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Abstract: This paper addresses the problem of fault-tolerant stabilization of nonlinear processes
subject to input constraints, control actuator faults and limited sensor–controller communication.
A fault-tolerant Lyapunov-based model predictive control (MPC) formulation that enforces the
fault-tolerant stabilization objective with reduced sensor–controller communication needs is
developed. In the proposed formulation, the control action is obtained through the online solution of a
finite-horizon optimal control problem based on an uncertain model of the plant. The optimization
problem is solved in a receding horizon fashion subject to appropriate Lyapunov-based stability
constraints which are designed to ensure that the desired stability and performance properties
of the closed-loop system are met in the presence of faults. The state-space region where fault-tolerant
stabilization is guaranteed is explicitly characterized in terms of the fault magnitude, the size
of the plant-model mismatch and the choice of controller design parameters. To achieve the control
objective with minimal sensor–controller communication, a forecast-triggered communication
strategy is developed to determine when sensor–controller communication can be suspended and
when it should be restored. In this strategy, transmission of the sensor measurement at a given
sampling time over the sensor–controller communication channel to update the model state in
the predictive controller is triggered only when the Lyapunov function or its time-derivative are
forecasted to breach certain thresholds over the next sampling interval. The communication-triggering
thresholds are derived from a Lyapunov stability analysis and are explicitly parameterized in terms
of the fault size and a suitable fault accommodation parameter. Based on this characterization,
fault accommodation strategies that guarantee closed-loop stability while simultaneously optimizing
control and communication system resources are devised. Finally, a simulation case study involving
a chemical process example is presented to illustrate the implementation and evaluate the efficacy
of the developed fault-tolerant MPC formulation.

Keywords: model predictive control (MPC); fault-tolerant control; networked control systems; actuator
faults; chemical processes

1. Introduction

Model predictive control (MPC), also known as receding horizon control, refers to a class of
optimization-based control algorithms that utilize an explicit process model to predict the future
response of the plant. At each sampling time, a finite-horizon optimal control problem with a
cost functional that captures the desired performance requirements is solved subject to state and
control constraints, and a sequence of control actions over the optimization horizon is generated.
The first part of the control inputs in the sequence is implemented on the plant, and the optimization
problem is solved repeatedly at every sampling time. While developed originally in response to
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the specialized control needs of large-scale industrial systems, such as petroleum refineries and
power plants, MPC technology now spans a broad range of application areas including chemicals,
food processing, automotive, and aerospace applications (see, for example, [1]). Motivated by the
advantages of MPC, such as constraint handling capabilities, performance optimization, handling
multi-variable interactions and ease of implementation, an extensive and growing body of research
has been developed over the past few decades on the analysis, design and implementation of MPC,
leading to a plethora of MPC formulations (see, for example, References [2–4] for some recent research
directions and references in the field).

With the increasing demand over the past few decades for meeting stringent stability and
performance specifications in industrial operations, fault-tolerance capabilities have become an
increasingly important requirement in the design and implementation of modern day control
systems. This is especially the case for safety-critical applications, such as chemical processes,
where malfunctions in the control devices or process equipment can cause instabilities and lead
to safety hazards if not appropriately mitigated through the use of fault-tolerant control approaches
(see, for example, References [5–7] for some results and references on fault-tolerant control). The need
for fault-tolerant control is further underscored by the increasing calls in recent times to achieve
zero-incident plant operations as part of enabling the transition to smart plant operations ([8]).

As an advanced controller design methodology, MPC is also faced with the challenges of dealing
with faults and handling the resulting degradation in the closed-loop stability and performance
properties. Not surprisingly, this problem has been the subject of significant research work, and
various methods have been investigated for the design and implementation of fault-tolerant MPC for
both linear and nonlinear processes (see, for example, References [9–13] for some results and references
in this area). An examination of the available literature on fault-tolerant MPC, however, reveals that
the majority of existing methods have been developed within the traditional feedback control setting
which assumes that the sensor–controller communication takes place over reliable dedicated links
with flawless data transfer. This assumption needs to be re-examined in light of the widespread
reliance on networked control systems which are characterized by increased levels of integration of
resource-limited communication networks in the feedback loop.

The need to address the control-relevant challenges introduced by the intrinsic limitations on
the processing and transmission capabilities of the sensor–controller communication medium has
motivated a significant body of research work on networked control systems. Examples of efforts
aimed at addressing some of these challenges in the context of MPC include the results in [14,15] where
resource-aware MPC formulations that guarantee closed-loop stability with reduced sensor–controller
communication requirements have been developed using event-based control techniques. In these
studies, however, the problem of integrating fault-tolerance capabilities in the MPC design framework
was not addressed.

Motivated by the above considerations, the aim of this work is to present a methodology
for the design and implementation of fault-tolerant MPC for nonlinear process systems subject to
model uncertainties, input constraints, control actuator faults and sensor–controller communication
constraints. The co-presence of faults, control and communication resource constraints creates a
conflict in the control design objectives where, on the one hand, increased levels of sensor–controller
communication may be needed to mitigate the effects of the faults, and, on the other, such levels
may be either unattainable or undesirable due to the sensor–controller communication constraints.
To reconcile these conflicting objectives, a resource-aware Lyapunov-based MPC formulation that
achieves the fault-tolerant stabilization objective with reduced sensor–controller communication is
presented in this work.

The remainder of the paper is organized as follows. Section 2 begins by introducing some
preliminaries that define the scope of the work and the class of systems considered. Section 3
then introduces an auxiliary Lyapunov-based fault-tolerant controller synthesized on the basis of an
uncertain model of the plant and characterizes its closed-loop stability region. An analysis of the effects
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of discrete measurement sampling on the stability properties of the closed-loop model is conducted
using Lyapuonv techniques and subsequently used in Section 4 to formulate a Lyapunov-based MPC
that retains the same closed-loop stability and fault-tolerance properties enforced by the auxiliary
model-based controller. The stability properties of the closed-loop system are analyzed and precise
conditions that guarantee ultimate boundedness of the closed-loop trajectories in the presence of
faults, discretely-sampled measurements and plant-model mismatch are provided. A forecasting
scheme is then developed to predict the evolution of the Lyapunov function and its time-derivative
over each sampling interval. The forecasts are used to trigger updates of the model states using the
actual state measurements whenever certain stability-based thresholds are projected to be breached.
Finally, Section 6 presents a simulation study that demonstrates the implementation and efficacy of the
developed MPC formulation.

2. Preliminaries

We consider the class of finite-dimensional nonlinear process systems with the following
state-space representation:

ẋ = f(x) + G(x)Θu (1)

where x ∈ Rnx is the vector of process state variables, and f(·) and G(·) are sufficiently smooth
nonlinear functions of their arguments on the domain of interest which contains the origin in its
interior. Without loss of generality, the origin is assumed to be an equilibrium point of the uncontrolled
plant (i.e., f(0) = 0). The matrix Θ = diag{θ1 θ2 · · · θm} is a diagonal deterministic (but unknown)
fault coefficient matrix, where θi is a fault parameter whose value indicates the fault or health status
of the i-th control actuator. A value of θi = 1 indicates that the i-th actuator is perfectly healthy,
whereas a value of θi = 0 represents a completely failed (non-functioning) control actuator. Any other
value, θi ∈ (0, 1), represents a certain degree of fault. The parameter θi essentially measures the
effectiveness (or control authority) of the i-th control actuator, with θi = 0 indicating an ineffective
failed actuator, θi = 1 indicating a fully effective actuator, and any other value indicating a partially
effective actuator that implements only a fraction of the required control action prescribed by the
controller. The vector of manipulated input variables, u ∈ Rnu , takes values in a nonempty compact
convex set U , {u ∈ Rnu : ‖u‖ ≤ umax}where umax > 0 represents the magnitude of input constraints
and ‖·‖ denotes the Euclidean norm of a vector or matrix.

The control objective is to steer the process state from a given initial condition to the origin in the
presence of input constraints, control actuator faults and limited sensor–controller communication.
To facilitate controller synthesis, we assume that an uncertain dynamic model of the system of
Equation (1) is available and has the following form:

˙̂x = f̂(x̂) + Ĝ(x̂)Θ̂u (2)

where x̂ is the model state, f̂(·) and Ĝ(·) are sufficiently smooth nonlinear functions that approximate
the functions f(·) and G(·), respectively, in Equation (1), and are given by:

f̂(x) = f(x) + δf(x) (3a)

Ĝ(x) = G(x)− δG(x) (3b)

where δf(·) and δG(·) are smooth nonlinear functions that capture the model uncertainties, and the
following Lipschitz conditions hold on a certain region of interest:

‖f̂(x1)− f̂(x2)‖ ≤ L̂1‖x1 − x2‖ (4a)

‖Ĝ(x1)− Ĝ(x2)‖ ≤ L̂2‖x1 − x2‖ (4b)
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where L̂1 and L̂2 are known positive constants. Θ̂ = diag{θ̂1 θ̂2 · · · θ̂m} is a diagonal matrix, where θ̂i
is an estimate of the actual fault coefficient, θi. As discussed below, θ̂i can also be viewed as a fault
accommodation parameter that can be adjusted within the model to help achieve the fault-tolerant
stabilization objective.

Towards our goal of designing a fault-tolerant MPC with well-characterized stability and
performance properties, we begin in the next section by introducing an auxiliary bounded
Lyapunov-based fault-tolerant controller that has an explicitly-characterized region of stability in
the presence of faults. The stability properties of this controller are used as the basis for the
development of a Lyapunov-based MPC formulation that retains the same closed-loop stability and
fault-tolerance characteristics.

3. An Auxiliary Model-Based Fault-Tolerant Controller

3.1. Controller Synthesis and Analysis under Continuous State Measurements

Based on the dynamic model of Equation (2), we consider the following bounded Lyapunov-based
state feedback controller:

u(x̂) = −k(x̂, Θ̂)(LĜV(x̂)Θ̂)T .
= k(x̂, Θ̂) (5a)

k(x̂, Θ̂) =
α(x̂) +

√
(α(x̂))2 + (umax‖βT(Θ̂, x̂)‖)4

‖βT(Θ̂, x̂)‖2[1 +
√

1 + (umax‖βT(Θ̂, x̂)‖)2]
(5b)

α(x̂) .
= Lf̂V + λV =

∂V
∂x̂

f̂ + λV (5c)

β(Θ̂, x̂) .
= LĜV(x̂)Θ̂, LĜV = [

∂V
∂x̂

ĝ1 · · · ∂V
∂x̂

ĝm] (5d)

where Lf̂V and LĜV are the Lie derivatives of V with respect to, f̂ and Ĝ, respectively; V is a control
Lyapunov function that satisfies the following inequalities:

α1(‖x̂‖) ≤ V(x̂) ≤ α2(‖x̂‖) (6a)∥∥∥∥∂V(x̂)
∂x̂

∥∥∥∥ ≤ α3(‖x̂‖) (6b)∥∥∥∥∂V(x̂)
∂x̂

Ĝ(x̂)
∥∥∥∥ ≤ α4(‖x̂‖) (6c)

for some classK functions (A function α(·) is said to be of classK if it is strictly increasing and α(0) = 0)
αi(·), i ∈ {1, 2, 3, 4} and λ is a controller design parameter. The controller of Equation (5) belongs
to the general class of constructive nonlinear controllers referred to in the literature as Sontag-type
controllers. Similar to earlier bounded controller designs (see, for example, [16]), it is obtained by
scaling Sontag’s original universal formula to ensure that the control constraints are met within a
certain well-defined region of the state space. The controller in Equation (5), however, differs from
earlier designs in that it incorporates the fault explicitly into the controller synthesis formula.

It can be shown (see [16] for a similar proof) that the controller of Equation (5) satisfies the control
constraints within a well-defined region in the state space, i.e.,:

‖k(x̂, Θ̂)‖ ≤ umax ∀ x̂ ∈ Ψ(umax, Θ̂) (7)

where
Ψ .

= {x̂ ∈ Rnx : Lf̂V + λV ≤ umax‖Θ̂T LĜV(x̂)T‖} (8)
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and that starting from any initial condition, x̂(0), within the compact set:

Ω .
= {x̂ ∈ Ψ(umax, Θ̂) : V(x̂) ≤ c} (9)

where c > 0 is the largest number for which Ω(umax, Θ̂) ⊂ Ψ(umax, Θ̂), the time-derivative of the
Lyapunov function, V, along the trajectories of the closed-loop model satisfies:

V̇(x̂) ≤ −λV(x̂) (10)

which implies that the origin of the closed-loop model under the auxiliary control law of Equation (5)
is asymptotically stable in the presence of faults, with Ω(umax, Θ̂) as an estimate of the domain of
attraction.

Remark 1. The invariant set Ω(umax, Θ̂) defined in Equations (8) and (9) is an estimate of the state space
region starting from where the origin of the closed-loop model is guaranteed to be asymptotically stable in the
presence of control constraints and control actuator faults. As such, it represents an estimate of the fault-tolerant
stabilization region. The expressions in Equations (8) and (9) capture the dependence of this region on both
the magnitude of the control constraints and the magnitude of the fault estimate. Specifically, as the control
constraints become tighter (i.e., umax decreases), the fault-tolerant stability region is expected to shrink in size.
In addition, as the severity of the fault increases (i.e., as θ̂i tends to zero), the fault-tolerant stability region
is expected to shrink in size. In the limit as θ̂i → 0 for all i (i.e., total failure of all actuators), controllability
is lost and asymptotic stabilization becomes impossible unless the system is open-loop stable (i.e., Lf̂V < 0).
Notice that the controller tuning parameter λ captures the classical tradeoff between stability and robustness.
Specifically, as λ increases, Equation (10) predicts a higher dissipation rate of the Lyapunov function and thus a
larger stability margin against small errors and perturbations. According to Equation (8), however, a larger
value for λ leads to a smaller stability region in general.

Remark 2. The controller of Equation (5) is designed to account explicitly for faults, and enforce closed-loop
stability by essentially canceling out the effect of the faults on the closed-loop dynamics. Notice, however, that,
while the control action is an explicit function of the fault estimate, the upper bound on the dissipation rate of the
Lyapunov function in Equation (10) is independent of the fault estimate.

3.2. Characterization of Closed-Loop Stability under Discretely Sampled State Measurements

In this section, we analyze the stability properties of the closed-loop model when the auxiliary
controller of Equation (5) is implemented using discretely-sampled measurements. This analysis is of
interest given that MPC (to which the stability properties of the auxiliary controller will be transferred)
is implemented in a discrete fashion. To this end, we consider the following sample-and-hold
controller implementation:

˙̂x(t) = f̂(x̂(t)) + Ĝ(x̂(t))Θ̂u(t) (11a)

u(t) = k(x̂(tk), Θ̂), t ∈ [tk, tk+1), k ∈ N (11b)

where tk+1 − tk , ∆ is the sampling period. Owing to the non-vanishing errors introduced by the
sample and hold implementation mechanism, only practical stability of the origin of the closed-loop
model can be achieved in this case. Theorem 1 establishes that, provided a sufficiently small sampling
period is used, the trajectory of the closed-loop model state can be made to converge in finite-time
to an arbitrarily small terminal neighborhood of the origin, and that the size of this neighborhood
depends on the magnitude of the fault as well as on the sampling period. To simplify the statement of
the theorem, we first introduce some notation. Specifically, we use the symbols Φf̂ and ΦĜ to denote
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the Lipschitz constants of the functions Lf̂V(x̂) and LĜV(x̂), respectively, over the domain of interest,
Ω, where:

‖Lf̂V(x̂(t))− Lf̂V(x̂0)‖ ≤ Φf̂‖x̂(t)− x̂0‖ (12a)

‖LĜV(x̂(t))− LĜV(x̂0)‖ ≤ ΦĜ‖x̂(t)− x̂0‖ (12b)

for x̂(t), x̂0 ∈ Ω. We also define the following positive constants:

γ = Kf̂ + KĜ‖Θ̂‖u
max (13a)

Kf̂ = max
x̂∈Ω
‖f̂(x̂)‖, KĜ = max

x̂∈Ω
‖Ĝ(x̂)‖ (13b)

where Kf̂ and KĜ are guaranteed to exist due to the compactness of Ω.

Theorem 1. Consider the closed-loop model of Equations (2)–(5), with a sample-and-hold implementation as
described in Equation (11). Given any real positive number δ′ ∈ (0, c), where c is defined in Equations (8)
and (9), there exists a positive real number ∆∗ such that if x̂(t0)

.
= x̂0 ∈ Ω(umax, Θ̂) and ∆ is chosen such that

∆ ∈ (0, ∆∗], then the closed-loop model state trajectories are ultimately bounded and satisfy:

lim sup
t→∞

V(x̂(t)) ≤ δ′ (14)

where ∆∗ = min{∆̄, ∆′}, ∆̄ and ∆′ satisfy:

−λδ f + (Φf̂ + ΦĜ‖Θ̂‖u
max)γ∆̄ < −ε (15a)

δ f + (Φf̂ + ΦĜ‖Θ̂‖u
max)γ(∆′)2 ≤ δ′ (15b)

for some ε > 0 and 0 < δ f < δ′, where γ, Φf̂ and ΦĜ are defined in Equations (12) and (13). Furthermore,
when x̂(tk) ∈ Ω\Ω f where Ω f , {x̂ ∈ Rnx : V(x̂) ≤ δ f }, V̇(x̂(t)) ≤ −ε, ∀ t ∈ [tk, tk+1).

Proof. Consider the following compact set:

M , {x̂ ∈ Rnx : δ f ≤ V(x̂) ≤ c} (16)

for some 0 < δ f < c. Let the control action be computed for some x̂(tk) := x̂k ∈ M, and held constant
until a time ∆̄, where ∆̄ is a positive real number, i.e.,

u(t) = u(x̂k)
.
= uk, ∀ t ∈ [tk, tk + ∆̄] (17)

Then, for all t ∈ [tk, tk + ∆̄], we have:

V̇(x̂(t)) = Lf̂V(x̂k) + LĜV(x̂k)Θ̂uk + [Lf̂V(x̂(t))− Lf̂V(x̂k)] + [LĜV(x̂(t))Θ̂uk − LĜV(x̂k)Θ̂uk] (18)

Since the control action is computed based on the model states inM⊂ Ω, we have from Equation (10):

Lf̂V(x̂k) + LĜV(x̂k)Θ̂uk = V̇(x̂k) ≤ −λV(x̂k) (19)

By definition, for all x̂k ∈ M, V(x̂k) ≥ δ f , and therefore:

Lf̂V(x̂k) + LĜV(x̂k)Θ̂uk ≤ −λδ f (20)
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Given that f̂(·) and the elements of Ĝ(·) are smooth functions, and given that ‖u‖ ≤ umax within
Ω, and that M is bounded, one can find, for all x̂k ∈ M and a fixed ∆̄, a positive real number γ,
such that:

‖x̂(t)− x̂k‖ ≤ γ∆̄, ∀ t ∈ [tk, tk + ∆̄) (21)

where γ is defined in Equation (13). Based on this and Equation (18), the following bound can
be obtained:

V̇(x̂(t)) ≤ −λδ f + (Φf̂ + ΦĜ‖Θ̂‖u
max)‖x̂(t)− x̂k‖ ≤ −λδ f + (Φf̂ + ΦĜ‖Θ̂‖u

max)γ∆̄ (22)

If we choose ∆̄ < (λδ f − ε)/(Φf̂ + ΦĜ‖Θ̂‖u
max)γ, we get:

V̇(x̂(t)) ≤ −ε < 0, ∀ t ∈ [tk, tk + ∆̄) (23)

This implies that, given any 0 < δ′ < c, if δ f is chosen such that 0 < δ f < δ′ and a corresponding
value for ∆̄ is found, then if the control action is computed for any x̂ ∈ M, and the hold time is less
than ∆̄, V̇ is guaranteed to remain negative over this time period and, therefore, x̂ cannot escape Ω
(since Ω is a level set of V).

Now, let us consider the case when, at the sampling time tk, the model state is within Ω f , {x̂ ∈
Rnx : V(x̂) ≤ δ f }, i.e., V(x̂(tk)) ≤ δ f . We have already shown that:

V̇(x̂(t)) ≤ −λV(x̂k) + (Φf̂ + ΦĜ‖Θ̂‖u
max)γ∆̄ (24)

which implies that:
V̇(x̂(t)) ≤ (Φf̂ + ΦĜ‖Θ̂‖u

max)γ∆̄ (25)

Integrating both sides of the differential inequality above yields:

V(x̂(t)) = V(x̂(tk)) +
∫ t

tk

V̇(x̂(τ))dτ

V(x̂(tk + ∆̄)) ≤ δ f + (Φf̂ + ΦĜ‖Θ̂‖u
max)γ(∆̄)2

(26)

Based on the last bound above, given any positive real number δ′, one can find a sampling period
∆′ small enough such that the trajectory is trapped in Ω′, i.e.,

V(x̂(tk + ∆′)) ≤ δ f + (Φf̂ + ΦĜ‖Θ̂‖u
max)γ(∆′)2 ≤ δ′ (27)

To summarize, if the sampling period ∆ is chosen such that ∆ ∈ (0, ∆∗], where ∆∗ , min{∆̄, ∆′},
then the closed-loop model state is ultimately bounded within the terminal set Ω′ in finite time.
This completes the proof of the theorem.

Remark 3. The result of Theorem 1 establishes the robustness of the controller of Equation (5) to bounded
measurement errors introduced through the sample-and-hold implementation scheme. The controller is robust
in the sense that the closed-loop model trajectory remains bounded and converges in finite-time to a terminal
neighborhood centered at the origin, the size of which can be made arbitrarily small by choosing the sampling
period to be sufficiently small. It should be noted that the bound on the dissipation rate of the Lyapunov function,
ε, and the ultimate bound on the model state, δ′, are both dependent on the size of the sampling period, ∆, and on
the size of the fault estimate, Θ̂. This dependence is captured by Equation (15). As expected, a sampling period
that is too large could lead to instability.

Remark 4. By inspection of the inequality in Equation (24), it can be seen that as the norm of the fault matrix
decreases the bound on the dissipation rate becomes tighter (more negative), potentially implying a faster decay
of the Lyapunov function. To the extent that the norm of the fault matrix can be taken as a measure of fault
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severity (with a smaller norm indicating a more severe fault), this seems to suggest that increased fault severity
actually helps speed up (rather than retard) the dissipation rate, which at first glance may seem counter-intuitive.
To get some insight into this apparent discrepancy, it should first be noted that in obtaining the inequality
in Equation (24) the control action term is essentially regarded as a disturbance that perturbs the nominal
(uncontrolled) part of the plant, and is majorized using a convenient upper bound which includes the norm of
the fault matrix as well as the magnitude of the control constraints. Based on this representation, a decrease
in the norm of the fault matrix (due to a more severe fault) implies a reduction in the controller authority and,
therefore, a decrease in the size of the disturbance which helps tighten the upper bound and potentially speed up
the dissipation rate of the Lyapunov function. A similar reasoning can be applied when analyzing the dependence
of the ultimate bound in Equation (27) on the fault size. An important caveat in making these observations is
that what is impacted by the norm of the fault matrix is only the upper bound (either on the time-derivative of
the Lyapunov function as in Equation (24) or on the Lyapunov function itself as in Equation (27)). A larger
upper bound does not necessarily translate into slower decay.

4. Design and Analysis of Lyapunov-Based Fault-Tolerant MPC

This section introduces a Lyapunov-based MPC formulation that retains the stability and
fault-tolerance characteristics of the auxiliary bounded controller presented in the previous section.
The main idea is to embed the conditions that characterize the fault-tolerant closed-loop stability
properties of the auxiliary bounded controller as constraints within the finite-horizon optimal control
problem in MPC. This idea of linking the auxiliary controller and MPC designs—and thus transferring
the stability properties from one to the other—has it roots in the original Lyapunov-based MPC
formulation presented in [17]. In the present work, we go beyond the original formulation to analyze
its robustness with respect to implementation on the plant and derive explicit conditions that account
explicitly for plant-model mismatch and control actuator faults.

To this end, we consider the following Lyapunov-based MPC formulation, where the control
action is obtained by repeatedly solving the following finite-horizon optimal control problem:

min
u∈U

∫ tk+N

tk

[‖x̂(τ)‖2
Q + ‖u(τ)‖2

R] dτ (28a)

Subject to :

‖u(t)‖ ≤ umax, ∀ t ∈ [tk, tk+N) (28b)
˙̂x(t) = f̂(x̂(t)) + Ĝ(x̂(t))Θ̂u(t) (28c)

x̂(tk) = x(tk) (28d)

V̇(x̂(t)) ≤ −ε, ∀ t ∈ [tk, tk+1), if V(x̂(tk)) > δ f (28e)

V(x̂(t)) ≤ δ′, ∀ t ∈ [tk, tk+1), if V(x̂(tk)) ≤ δ f (28f)

where N represents the length of the prediction and control horizons; Q and R are positive-definite
matrices that represent weights on the state and control penalties, respectively; and V is the
control Lyapunov function used in the design of the bounded controller in Equations (5) and (6).
The constraints in Equations (28e) and (28f) are imposed to ensure that this MPC enforces the same
stability properties that the bounded controller enforces in the closed-loop model, and retains the
same stability region estimate, Ω(umax, Θ̂). Theorem 2 provides a characterization of the closed-loop
stability properties when the above MPC is applied to the plant of Equation (1) in the presence of
plant-model mismatch and control actuator faults.

Theorem 2. Consider the closed-loop system of Equation (1) subject to the MPC law of Equation (28) with a
sampling period ∆̃ < ∆∗, where ∆∗ is defined in Theorem 1, that satisfies:

− ε + ρ1µ(δ̄1, δ̄2, Θ̂, umax, L1, L2, ∆̃) + ρ2‖Θ− Θ̂‖umax ≤ −ω (29)
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for some ω > 0, where ε satisfies Equation (15a) and

ρ1 = α3(α
−1
1 (c)), ρ2 = α4(α

−1
1 (c)) (30a)

µ = δ̄1 + δ̄2‖Θ̂‖umax + (L1 + L2‖Θ‖umax)ζ(∆̃) (30b)

ζ(∆̃) , c1∆̃ec2∆̃ (30c)

c1 = δ̄1 + δ̄2‖Θ̂‖umax + L2‖Θ− Θ̂‖umax‖x̂0‖ (30d)

c2 = L1 + L2umax (30e)

δ̄1 = max
x∈Ω
‖δ1(x)‖, δ̄2 = max

x∈Ω
‖δ2(x)‖ (30f)

where αi, i ∈ {1, 2, 3, 4}, are defined in Equation (6), L1 and L2 are the Lipschitz constants of f(·) and G(·) on
Ω, respectively. Then, given any positive real number δ′′ < c, there exists a positive real number ∆∗∗ such that,
if x̂(t0) = x(t0) ∈ Ω, ∆̃ ∈ (0, ∆∗∗], the closed-loop trajectories are ultimately bounded and:

lim sup
t→∞

V(x(t)) ≤ δ′ + ρ1ζ(∆̃) + ξζ2(∆̃) ≤ δ′′ < c (31)

for some ξ > 0, where δ′ satisfies Equation (15b). Furthermore, when x(tk) ∈ Ω\Ω′ where Ω′ , {x ∈ Rnx :
V(x) ≤ δ′}, V̇(x(t)) ≤ −ω, ∀ t ∈ [tk, tk+1).

Proof. Defining the model estimation error as e(t) .
= x̂(t)− x(t), the dynamics of the model estimation

error are governed by:

ė = [̂f(x̂)− f(x̂)] + [f(x̂)− f(x)] + [Ĝ(x̂)Θ̂−G(x̂)Θ̂]u + [G(x̂)Θ̂−G(x)Θ̂]u + [G(x)Θ̂−G(x)Θ]u (32)

Given x̂(t0) = x(t0) ∈ Ω, x̂(t) will remain within Ω for all t ∈ [t0, t0 + ∆) because of the enforced
stability constraints (which ensure boundedness of x̂). If x(t) also remains within Ω during this
interval, then the following bound on e(t), for t ∈ [t0, t + ∆), can be derived:

‖e(t)‖ ≤ ‖e(t0)‖+ (δ̄1 + δ̄2Θ̂u)(t− t0) +
∫ t

t0

[L1 + L2Θu]‖e(τ)‖]dτ +
∫ t

t0

[L2‖x̂(t)‖(Θ− Θ̂)u]dτ

where we have used Equation (3) and the Lipschitz properties of the various functions involved.
In view of the model update policy in Equation (28d), we have e(t0) = 0, and, together with the fact
that t− t0 ≤ ∆̃, the above bound simplifies to:

‖e(t)‖ ≤ c1∆̃ + c2

∫ t+∆̃

t0

‖e(τ)‖dτ (33)

Applying the Gronwall–Bellman inequality yields:

‖e(t)‖ ≤ c1∆̃ec2∆̃ = ζ(∆), for t ∈ [t0, t0 + ∆) (34)

Evaluating the time-derivative of the Lyapunov function along the trajectories of the closed-loop
system yields:

V̇(x) =
∂V
∂x̂

f̂(x̂) +
∂V
∂x̂

Ĝ(x̂)Θ̂u +
∂V
∂x

f(x)− ∂V
∂x̂

f̂(x̂) +
∂V
∂x

G(x)Θu− ∂V
∂x̂

Ĝ(x̂)Θ̂u

≤ V̇(x̂(t)) +
∂V
∂x

f(x)− ∂V
∂x

f̂(x) +
∂V
∂x

f̂(x)− ∂V
∂x̂

f̂(x̂) +
∂V
∂x

G(x)Θu− ∂V
∂x̂

Ĝ(x̂)Θ̂u
(35)
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For x̂(t0) = x(t0) ∈ Ω \Ω′ and ∆̃ < ∆∗, it can be shown upon substituting Equations (3), (4), (6)
and (7) into Equation (35), and using the notation in Equation (30), that:

V̇(x) ≤ −ε + ρ1µ + ρ2‖Θ− Θ̂‖umax (36)

Therefore, if Equation (29) holds, we have:

V̇(x(t)) ≤ −ω, ∀t ∈ [t0, t0 + ∆̃) (37)

For the case when x̂(t0) = x(t0) ∈ Ω′, we use the following inequality derived from a Taylor
series expansion of V(x):

V(x) ≤ V(x̂) +
∂V
∂x̂
‖x− x̂‖+ ξ‖x− x̂‖2 (38)

where ξ > 0, and the term ξ‖x− x̂‖2 bounds the second and higher-order terms of the expansion.
Together with Equations (6), (28f), and (34), it can be shown that:

V(x) ≤ δ′ + α3(α
−1
1 (c))ζ(∆̃) + ξζ2(∆̃) (39)

which implies that given any positive real number δ′′ < c, one can find a small enough ∆̃ such that
V(x(t)) ≤ δ′′ for all t ∈ [t0, t0 + ∆̃).

The above analysis for the initial interval can be performed recursively for all subsequent intervals
to show that the closed-loop state x(t) remains bounded within Ω, for all t ≥ t0, thus validating the
initial assumption made on the boundedness of x. Therefore, if Equation (29) is satisfied, we conclude
that given any x̂(t0) = x(t0) ∈ Ω, we have for sufficiently small ∆̃ that x(t) ∈ Ω for all t ∈ [t0, ∞),
and that the ultimate bound in Equation (31) holds. Furthermore, when x̂(tk) = x(tk) ∈ Ω \ Ω′,
we have V̇(x(t)) ≤ −ω, for all t ∈ [tk, tk+1). This completes the proof of the theorem.

Remark 5. The conditions in Equations (29)–(31) provide a characterization of the stability and performance
properties of the closed-loop system under the MPC law of Equation (28). Specifically, the condition in
Equations (29) and (30) characterize the upper bound on the dissipation rate of V̇ along the trajectories of the
closed-loop outside the terminal set. A comparison between this bound, ω, and the one enforced by the nominal
MPC in the closed-loop model in Equation (28e), ε, shows that the actual rate is slower than the nominal one
due to the combined influences of the plant-model mismatch, the faults and the discrepancy between the actual
and estimated values of the faults. While some tuning of the discrepancy between the two dissipation rates
can be exercised by adjusting the sampling period (note from Equations (29) and (30) that reducing ∆̃ reduces
µ), the difference between the two rates is ultimately dictated by the size of the plant-model mismatch and the
magnitudes of the faults. Similarly, it can be seen that compared to the nominal ultimate bound enforced by
MPC in the closed-loop model in Equation (28f), δ′, the actual ultimate bound for the closed-loop system, δ′′, is
larger due to the effects of the model uncertainty and the faults. Again, while the discrepancy between the two
bounds (i.e., between the two terminal sets) can be made smaller if ∆̃ is chosen small enough, it is not possible in
general to make that discrepancy arbitrarily small owing to the fact that the uncertainty and fault magnitudes
are not adjustable parameters. The comparison between the nominal and actual bounds points to the fundamental
limitations that model uncertainty and faults impose on the achievable closed-loop performance.

Remark 6. Note that if a fault, Θ, that satisfies the conditions in Equations (29)–(31) takes place, the closed-loop
system will be inherently stable in the presence of such fault, and the MPC is said to be passively fault-tolerant.
The conditions in Equations (29)–(31) suggest that, while mitigation of the fault effects is not necessary in this
case given that stability is not jeopardized, it may still be desirable to actively accommodate the fault by adjusting
the model parameter Θ̂ to enhance closed-loop performance. In particular, note from Equations (29)–(31) (see
also Equation (36)) that when the actual fault size can be determined, adjusting the fault estimate used in the
model to match the actual fault (i.e., setting Θ− Θ̂ = 0) helps tighten the dissipation rate bound on V̇ and
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reduce the size of the ultimate bound, which helps improve closed-loop performance. The implementation of this
fault accommodation measure requires knowledge of the magnitude of the fault, which in general can be obtained
using fault estimation and identification techniques (see, for example, [18]). While exact knowledge of the fault
size is not required, errors in estimating the fault magnitude (which lead to a nonzero mismatch between Θ and
Θ̂) can limit the extent to which the dissipation rate bound on V̇ can tightened and the ultimate bound reduced,
and therefore can limit the achievable performance benefits of fault accommodation.

Remark 7. The dependence of the fault-tolerant stabilization region associated with the proposed MPC
formulation on the size of the control constraints points to an interesting link between the fault-tolerant MPC
formulation and process design considerations. This connection stems from the fact that control constraints,
which are typically the result of limitations on the capacity of control actuators, are dictated in part by equipment
design considerations. As a result, an a priori process design choice that fixes the capacity of the control equipment
automatically imposes limitations on the fault-tolerance capabilities of the MPC system. This connection can
be used the other way around in order to aid the selection of a suitable process design that can enhance the
fault-tolerance capabilities of the control system. Specifically, given a desired region of fault-tolerant operation
for the MPC, one can use the characterization in Equations (8) and (9) to determine the corresponding size of
the control constraints, and hence the capacity of the control equipment. It is worth noting that the integration
of process design and control in the context of MPC has been the subject of several previous works (see,
for example, [19–21]). However, the problem of integrating process design and fault-tolerant MPC under
uncertainty has not been addressed in these prior works. The results in this paper shed some light on this gap and
provide a general framework for examining the interactions between process design and control in the context of
fault-tolerant MPC.

5. Fault-Tolerant MPC Implementation Using Forecast-Triggered Communication

To implement the MPC law of Equation (28), the state measurement must be transmitted to the
controller at every sampling time in order to update the model state. To reduce the frequency of
sensor–controller information transfer, we proceed in this section to present a forecast-triggered
sensor–controller communication strategy that optimizes network resource utilization without
compromising closed-loop stability. The basic idea is to forecast at each sampling time the expected
evolution (or rate of evolution) of the Lyapunov function over the following sampling interval based
on the available state data and the worst-case uncertainty, and to trigger an update of the model state
only in the event that the forecast indicates a potential increase in the Lyapunov function or a potential
deterioration in the dissipation rate.

To explain how this communication strategy works, we assume that a copy of the MPC law
is embedded within the sensors side to provide the control input trajectory and aid the forecasting
process. At the same time, the state measurement, x, which is available from the sensors is monitored at
the sampling times, and then the model estimation error e can be computed at each sampling instance.
To perform the forecast for t ∈ [tk, tk+1), the bounds in Equations (36) and (39) are modified as follows:

V̇(x(t)) ≤− ε + ρ1[δ̄1 + δ̄2‖Θ̂‖umax + ρ2‖Θ− Θ̂‖umax + (L1 + L2‖Θ‖umax)ζ(t− tp)] (40a)

V(x(t)) ≤ δ′ + ρ1ζ(t− tp) + ξζ2(t− tp) (40b)

where tp denotes the time that the last update prior to tk took place. By comparing the above bounds
with the original ones developed in Equations (36) and (39) for the case of periodic model updates,
it can be seen that the sampling interval, ∆̃, in the original bounds has now been replaced by the
more general interval t− tp. This modification is introduced to allow assessment of the impact of
sensor–controller communication suspension on the evolution of the Lyapunov function, and to
determine if the suspension could be tolerated for longer than one sampling period.
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Algorithm 1 and the flowchart in Figure 1 summarize the proposed forecast-triggered
communication strategy. The notation V̄(x) is used to denote the upper bound on V(x) resulting from
the forecast strategy.

Algorithm 1. Forecast-triggered sensor–controller communication strategy

Initialize x̂(t0) = x(t0) ∈ Ω and set k = 0, p = 0
Solve Equation (28) for [t0, t1) and implement the first step of the control sequence
if x̂(tk+1) ∈ Ω\Ω′ then

Calculate V̄(x(tk+2)) (estimate of V(x(tk+2))) using Equation (40a) and V(x(tk+1))

else

Calculate V̄(x(tk+2)) (estimate of V(x(tk+2))) using Equation (40b) and e(tk+1)

end if
if V̄(x(tk+2)) < V(x(tk+1)) then

Solve Equation (28) without Equation (28d) for [tk+1, tk+2)

else if V̄(x(tk+2)) ≥ V(x(tk+1)) and V̄(x(tk+2)) ≤ δ′ then
Solve Equation (28) without Equation (28d) for [tk+1, tk+2)

else
Solve Equation (28) for [tk+1, tk+2) and set p = k + 1

end if
Implement the first step of the control sequence on [tk+1, tk+2)

Set k = k + 1 and go to step 3

Figure 1. Flowchart of implementation of the forecast-triggered communication strategy. MPC: model
predictive control.

Remark 8. With regard to the implementation of Algorithm 1, the sensors need to obtain measurements of
the state x at each sampling time, tk, perform Steps 3–7 in the algorithm, and then determine whether or not
to transmit the state to the controller to update the model state x̂ based on the criteria described in Steps 8–14.
Specifically, once the state arrives at t = tk+1, the evolution of x(t) over the next sampling interval is forecasted
using the actual value of V(x(tk+1)) and e(tk+1), as well as the constraint on the Lyapunov function that will
become active over the next sampling interval, [tk+1, tk+2), which is dictated by the location of x̂(tk+1) within
Ω relative to Ω′. If the projection resulting from the forecast indicates that x will enter a smaller level set of V or
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lie within Ω′, no update of the model state needs to be performed at tk+1 since stability would still be guaranteed
over the next sampling interval; otherwise, x̂(tk+1) must be reset to the actual state x(tk+1) to suppress the
potential instability. Note that the decision to perform or skip a model state update at a given sampling instance
is triggered by the prediction of a future event (potential breach of worst-case growth bounds on the Lyapunov
function and its time-derivative) instead of a current event (i.e., a simple comparison of the situations at the
current and previous sampling instants).

Remark 9. The condition that V̄(x(tk+2)) < V(x(tk+1)) in Step 8 of Algorithm 1 is used as a criterion for
skipping an update at tk+1 since satisfying this requirement is sufficient to guarantee closed-loop stability and
can also minimize the possibility of performing unnecessary model state updates that merely improve control
system performance. When reducing sensor–controller communication is not that critical, or when improved
control system performance is an equally important objective, a more stringent requirement on the decay rate
of the Lyapunov function can be imposed to help avoid frequent skipping of model state updates and enhance
closed-loop performance at the cost of increased sensor–controller communication.

Remark 10. Notice that the upper bounds used in performing the forecasts of Equation (40) depend explicitly
on the magnitude of the fault, Θ, which implies that faults can influence the update rate of the model state and the
sensor–controller communication frequency required to attain it. The impact of faults on the sensor–controller
communication rate can be mitigated through the use of active fault accommodation and exploiting the dependence
of the forecasting bounds on Θ̂ which can be used as a fault accommodation parameter and adjusted to help
reduce any potential increase in the sensor–controller communication rate caused by the faults. To see how this
works, we first note that the term describing the mismatch between Θ and Θ̂ in Equation (40a) (i.e., ‖Θ̂−Θ‖)
tends to increase the upper bounds on V̇ and V, and therefore cause the projected values of V(x) over the next
sampling interval to be unnecessarily conservative and large which would trigger more frequent breaches of
Step 8 or 10 in Algorithm 1, resulting in increased communication frequency. Actively accommodating the
fault by setting Θ̂ = Θ helps reduce the forecasting bounds and decrease the projected values of V which,
in turn, would increase the likelihood of satisfying Step 8 or 10 in Algorithm 1, resulting in the ability to
skip more unnecessary update and communication instances. This analysis suggests that, in addition to
enhancing closed-loop performance, fault accommodation is desirable in terms of optimizing sensor–controller
communication needs (see the simulation example for an illustration of this point). As noted in Remark
6, however, possible errors in estimating the fault magnitude can impact the implementation of this fault
accommodation strategy and potentially limit the achievable savings in sensor–controller communication costs.

Remark 11. The implementation of the forecast-triggered fault-tolerant MPC scheme developed in this work
requires the availability of full-state measurements. When only incomplete state measurements are available,
an appropriate state estimator with appropriate estimation error convergence properties needs to be designed
and incorporated within the control system to provide estimates of the actual states based on the available
measurements. The use of state estimates (in lieu of the actual states) in implementing the control and
communication policies introduces errors that must be accounted for at the design stage to ensure robustness
of the closed-loop system. This can generally be done by appropriately modifying the constraints in the MPC
formulation and the communication-triggering thresholds based on the available characterization of the state
estimation error. Extension of the proposed MPC framework to tackle the output feedback control problem is the
subject of other research work.

6. Simulation Case Study: Application to a Chemical Process

The objective of this section is to demonstrate the implementation of the forecast-triggered
fault-tolerant MPC developed earlier using a chemical process example. To this end, we consider
a non-isothermal continuous stirred tank reactor (CSTR) with an irreversible first-order exothermic

reaction of the form A
k0−→ B, where A is the reactant and B is the product. The inlet stream feeds

pure A at flow rate F, concentration CA0 and temperature TA0 into the reactor. The process dynamics
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are captured by the following set of ordinary differential equations resulting from standard mass and
energy balances:

ĊA =
F
V
(CA0 − CA)− k0 exp

(
−E
RT

)
CA (41a)

Ṫ =
F
V
(TA0 − T)− ∆H

ρcp
k0 exp

(
−E
RT

)
CA +

Q
ρcpV

(41b)

where CA is the concentration of A in the reactor; T is the reactor temperature; V is the reactor volume;
k0, E, and ∆H represent the pre-exponential factor, the activation energy, and the heat of reaction,
respectively; R denotes the ideal gas constant; cp and ρ are the heat capacity and density of the fluid in
the reactor, respectively; and Q is the rate of heat transfer from the jacket to the reactor. The process
parameter values are given in Table 1.

Table 1. Process and model parameter values for the continuous stirred tank reactor (CSTR) example
in Equation (41).

Parameter Process Model

F (m3/h) 3.34× 10−3 3.34× 10−3

V (m3) 0.1 0.1
k0 (h−1) 1.2× 109 1.2× 109

E (KJ/Kmol) 8.314× 104 8.30× 104

R (KJ/Kmol/K) 8.314 8.314
ρ (Kg/m3) 1000 1010

Cp (KJ/Kg/K) 0.239 0.24
∆H (KJ/Kmol) −4.78× 104 −4.8× 104

Cs
A0 (Kmol/m3) 0.79 0.79

Ts
0 (K) 352.6 352.6

Qs (KJ/h) 0 0

The control objective is to stabilize the process state near the open-loop unstable steady-state
(Cs

A = 0.577 Kmol/m3, Ts = 395.3 K) in the presence of input constraints, control actuator faults
and limited sensor–controller communication. The manipulated input is chosen as the inlet reactant
concentration, i.e., u = CA0 − Cs

A0, subject to the constraint ‖u‖ ≤ 0.5 mol/m3, where Cs
A0 is the

nominal steady state value of CA0, and control actuator faults. We define the displacement variables
x = [x1 x2]

T = [CA−Cs
A T−Ts]T , where the superscript s denotes the steady state value, which places

the nominal equilibrium point of the system at the origin. A quadratic Lyapunov function candidate
of the form V(x) = xTPx, where:

P =

[
37, 400 1394.9
1394.9 63.5389

]
(42)

is a positive-definite matrix, is used for the synthesis of the controller in Equation (5) and the
characterization of the closed-loop stability region in Equations (8) and (9). The value of the tuning
parameter λ is fixed at 0.1 to ensure an adequate margin of robustness while providing an acceptable
estimate of the stability region.

6.1. Characterization of the Fault-Tolerant Stabilization Region

Recall from Section 4 that the MPC formulation in Equation (28) inherits its closed-loop stability
region from the auxiliary bounded controller, and that this region is explicitly dependent on the
magnitude of the fault (see Equations (8) and (9)). Figure 2 depicts the dependence of the constrained
stability region on fault severity. Specifically, the blue region refers to Ψ(umax|θ̂ = 1), i.e., when the
actuator is perfectly healthy; while the green and purple regions represent Ψ(umax) when θ̂ = 0.8,
and θ̂ = 0.5, respectively. As all three regions are projected on a single plot, the purple region
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is completely contained within the green region which is fully contained within the blue region,
i.e., Ψ(umax|θ̂ = 0.5) ⊂ Ψ(umax|θ̂ = 0.8) ⊂ Ψ(umax|θ̂ = 1). The largest level set Ω within each
region Ψ(umax) is represented by the ellipse with the corresponding darker color. The three level
sets form concentric ellipses and follow the same trend with Ω(umax|θ̂ = 0.5) ⊂ Ω(umax|θ̂ = 0.8) ⊂
Ω(umax|θ̂ = 1). Figure 2 shows that the stability region shrinks in size as θ̂ decreases and the severity
of the fault increases. Each level set in this figure provides an estimate of the set of initial states starting
from which closed-loop stability is guaranteed in the presence of the corresponding fault.
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Figure 2. Estimates of the region of guaranteed fault-tolerant stabilization under MPC: (a) Ω1 represents
the estimate when θ̂ = 1 (blue level set); (b) Ω2 represents the estimate when θ̂ = 0.8 (green level set);
(c) Ω3 represents the estimate when θ̂ = 0.5 (purple level set).

6.2. Active Fault Accommodation in the Implementation of MPC

As discussed in Sections 3 and 4, the presence of control actuator faults generally reduces the
stability region of the closed-loop system and enlarges the terminal set, which potentially compromises
the stability and performance properties of the closed-loop system. The implementation of active fault
accommodation measures such as adjusting the value of Θ̂ in the model, however, can help reduce
the mismatch between the fault and its estimate used by the MPC, and therefore help reduce the size
of the terminal set which can improves the closed-loop steady state performance. In this section, the
MPC introduced in Equation (28) is implemented using the model parameters reported in Table 1 with
an optimization horizon of 20 s and a sampling period of 2 s. The nonlinear optimization problem
is solved using the standard “fmincon” algorithm in Matlab which generally yields locally optimal
solutions. A step fault of θ = 0.8 is introduced in the actuator at t = 50 s and persists thereafter.

Figure 3 compares the performance of the closed-loop system in the absence of faults (fault-free
operation scenario in black) with the performance of the closed-loop system in the presence of
faults (blue and red). The blue profiles depict the performance when the fault is accommodated,
while the red profiles illustrate the performance when the fault is left unaccommodated. The dashed
lines in Figure 3b,c represent the target steady-state values for the reactor temperature and reactant
concentration, respectively. A steady-state offset resulting from the effect of discrete measurement
sampling can be observed in Figure 3a–c, which indicates that with the uncertain model used, when the
MPC is implemented in a sample-and-hold fashion, only ultimate boundedness can be achieved.
The red profiles show that the fault pushes the closed-loop state trajectory away from the desired
steady state and increases the size of the terminal set significantly. However, when accommodated
by setting θ̂ = θ = 0.8 upon detection of the fault, a performance comparable to that obtained in the
fault-free operation scenario can be achieved, as the blue profiles are very close to the black profiles in
Figure 3a–c.
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Figure 3. Comparison of the evolutions of: (a) the closed-loop state trajectory; (b) the closed-loop
reactor temperature T; (c) the closed-loop reactant concentration CA; and (d) the manipulated input,
CA0, for three different operating scenarios: one in the absence of any faults (black profiles); one in the
presence of a fault but without implementing any fault accommodation (red profiles); and one in the
presence of a fault and implementing fault accommodation (blue profiles).

6.3. Implementation of Fault-Tolerant MPC Using Forecast-Triggered Sensor–Controller Communication

In this section, we illustrate the forecast-triggered implementation strategy of MPC and highlight
the resulting reduction in network resource utilization. To this end, we consider first the case of
fault-free operation. Figure 4 illustrates the implementation of Algorithm 1. Each red square in the
top plot represents the current value of V(x) at the corresponding sampling instant tk, and each blue
circle represents the forecasted value of V(x) calculated one sampling interval ahead. An update of the
model state is triggered at a given sampling time tk if either: (1) the forecasted V(x(tk+1)) is greater
than the current V(x(tk)) (whenever V(x(tk)) > δ′), or (2) V(x(tk)) < δ′ < V(x(tk+1)). The model
state update events are depicted by the solid blue dots in the plot. The update profile shown in the
bottom panel indicates the times when the model state updates take place. In this plot, a value of
1 denotes that an update event has occurred, while a value of zero indicates that an update has been
skipped. Figure 4 captures only the case when V(x(tk)) > δ′ (i.e., when the closed-loop trajectory lies
outside the terminal set).

By examining Figure 4, it can be seen that at t = 8 s (the 4th sampling time), V(x(t4)) = 586
which is represented by the red square, and that V̄(x(t5)) is forecasted to exceed the current value,
which is represented by the blue dot at t = 10 s, which means that, without resetting the model state
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at t = 8 s, it is possible for V(x(t)) to start to grow over the next sampling interval. To prevent the
potential destabilizing tendency, a model state update is performed at t = 8 s as shown in the update
profile at the bottom of the plot. Similarly, model state updates are triggered at t = 20 s and t = 26 s
as a result of implementing the forecast-triggered communication strategy. At the other sampling
instants, the condition of V(x(tk+1)) ≤ V(x(tk)) is satisfied and model state updates are not triggered.
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Figure 4. Illustration of how the forecast-triggered sensor–controller communication strategy is
implemented. The top plot depicts current values of the Lyapunov function (red squares), projected
values of the Lyapunov function (blue circles) and update events (solid blue dots) at different sampling
times. The bottom plot depicts the time instances when the model state is updated.

The resulting closed-loop behavior is depicted by the red profile in Figure 5a which shows that
the forecast-triggered communication strategy successfully stabilizes the reactor temperature near the
desired steady state. Figure 5b compares the number of model state updates under a conventional
MPC (where an update is performed at each sampling time) and the forecast-triggered MPC (where
an update is performed only when triggered by a breach of the stability threshold). The comparison
shows that stabilization using the forecast-triggered MPC requires only 14% of the model state updates
over the same time interval, and is thus achieved with a significant reduction in the sensor–controller
communication frequency.
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Figure 5. Closed-loop reactor temperature profiles (a); and model state update instances (b) under the
conventional (blue) and forecast-triggered MPC schemes (red).
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An examination of Figure 5a shows that the conventional MPC slightly outperforms the
forecast-triggered MPC initially (i.e., during the transient stage) in the sense that it enforces a faster
and more aggressive convergence of the closed-loop state. This is expected given the more frequent
model state updates performed by the conventional MPC. It is interesting to note though that the
forecast-triggered MPC exhibits a much smaller steady state offset (i.e., a smaller terminal set) despite
the less frequent sensor–controller communication in this case. It should be noted, however, that the
larger steady state offset achieved by the conventional MPC is not an indication of poorer performance,
but is rather due to the different ways in which the two MPC schemes were implemented and the
fact that for the event-triggered MPC a desired terminal set was specified a priori as part of the
controller design and implementation logic, whereas for the conventional MPC a desired terminal
set size was not specified. Specifically, for the forecast-triggered MPC, a small terminal set size was
initially specified and then the sensor–controller communication logic was designed and implemented
to keep the closed-loop state trajectory within that terminal set. For the conventional MPC, however,
no specification of the desired terminal set was enforced. While it is possible, in principle, to specify
the same terminal set for both MPC schemes, it was found that excessively fast sampling would be
required to enforce the same tight convergence for the conventional MPC.

To demonstrate the benefits of active fault accommodation in the context of the forecast-triggered
MPC scheme, we now consider the same fault scenario introduced earlier, where θ(t) = 0.8 for t ≥ 50 s.
Figure 6 compares the performance of the closed-loop system in the fault-free scenario (shown in black)
with those in the faulty operation cases, including the case when the actuator fault is accommodated
(shown in blue) and the case when the actuator fault is left unaccommodated (shown in red). Similar to
the result obtained in Figure 3, fault accommodation (realized by setting θ̂ = θ = 0.8 at t = 50 s)
reduces the steady-state offset and achieves closed-loop state profiles comparable to those obtained
in the fault-free scenario. Figure 6d shows the corresponding model state update frequencies for
the three cases. Recall that faults not only influence the closed-loop state performance, but can also
negatively impact the projected bounds on the Lyapunov function or its derivative which are used
in the forecasting strategy that triggers the model state updates. It can be seen from the middle plot
in Figure 6d that when the fault is left unaccommodated an update of the model state is triggered
at every sampling time after t = 50 s. In contrast, when the fault is appropriately accommodated,
only three model state updates are needed after t = 50 s (see the bottom plot in Figure 6d) which yields
an improved closed-loop performance. These results illustrate that the proposed fault accommodation
strategy is beneficial for both performance improvement as well as network load reduction.
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Figure 6. Comparison of the performance of forecast-triggered MPC scheme under fault-free
conditions (black), an accommodated fault scenario (blue) and an unaccommodated fault scenario
(red): (a) closed-loop temperature profiles; (b) reactant concentration profiles; (c): manipulated input
profile; and (d): model update frequency.

7. Conclusions

In this paper, a forecast-triggered fault-tolerant Lyapunonv-based MPC scheme is developed
for constrained nonlinear systems with sensor–controller communication constraints. An auxiliary
fault-tolerant bounded controller is initially designed to aid in the characterization of the
region of fault-tolerant stabilization and subsequent design of the Lyapunov-based MPC.
To handle sensor–controller communication constraints in the networked control system design,
a forecast-triggered strategy for managing the sensor–controller information transfer is developed.
In this strategy, model state updates using actual state measurements are triggered only when certain
stability thresholds—derived based on a worst-case projection of the state trajectory—are breached.
A simulation case study is presented to illustrate the implementation of the proposed MPC and its
fault accommodation capabilities. The results show that the proposed design is effective in achieving
closed-loop stability while simultaneously reducing communication network load.
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