds also with the circumstance that
EADs may appear by the enhancement in the calcium current. Please notice that also the phenomena
of isolas may occur for different settings of the system parameters, cf. for instance [28], but not in our
setting, please cf. Figure 5. Furthermore, we restricted our bifurcation diagram to the first two limit
cycle branches. The continuation from an Andronov-Hopf bifurcation is comparably easy and fast,
while already the continuation of the second limit cycle branch becomes challenging and needs a lot
of computational power. Since we are interested in the region, where EADs appear, and because of
these numerical efforts, it makes sense to focus on the first limit cycle branch (mainly if one consider
a multiple bifurcation problem).

Furthermore, we highlighted that the effect of an enhanced calcium current can be compensated
by an increasing of the potassium current, cf. Figure 6. Since we considered only the toy model (1)
depending on two ion currents our study is limited to the ion current interaction of the potassium and
the calcium current. However, a similar result, we can expect also from the interaction of the potassium
and sodium current. Then, these observations motivate the study of system (1) as a multiple bifurcation
problem, i.e., our investigation was not only focused on one bifurcation parameter. Please note that
EADs can be induced by an increase of the L-type calcium conductance and by the application of
potassium current blockers, cf. [3]. Using two bifurcation parameters, yields that the area, where
oscillations in system (1) appear, increases by increasing of GCa and GK (simultaneously), see Figure 9.

At this stage we want to emphasise, that the study of model (1) as a multiple bifurcation problem
with up to five (most important) parameters yields further cognitions, cf. Figures 8 and 9. Moreover, we
can use this approach to study more general Hodgkin-Huxley models or we can utilise this strategy to
show that EADs related to a reduction of the potassium current can be compensated by a decreasing
of the calcium current.

Summarising, we have shown four main result. Obviously, the increasing of the calcium current
may yield EADs. Second, one can use an increased potassium current (e.g., induced by some drug)
to compensate EADs derived by an enhanced calcium current (e.g., induced by ion channel disease).
On the other hand, one can also balance EADs induced by a reduced potassium current, via the
reduction of the calcium current. This means if one is not able to decline the influence of a potassium
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blocker, one may vanish the effect of the potassium blocker by a “calcium blocker”. Third, from our
study one can expect that EADs may occur via a combination of an enhanced calcium current and a
reduced potassium current, cf. [3]. Therefore, the effect of both phenomena can be mutually reinforcing.
Thus, EADs may also appear in a “safe region” focused only on one ion current. Fourth, we showed
that EADs related to an enhancement in the calcium current are not Hopf-induced in the sense of the
geometric singular perturbation theory [32].

Furthermore, in the paper we used several control approach to balance the effect of the
enhancement in the calcium current. Here, it turns out that EADs can be compensated using the
approach in (8) in a very effective way. The reason is that we increase simultaneous GK and τx, where
we added a weight to τx, i.e., we increased the speed of the gating variable x. This yields very different
regions if we compare Figures 9b and 10a.

In addition, if we study models containing also a sodium current, then the effects of the different
ion currents can be balanced by increasing or decreasing the other ion currents. The investigation
of the three main ion currents by considering three parameters GCa, GK and GNa will yield a three
dimensional parameter space and therefore, we will have more possible choices to prevent the EADs.
Even more, we are able to investigate and to understand the ion current interactions by means of
the bifurcation theory in a very general way, which is useful for the treatment of cardiac diseases.
This short study emphasise the importance of the inclusion of the two or three main ion currents, which
are related to the occurrence of EADs and the beneficing of bifurcation analysis in the investigation of
cardiac arrhythmia.

Finally, we want to outline that our study was only focused on a toy model of dimension three
containing two ion currents and it is as a future project mandatory to consider more complex models
to be able to understand all effects yielding EADs. Nevertheless, we can use our approach also in more
complex situations for the investigation of EADs. Beside the extension of this study to more general
ion current models, one has to think about to the study of multi-domain models to be able to study the
effect of EADs on the complete heart. A first good starting point would be to observe a mono-domain
model as in [4].
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