Next Article in Journal
Computation of Probability Associated with Anderson–Darling Statistic
Next Article in Special Issue
A Novel (R,S)-Norm Entropy Measure of Intuitionistic Fuzzy Sets and Its Applications in Multi-Attribute Decision-Making
Previous Article in Journal
Enhancing Strong Neighbor-Based Optimization for Distributed Model Predictive Control Systems
Previous Article in Special Issue
t-Norm Fuzzy Incidence Graphs
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

N-Hyper Sets

1
Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea
2
Department of Mathematics, Jeju National University, Jeju 63243, Korea
3
Department of Mathematics, Natural Science of College, Gyeongsang National University, Jinju 52828, Korea
*
Author to whom correspondence should be addressed.
Mathematics 2018, 6(6), 87; https://doi.org/10.3390/math6060087
Submission received: 21 April 2018 / Revised: 16 May 2018 / Accepted: 21 May 2018 / Published: 23 May 2018
(This article belongs to the Special Issue Fuzzy Mathematics)

Abstract

:
To deal with the uncertainties, fuzzy set theory can be considered as one of the mathematical tools by Zadeh. As a mathematical tool to deal with negative information, Jun et al. introduced a new function, which is called a negative-valued function, and constructed N -structures in 2009. Since then, N -structures are applied to algebraic structures and soft sets, etc. Using the N -structures, the notions of (extended) N -hyper sets, N -substructures of type 1, 2, 3 and 4 are introduced, and several related properties are investigated in this research paper.
2000 Mathematics Subject Classification:
06F35; 03G25; 08A72

1. Introduction

Most mathematical tools for computing, formal modeling and reasoning are crisp, deterministic and precise in many characters. However, several problems in economics, environment, engineering, social science, medical science, etc. do not always involve crisp data in real life. Consequently, we cannot successfully use the classical method because of various types of uncertainties presented in the problem. To deal with the uncertainties, fuzzy set theory can be considered as one of the mathematical tools (see [1]). A (crisp) set A in a universe X can be defined in the form of its characteristic function μ A : X { 0 , 1 } yielding the value 1 for elements belonging to the set A and the value 0 for elements excluded from the set A . Thus far, most of the generalization of the crisp set has been conducted on the unit interval [ 0 , 1 ] and they are consistent with the asymmetry observation. In other words, the generalization of the crisp set to fuzzy sets relied on spreading positive information that fit the crisp point { 1 } into the interval [ 0 , 1 ] . Because no negative meaning of information is suggested, we now feel a need to deal with negative information. To do so, we also feel a need to supply mathematical tools. To attain such object, Jun et al. [2] introduced a new function, which is called negative-valued function, and constructed N -structures. Since then, N -structures are applied to rings (see [3]), B C H -algebras (see [4]), (ordered) semigroups (see [5,6,7,8]). The combination of soft sets and N -structures is dealt with in [9,10] and [11]. The purpose of this paper is to introduce the notions of (extended) N -hyper sets, N -substructures of type 1, 2, 3 and 4, and to investigate several related properties. In our consecutive research in future, we will try to study several applications based on N -structures, for example, another type of algebra, soft and rough set theory, decision-making problems, etc. In particular, we will study complex dynamics through N -structures based on the paper [12].

2. Preliminaries

Denote by F ( X , [ 1 , 0 ] ) the collection of all functions from a set X to [ 1 , 0 ] . We say that an element of F ( X , [ 1 , 0 ] ) is a negative-valued function from X to [ 1 , 0 ] (briefly, N -function on X). By an N -structure, we mean an ordered pair ( X , ρ ) of X and an N -function ρ on X (see [2]).
For any family { a i i Λ } of real numbers, we define
{ a i i Λ } : = max { a i i Λ } , if Λ is finite , sup { a i i Λ } , otherwise .
{ a i i Λ } : = min { a i i Λ } if Λ is finite , inf { a i i Λ } otherwise .
Given a subset A of [ 1 , 0 ] , we define
( A ) = { a a A } { a a A } .

3. (Extended) N -Hyper Sets

Definition 1.
Let X be an initial universe set. By an N -hyper set over X, we mean a mapping μ : X P ( [ 1 , 0 ] ) , where P ( [ 1 , 0 ] ) is the collection of all nonempty subsets of [ 1 , 0 ] .
In an N -hyper set μ : X P ( [ 1 , 0 ] ) over X, we consider two N -structures ( X , μ ) , ( X , μ ) and a fuzzy structure ( X , μ ) in which
μ : X [ 1 , 0 ] , x { μ ( x ) } ,
μ : X [ 1 , 0 ] , x { μ ( x ) } ,
μ : X [ 0 , 1 ] , x ( μ ( x ) ) .
It is clear that μ ( x ) = μ ( x ) μ ( x ) for all x X .
Example 1.
Let X = { a , b , c , d } and define an N -hyper set μ : X P ( [ 1 , 0 ] ) over X by Table 1.
Then, μ generates two N -structures ( X , μ ) and ( X , μ ) , and a fuzzy structure ( X , μ ) as Table 2.
Definition 2.
Given an N -structure ( X , φ ) over X, define a map
φ e : P ( X ) P ( [ 1 , 0 ] ) , A { φ ( a ) a A } ,
where P ( X ) is the set of all nonempty subsets of X. We call φ e the extended N -hyper set over X.
Example 2.
Let X = { a , b , c , d } be an initial universe set and let ( X , φ ) be an N -structure over X given by Table 3.
Then, the extended N -hyper set φ e over X is described as Table 4.
Definition 3.
Let X be an initial universe set with a binary operation . An N -structure ( X , φ ) over X is called.
  • an N -substructure of ( X , ) with type 1 (briefly, N 1 -substructure of ( X , ) ) if it satisfies:
    ( x , y X ) φ ( x y ) { φ ( x ) , φ ( y ) } ,
  • an N -substructure of ( X , ) with type 2 (briefly, N 2 -substructure of ( X , ) ) if it satisfies:
    ( x , y X ) φ ( x y ) { φ ( x ) , φ ( y ) } ,
  • an N -substructure of ( X , ) with type 3 (briefly, N 3 -substructure of ( X , ) ) if it satisfies:
    ( x , y X ) φ ( x y ) { φ ( x ) , φ ( y ) } ,
  • an N -substructure of ( X , ) with type 4 (briefly, N 4 -substructure of ( X , ) ) if it satisfies:
    ( x , y X ) φ ( x y ) { φ ( x ) , φ ( y ) } .
It is clear that every N 4 -substructure of ( X , ) is an N 1 -substructure of ( X , ) , and every N 3 -substructure of ( X , ) is an N 2 -substructure of ( X , ) .
Example 3.
Let X be the set of all integers and let be a binary operation on X defined by
( x , y X ) x y = ( | x | + | y | ) .
(1) Define an N -structure ( X , φ ) over X by
φ : X [ 1 , 0 ] , x 1 + 1 e | x | .
Then, φ ( 0 ) = 0 , lim | x | φ ( x ) = 1 and
φ ( x y ) = 1 + 1 e | x | + | y | 1 + 1 e | x | , 1 + 1 e | y | = { φ ( x ) , φ ( y ) }
for all x , y X . Therefore, ( X , φ ) is an N 4 -substructure of ( X , ) , and hence it is also an N 1 -substructure of ( X , ) .
(2) Let ( X , φ ) be an N -structure over X in which φ is given by
φ : X [ 1 , 0 ] , x 1 1 + | x | .
Then,
φ ( x y ) = φ ( ( | x | + | y | ) ) = 1 1 + | ( | x | + | y | ) | = 1 1 + | x | + | y | 1 1 + | x | , 1 1 + | y | = { φ ( x ) , φ ( y ) }
for all x , y X . Therefore, ( X , φ ) is an N 3 -substructure of ( X , ) , and hence it is also an N 2 -substructure of ( X , ) .
For any initial universe set X with binary operations, let H ( X ) denote the set of all ( X , ) where is a binary operation on X, that is,
H ( X ) : = ( X , ) is a binary operation on X .
We consider the following subsets of H ( X ) :
N 1 ( φ ) : = { ( X , ) H ( X ) φ is an N 1 substructure of ( X , ) } , N 2 ( φ ) : = { ( X , ) H ( X ) φ is an N 2 substructure of ( X , ) } , N 3 ( φ ) : = { ( X , ) H ( X ) φ is an N 3 substructure of ( X , ) } , N 4 ( φ ) : = { ( X , ) H ( X ) φ is an N 4 substructure of ( X , ) } .
Theorem 1.
Given an N -structure ( X , φ ) over an initial universe set X, if ( X , ) N 1 ( φ ) , then ( P ( X ) , ) N 1 φ e .
Proof. 
If ( X , ) N 1 ( φ ) , then φ is an N 1 -substructure of ( X , ) , that is, Equation (5) is valid. Let A , B P ( X ) . Then,
φ e ( A B ) = { φ ( a b ) a A , b B } .
Note that
( ε > 0 ) ( a 0 X ) φ ( a 0 ) < { φ ( a ) a A } + ε
and
( ε > 0 ) ( b 0 X ) φ ( b 0 ) < { φ ( b ) b B } + ε .
It follows that
{ φ ( a b ) a A , b B } φ ( a 0 b 0 ) { φ ( a 0 ) , φ ( b 0 ) } { φ ( a ) a A } + ε , { φ ( b ) b B } + ε = φ e ( A ) + ε , φ e ( A ) + ε = φ e ( A ) , φ e ( A ) + ε .
Since ε is arbitrary, it follows that
φ e ( A B ) φ e ( A ) , φ e ( A ) .
Therefore, ( P ( X ) , ) N 1 φ e . ☐
Theorem 2.
Given an N -structure ( X , φ ) over an initial universe set X, if ( X , ) N 2 ( φ ) , then ( P ( X ) , ) N 2 φ e .
Proof. 
If ( X , ) N 2 ( φ ) , then φ is an N 2 -substructure of ( X , ) , that is, Equation (6) is valid. Let A , B P ( X ) . Then,
φ e ( A B ) = { φ ( a b ) a A , b B } .
Let ε be any positive number. Then, there exist a 0 , b 0 X such that
φ ( a 0 ) > { φ ( a ) a A } ε , φ ( b 0 ) > { φ ( b ) b B } ε ,
respectively. It follows that
{ φ ( a b ) a A , b B } φ ( a 0 b 0 ) { φ ( a 0 ) , φ ( b 0 ) } { φ ( a ) a A } ε , { φ ( b ) b B } ε = φ e ( A ) ε , φ e ( B ) ε = φ e ( A ) , φ e ( B ) ε ,
which shows that φ e ( A B ) φ e ( A ) , φ e ( B ) . Therefore, ( P ( X ) , ) N 2 φ e . ☐
Definition 4.
Given N -hyper sets μ and λ over an initial universe set X, we define hyper-union ( ˜ ), hyper-intersection ( ˜ ), hyper complement (′) and hyper difference (∖) as follows:
μ ˜ λ : X P ( [ 1 , 0 ] ) , x μ ( x ) λ ( x ) , μ ˜ λ : X P ( [ 1 , 0 ] ) , x μ ( x ) λ ( x ) , μ λ : X P ( [ 1 , 0 ] ) , x μ ( x ) λ ( x ) , μ : X P ( [ 1 , 0 ] ) , x [ 1 , 0 ] { t [ 1 , 0 ] t μ ( x ) } .
Proposition 1.
If μ and λ are N -hyper sets over an initial universe set X, then
( x X ) ( μ ˜ λ ) ( x ) { μ ( x ) , λ ( x ) } ,
and
( x X ) ( μ ˜ λ ) ( x ) { μ ( x ) , λ ( x ) } .
Proof. 
Let x X . Then,
( μ ˜ λ ) ( x ) = { μ ( x ) λ ( x ) } { μ ( x ) } ( and { λ ( x ) } )
and
( μ ˜ λ ) ( x ) = { μ ( x ) λ ( x ) } { μ ( x ) } ( and { λ ( x ) } ) .
It follows that
( μ ˜ λ ) ( x ) { μ ( x ) } , { λ ( x ) }
and
( μ ˜ λ ) ( x ) { μ ( x ) } , { λ ( x ) } .
Note that { a , b } + { c , d } { a + c , b + d } for all a , b , c , d [ 1 , 0 ] . Hence,
( μ ˜ λ ) ( x ) = ( μ ˜ λ ) ( x ) ( μ ˜ λ ) ( x ) { μ ( x ) } , { λ ( x ) } { μ ( x ) } , { λ ( x ) } { μ ( x ) } , { λ ( x ) } + { μ ( x ) } , { λ ( x ) } { μ ( x ) } { μ ( x ) } , { λ ( x ) } { λ ( x ) } = μ ( x ) , λ ( x ) ,
and so Equation (11) is valid. For any x X , we have
( μ ˜ λ ) ( x ) = { μ ( x ) λ ( x ) } { μ ( x ) } ( and { λ ( x ) } )
and
( μ ˜ λ ) ( x ) = { μ ( x ) λ ( x ) } { μ ( x ) } ( and { λ ( x ) } ) ,
which imply that
( μ ˜ λ ) ( x ) { μ ( x ) } , { λ ( x ) }
and
( μ ˜ λ ) ( x ) { μ ( x ) } , { λ ( x ) } .
Since { a , b } + { c , d } { a + c , b + d } for all a , b , c , d [ 1 , 0 ] , we have
( μ ˜ λ ) ( x ) = ( μ ˜ λ ) ( x ) ( μ ˜ λ ) ( x ) { μ ( x ) } , { λ ( x ) } { μ ( x ) } , { λ ( x ) } = { μ ( x ) } , { λ ( x ) } + { μ ( x ) } , { λ ( x ) } { μ ( x ) } { μ ( x ) } , { λ ( x ) } { λ ( x ) } = μ ( x ) , λ ( x ) .
This completes the proof. ☐
Proposition 2.
If μ is an N -hyper set over an initial universe set X, then
( x X ) ( μ ˜ μ ) ( x ) μ ( x ) , μ ( x ) .
Proof. 
Note that
( μ ˜ μ ) ( x ) = μ ( x ) μ ( x ) = μ ( x ) [ 1 , 0 ] μ ( x ) = [ 1 , 0 ]
for all x X . It follows that
( μ ˜ μ ) ( x ) = ( μ ˜ μ ) ( x ) ( μ ˜ μ ) ( x ) = 1 μ ( x ) , μ ( x )
for all x X . ☐
Proposition 3.
If μ and λ are N -hyper sets over an initial universe set X, then
( x X ) ( μ λ ) ( x ) μ ( x ) .
Proof. 
Note that ( μ λ ) ( x ) = μ ( x ) λ ( x ) μ ( x ) for all x X . Hence,
( μ λ ) ( x ) μ ( x ) and ( μ λ ) ( x ) μ ( x ) .
It follows that
( μ λ ) ( x ) = ( μ λ ) ( x ) ( μ λ ) ( x ) μ ( x ) μ ( x ) = μ ( x ) ,
proving the proposition. ☐
Given N -hyper sets μ and λ over an initial universe set X, we define
μ ξ : X [ 1 , 0 ] , x μ ( x ) μ ( x ) ,
μ ˜ λ : X P ( [ 1 , 0 ] ) , x { a , b } [ 1 , 0 ] a μ ( x ) , b λ ( x ) ,
μ ˜ λ : X P ( [ 1 , 0 ] ) , x { a , b } [ 1 , 0 ] a μ ( x ) , b λ ( x ) .
Example 4.
Let μ and λ be N -hyper sets over X = { a , b , c , d } defined by Table 5.
Then, μ ξ is given as Table 6
and
( μ ˜ λ ) ( b ) = { { 1 , 1 } , { 1 , 0.8 } , { 1 , 0.5 } , { 0.6 , 1 } , { 0.6 , 0.8 } , { 0.6 , 0.5 } } = { 1 , 0.8 , 0.5 , 0.6 } ,
( μ ˜ λ ) ( b ) = { { 1 , 1 } , { 1 , 0.8 } , { 1 , 0.5 } , { 0.6 , 1 } , { 0.6 , 0.8 } , { 0.6 , 0.5 } } = { 1 , 0.8 , 0.6 } .
Thus, ( μ ˜ λ ) ( b ) = 0.5 , ( μ ˜ λ ) ( b ) = 0.6 and ( μ ˜ λ ) ( b ) = 1 = ( μ ˜ λ ) ( b ) .
Proposition 4.
Let X be an initial universe set with a binary operation . If μ and λ are N -hyper sets over X, then
( x X ) ( μ ˜ λ ) ( x ) = μ ( x ) , λ ( x )
and
( x X ) ( μ ˜ λ ) ( x ) = μ ( x ) , λ ( x ) .
Proof. 
For any x X , let α : = μ ( x ) and β : = λ ( x ) . Then,
( μ ˜ λ ) ( x ) = ( μ ˜ λ ) ( x ) = { a , b } [ 1 , 0 ] a μ ( x ) , b λ ( x ) = { { α , b b λ ( x ) } , { a , b a μ ( x ) , b λ ( x ) } , { a , β a μ ( x ) } , { α , β } } = { α , β } = μ ( x ) , λ ( x ) .
Thus, Equation (18) is valid. Similarly, we can prove Equation (19). ☐
Similarly, we have the following property.
Proposition 5.
Let X be an initial universe set with a binary operation . If μ and λ are N -hyper sets over X, then
( x X ) ( μ ˜ λ ) ( x ) = μ ( x ) , λ ( x )
and
( x X ) ( μ ˜ λ ) ( x ) = μ ( x ) , λ ( x ) .
Definition 5.
Let X be an initial universe set with a binary operation . An N -hyper set μ : X P ( [ 1 , 0 ] ) is called: an N -hyper subset of ( X , ) with type ( i , j ) for i , j { 1 , 2 , 3 , 4 } (briefly, N ( i , j ) -substructure of ( X , ) ) if ( X , μ ) is an N i -substructure of ( X , ) and ( X , μ ) is an N j -substructure of ( X , ) .
Given an N -hyper set μ : X P ( [ 1 , 0 ] ) , we consider the set
N ( i , j ) ( μ ) : = { ( X , ) H ( X ) μ is an N ( i , j ) substructure of ( X , ) }
for i , j { 1 , 2 , 3 , 4 } .
Theorem 3.
Let X be an initial universe set with a binary operation . For any N -hyper set μ : X P ( [ 1 , 0 ] ) , we have
( X , ) N ( 3 , 4 ) ( μ ) ( X , ) N 4 ( μ ξ ) .
Proof. 
Let ( X , ) N ( 3 , 4 ) ( μ ) . Then, ( X , μ ) is an N 3 -substructure of ( X , ) and ( X , μ ) is an N 4 -substructure of ( X , ) , that is,
μ ( x y ) { μ ( x ) , μ ( y ) }
and
μ ( x y ) { μ ( x ) , μ ( y ) }
for all x , y X . It follows that
μ ξ ( x y ) = μ ( x y ) μ ( x y ) μ ( x ) μ ( x ) = μ ξ ( x ) .
Similarly, we get μ ξ ( x y ) μ ξ ( y ) . Hence, μ ξ ( x y ) { μ ξ ( x ) , μ ξ ( y ) } , and so ( X , ) N 4 ( μ ξ ) . ☐
Corollary 1.
Let X be an initial universe set with a binary operation . For any N -hyper set μ : X P ( [ 1 , 0 ] ) , we have
( X , ) N ( 3 , 4 ) ( μ ) ( X , ) N 1 ( μ ξ ) .
Theorem 4.
Let X be an initial universe set with a binary operation . For any N -hyper set μ : X P ( [ 1 , 0 ] ) , we have
( X , ) N ( 4 , 3 ) ( μ ) ( X , ) N 3 ( μ ξ ) .
Proof. 
It is similar to the proof of Theorem 3. ☐
Corollary 2.
Let X be an initial universe set with a binary operation . For any N -hyper set μ : X P ( [ 1 , 0 ] ) , we have
( X , ) N ( 4 , 3 ) ( μ ) ( X , ) N 2 ( μ ξ ) .
Theorem 5.
Let X be an initial universe set with a binary operation . For any N -hyper set μ : X P ( [ 1 , 0 ] ) , we have
( X , ) N ( 1 , 3 ) ( μ ) ( X , ) N 3 ( μ ξ ) .
Proof. 
Let ( X , ) N ( 1 , 3 ) ( μ ) . Then, ( X , μ ) is an N 1 -substructure of ( X , ) and ( X , μ ) is an N 3 -substructure of ( X , ) , that is,
μ ( x y ) { μ ( x ) , μ ( y ) }
and
μ ( x y ) { μ ( x ) , μ ( y ) }
for all x , y X . Equation (25) implies that
μ ( x y ) μ ( x ) or μ ( x y ) μ ( y ) .
If μ ( x y ) μ ( x ) , then
μ ξ ( x y ) = μ ( x y ) μ ( x y ) μ ( x ) μ ( x ) = μ ξ ( x ) .
If μ ( x y ) μ ( y ) , then
μ ξ ( x y ) = μ ( x y ) μ ( x y ) μ ( y ) μ ( y ) = μ ξ ( y ) .
It follows that μ ξ ( x y ) { μ ξ ( x ) , μ ξ ( y ) } , and so ( X , ) N 3 ( μ ξ ) . ☐
Corollary 3.
Let X be an initial universe set with a binary operation . For any N -hyper set μ : X P ( [ 1 , 0 ] ) , we have
( X , ) N ( 1 , 3 ) ( μ ) ( X , ) N 2 ( μ ξ ) .
Theorem 6.
Let X be an initial universe set with a binary operation . For any N -hyper set μ : X P ( [ 1 , 0 ] ) , we have
( X , ) N ( 3 , 1 ) ( μ ) ( X , ) N 1 ( μ ξ ) .
Proof. 
It is similar to the proof of Theorem 5. ☐
Theorem 7.
Let X be an initial universe set with a binary operation . For any N -hyper set μ : X P ( [ 1 , 0 ] ) , we have
( X , ) N ( 2 , 4 ) ( μ ) ( X , ) N 1 ( μ ξ ) .
Proof. 
Let ( X , ) N ( 2 , 4 ) ( μ ) . Then, ( X , μ ) is an N 2 -substructure of ( X , ) and ( X , μ ) is an N 4 -substructure of ( X , ) , that is,
μ ( x y ) { μ ( x ) , μ ( y ) }
and
μ ( x y ) { μ ( x ) , μ ( y ) }
for all x , y X . Then, μ ( x y ) μ ( x ) or μ ( x y ) μ ( y ) by Equation (29). If μ ( x y ) μ ( x ) , then
μ ξ ( x y ) = μ ( x y ) μ ( x y ) μ ( x ) μ ( x ) = μ ξ ( x ) .
If μ ( x y ) μ ( y ) , then
μ ξ ( x y ) = μ ( x y ) μ ( x y ) μ ( y ) μ ( y ) = μ ξ ( y ) .
It follows that μ ξ ( x y ) { μ ξ ( x ) , μ ξ ( y ) } , that is, ( X , ) N 1 ( μ ξ ) . ☐
Theorem 8.
Let X be an initial universe set with a binary operation . For any N -hyper set μ : X P ( [ 1 , 0 ] ) , if ( X , ) N ( 4 , 2 ) ( μ ) , then
( x , y X ) μ ( x y ) { μ ( x ) , μ ( y ) } .
Proof. 
If ( X , ) N ( 4 , 2 ) ( μ ) , then ( X , μ ) is an N 4 -substructure of ( X , ) and ( X , μ ) is an N 2 -substructure of ( X , ) , that is,
μ ( x y ) { μ ( x ) , μ ( y ) }
and
μ ( x y ) { μ ( x ) , μ ( y ) }
for all x , y X . Then, μ ( x y ) μ ( x ) or μ ( x y ) μ ( y ) by Equation (31). If μ ( x y ) μ ( x ) , then
μ ( x y ) = μ ( x y ) μ ( x y ) μ ( x ) μ ( x ) = μ ( x ) .
If μ ( x y ) μ ( y ) , then
μ ( x y ) = μ ( x y ) μ ( x y ) μ ( y ) μ ( y ) = μ ( y ) .
It follows that μ ( x y ) { μ ( x ) , μ ( y ) } for all x , y X . ☐

4. Conclusions

Fuzzy set theory has been considered by Zadeh as one of the mathematical tools to deal with the uncertainties. Because fuzzy set theory could not deal with negative information, Jun et al. have introduced a new function, which is called negative-valued function, and constructed N -structures in 2009 as a mathematical tool to deal with negative information. Since then, N -structures have been applied to algebraic structures and soft sets, etc. Using the N -structures, in this article, we have studied the notions of (extended) N -hyper sets, N -substructures of type 1, 2, 3 and 4, and have been investigated several related properties.

Author Contributions

All authors contributed equally and significantly to the study and preparation of the article. They have read and approved the final manuscript.

Acknowledgments

The authors thank the anonymous reviewers for their valuable comments and suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
  2. Jun, Y.B.; Lee, K.J.; Song, S.Z. 𝒩-ideals of BCK/BCI-algebras. J. Chungcheong Math. Soc. 2009, 22, 417–437. [Google Scholar]
  3. Ceven, Y. 𝒩-ideals of rings. Int. J. Algebra 2012, 6, 1227–1232. [Google Scholar]
  4. Jun, Y.B.; Öztürk, M.A.; Roh, E.H. 𝒩-structures applied to closed ideals in BCH-algebras. Int. J. Math. Math. Sci. 2010, 943565. [Google Scholar] [CrossRef]
  5. Khan, A.; Jun, Y.B.; Shabir, M. 𝒩-fuzzy quasi-ideals in ordered semigroups. Quasigroups Relat. Syst. 2009, 17, 237–252. [Google Scholar]
  6. Khan, A.; Jun, Y.B.; Shabir, M. 𝒩-fuzzy ideals in ordered semigroups. Int. J. Math. Math. Sci. 2009, 814861. [Google Scholar] [CrossRef]
  7. Khan, A.; Jun, Y.B.; Shabir, M. 𝒩-fuzzy filters in ordered semigroups. Fuzzy Syst. Math. 2010, 24, 1–5. [Google Scholar]
  8. Khan, A.; Jun, Y.B.; Shabir, M. 𝒩-fuzzy bi-ideals in ordered semigroups. J. Fuzzy Math. 2011, 19, 747–762. [Google Scholar]
  9. Jun, Y.B.; Alshehri, N.O.; Lee, K.J. Soft set theory and 𝒩-structures applied to BCH-algebras. J. Comput. Anal. Appl. 2014, 16, 869–886. [Google Scholar]
  10. Jun, Y.B.; Lee, K.J.; Kang, M.S. Ideal theory in BCK/BCI-algebras based on soft sets and 𝒩-structures. Discret. Dyn. Nat. Soc. 2012, 910450. [Google Scholar] [CrossRef]
  11. Jun, Y.B.; Song, S.Z.; Lee, K.J. The combination of soft sets and 𝒩-structures with applications. J. Appl. Math. 2013, 420312. [Google Scholar] [CrossRef]
  12. Bucolo, M.; Fortuna, L.; la Rosa, M. Complex dynamics through fuzzy chains. IEEE Trans. Fuzzy Syst. 2004, 12, 289–295. [Google Scholar] [CrossRef]
Table 1. N -hyper set.
Table 1. N -hyper set.
Xabcd
μ [ 0.5 , 0 ] ( 0.6 , 0.3 ) [ 0.4 , 0.2 ) ( 1 , 0.8 ]
Table 2. N -structures ( X , μ ) , ( X , μ ) and ( X , μ ) .
Table 2. N -structures ( X , μ ) , ( X , μ ) and ( X , μ ) .
Xabcd
μ 0.5 0.6 0.4 1
μ 0 0.3 0.2 0.8
μ 0.5 0.3 0.2 0.2
Table 3. N -structure ( X , φ ) .
Table 3. N -structure ( X , φ ) .
Xabcd
φ 0.5 0.3 0.4 0.8
Table 4. The extended N -hyper set φ e over X.
Table 4. The extended N -hyper set φ e over X.
A P ( X ) φ e ( A ) A P ( X ) φ e ( A )
{ a } { 0.5 } { b } { 0.3 }
{ c } { 0.4 } { d } { 0.8 }
{ a , b } { 0.5 , 0.3 } { a , c } { 0.5 , 0.4 }
{ a , d } { 0.5 , 0.8 } { a , b , c } { 0.5 , 0.4 , 0.3 }
{ a , b , d } { 0.5 , 0.3 , 0.8 } { a , b , c , d } { 0.5 , 0.4 , 0.3 , 0.8 }
Table 5. N -hyper sets μ and λ.
Table 5. N -hyper sets μ and λ.
Xabcd
μ [ 0.5 , 0 ] { 1 , 0.6 } [ 0.4 , 0.2 ) ( 1 , 0.8 ]
λ [ 0.6 , 0.3 ] { 1 , 0.8 , 0.5 } [ 0.5 , 0.3 ) ( 0.9 , 0.7 ]
Table 6. N -function ( X , μ ξ ) .
Table 6. N -function ( X , μ ξ ) .
Xabcd
μ 0.5 1 0.4 1
μ 0 0.6 0.2 0.8
μ ξ 0.5 0.4 0.2 0.2

Share and Cite

MDPI and ACS Style

Jun, Y.B.; Song, S.-Z.; Kim, S.J. N-Hyper Sets. Mathematics 2018, 6, 87. https://doi.org/10.3390/math6060087

AMA Style

Jun YB, Song S-Z, Kim SJ. N-Hyper Sets. Mathematics. 2018; 6(6):87. https://doi.org/10.3390/math6060087

Chicago/Turabian Style

Jun, Young Bae, Seok-Zun Song, and Seon Jeong Kim. 2018. "N-Hyper Sets" Mathematics 6, no. 6: 87. https://doi.org/10.3390/math6060087

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop