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Abstract:



Let [image: ] be a continuously time-changed Brownian motion starting from a random position [image: ] a given continuous, increasing boundary, with [image: ][image: ] and F an assigned distribution function. We study the inverse first-passage time problem for [image: ] which consists in finding the distribution of [image: ] such that the first-passage time of [image: ] below [image: ] has distribution [image: ] generalizing the results, valid in the case when [image: ] is a straight line. Some explicit examples are reported.
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1. Introduction


This brief note is a continuation of [1,2]. Let [image: ] be a regular enough non random function, and let [image: ] where [image: ] is standard Brownian motion (BM) and the initial position [image: ] is a random variable, independent of [image: ] Suppose that the quadratic variation [image: ] is increasing and [image: ] then there exists a standard BM [image: ] such that [image: ] namely [image: ] is a continuously time-changed BM (see e.g., [3]). For a continuous, increasing boundary [image: ] such that [image: ] let


[image: ]



(1)




be the first-passage time (FPT) of [image: ] below [image: ] We assume that [image: ] is finite with probability one and that it possesses a density [image: ] where [image: ] Actually, the FPT of continuously time-changed BM is a well studied problem for constant or linear boundary and a non-random initial value (see e.g., [4,5,6]).



Assuming that [image: ] is increasing, and [image: ] is a continuous distribution function, we study the following inverse first-passage-time (IFPT) problem:



given a distribution F, find the density g of η (if it exists) for which it results [image: ].



The function g is called a solution to the IFPT problem. This problem, also known as the generalized Shiryaev problem, was studied in [1,2,7,8], essentially in the case when [image: ] is BM and [image: ] is a straight line; note that the question of the existence of the solution is not a trivial matter (see e.g., [2,7]). In this paper, by using the properties of the exponential martingale, we extend the results to more general boundaries [image: ]



The IFPT problem has interesting applications in mathematical finance , in particular in credit risk modeling, where the FPT represents a default event of an obligor (see [7]) and in diffusion models for neural activity ([9]).



Notice, however, that another type of inverse first-passage problem can be considered: it consists in determining the boundary shape S, when the FPT distribution F and the starting point [image: ] are assigned (see e.g., [10,11,12,13]).



The paper is organized as follows: Section 2 contains the main results, in Section 3 some explicit examples are reported; Section 4 is devoted to conclusions and final remarks.




2. Main Results


The following holds:



Theorem 1.

Let be [image: ] a continuous, increasing boundary with [image: ] a bounded, non random continuous function of [image: ] and let [image: ] be the integral process starting from the random position [image: ] we assume that [image: ] is increasing and satisfies [image: ] Let F be the probability distribution of the FPT [image: ] of X below the boundary S ([image: ] is a.s. finite by virtue of Remark 3). We suppose that the r.v. η admits a density [image: ] for [image: ] we denote by [image: ] the Laplace transform of [image: ]



Then, if there exists a solution to the IFPT problem for [image: ] the following relation holds:


[image: ]



(2)









Proof. 

The process [image: ] is a martingale, we denote by [image: ] its natural filtration. Thanking to the hypothesis, by using the Dambis, Dubins–Schwarz theorem (see e.g., [3]), it follows that the process [image: ] is a Brownian motion with respect to the filtration [image: ] so the process [image: ] can be written as [image: ] and the FPT [image: ] can be written as [image: ] For [image: ] let us consider the process [image: ] as easily seen, [image: ] is a positive martingale; indeed, it can be represented as [image: ] (see e.g., Theorem 5.2 of [14]). We observe that, for [image: ] the martingale [image: ] is bounded, because [image: ] is non negative and therefore [image: ] Then, by using the fact that, for any finite stopping time [image: ] one has [image: ] (see e.g., Formula (7.7) in [14]), and the dominated convergence theorem, we obtain that


[image: ]










[image: ]



(3)







Thus, if [image: ] is the Laplace transform of the density of the initial position [image: ] we finally get


[image: ]



(4)




that is Equation (2). ☐





Remark 1.

If one takes in place of [image: ] a process of the form [image: ] with [image: ] that is, a special case of continuous Gauss-Markov process ([15]) with mean [image: ] then [image: ] is still a continuously time-changed BM, and so the IFPT problem for [image: ] and [image: ] is reduced to that of continuously time-changed BM and a constant barrier, for which results are available (see e.g., [4,5,6]).





Remark 2.

By using Laplace transform inversion (when it is possible), Equation (4) allows to find the solution g to the IFPT problem for [image: ] the continuous increasing boundary [image: ] and the distribution F of the FPT [image: ] Indeed, some care has to be used to exclude that the found distribution of η has atoms together with a density. However, as already noted in [2,7], the function [image: ] may not be the Laplace transform of some probability density function, so in that case the IFPT problem has no solution; really, it may admit more than one solution, since the right-hand member of Equation (4) essentially furnishes the moments of η of any order [image: ] but this is not always sufficient to uniquely determine the density g of [image: ] In line of principle, the right-hand member of Equation (4) can be expressed in terms of the Laplace transform of [image: ] though it is not always possible to do this explicitly. A simple case is when [image: ] with [image: ] and [image: ] that is, [image: ] in fact, one obtains


[image: ]



(5)




which coincides with Equation (2.2) of [2], and it provides a relation between the Laplace transform of the density of the initial position η and the Laplace transform of the density of the FPT [image: ]





Remark 3.

Let [image: ] be increasing and [image: ] then τ is a.s. finite; in fact [image: ] where [image: ] is increasing and [image: ] is the first hitting time to [image: ] of BM [image: ] starting at [image: ] since [image: ] is a.s. finite, also [image: ] is so. Next, from the finiteness of [image: ] it follows that [image: ] is finite, too. Moreover, if one seeks that [image: ] a sufficient condition for this is that [image: ] and [image: ] are both convex functions; indeed, [image: ] where [image: ] is the FPT of BM [image: ] starting from η below the straight line [image: ] which is tangent to the graph of [image: ] at [image: ] Thus, since [image: ] it follows that [image: ] is finite, too; finally, being [image: ] concave, Jensen’s inequality for concave functions implies that [image: ] and therefore [image: ]





Remark 4.

Theorem 1 allows to solve also the so called Skorokhod embedding (SE) problem:



Given a distribution [image: ] find an integrable stopping time [image: ] such that the distribution of [image: ] is [image: ] namely [image: ]



In fact, let be [image: ] increasing, with [image: ] first suppose that the support of H is [image: ] then, from Equation (4) it follows that


[image: ]



(6)




and this solves the SE problem with [image: ] it suffices to take the random initial point [image: ] in such a way that its Laplace transform [image: ] satisfies


[image: ]



(7)







In the special case when [image: ] and [image: ] Equation (7) becomes (cf. the result in [8] for [image: ]


[image: ]



(8)




where [image: ] and [image: ] denotes the Laplace transform of [image: ]



In analogous way, the SE problem can be solved if the support of H is [image: ] now, the FPT is understood as [image: ] that is, the first hitting time to the boundary [image: ] from below.



Therefore, the solution to the general SE problem, namely without restrictions on the support of the distribution [image: ] can be obtained as follows (see [8], for the case when [image: ] is a straight line).



The r.v. [image: ] can be represented as a mixture of the r.v. [image: ] and [image: ]


[image: ]



(9)







Suppose that the SE problem for the r.v. [image: ] and [image: ] can be solved by [image: ] and [image: ] and [image: ] and [image: ] respectively. Then, we get that the r.v.


[image: ]



(10)




and the boundary [image: ] solve the SE problem for the r.v. [image: ]





If [image: ] is analytic in a neighbor of [image: ] then the moments of order n of [image: ] exist finite, and they are given by [image: ] By taking the first derivative in Equation (4) and calculating it at [image: ] we obtain


[image: ]



(11)







By calculating the second derivative of [image: ] at [image: ] we get


[image: ]



(12)




and so


[image: ]



(13)







Thus, we obtain the compatibility conditions


[image: ]



(14)







If [image: ] a solution to the IFPT problem does not exist. In the special case when [image: ] and [image: ] Equation (11) becomes [image: ] and Equation (13) becomes [image: ] while Equation (14) coincides with Equation (2.3) of [2]. By writing the Taylor’s expansions at [image: ] of both members of Equation (4), and equaling the terms with the same order in [image: ] one gets the successive derivatives of [image: ] at [image: ] thus, one can write any moment of [image: ] in terms of the expectation of a function of [image: ] for instance, it is easy to see that


[image: ]



(15)






[image: ]



(16)






[image: ]



(17)







2.1. The Special Case [image: ]


If [image: ] with [image: ] from Equation (4) we get


[image: ]



(18)







Thus, setting [image: ] we obtain (see Equation (5)):


[image: ]



(19)




having denoted by [image: ] the density of [image: ] In this way, we reduce the IFPT problem of [image: ] below the boundary [image: ] to that of BM below the linear boundary [image: ] For instance, taking [image: ] the solution to the IFPT problem of [image: ] through the cubic boundary [image: ] and the FPT density [image: ] is nothing but the solution to the IFPT problem of BM through the linear boundary [image: ] and the FPT density [image: ]



Under the assumption that [image: ] with [image: ] a number of explicit results can be obtained, by using the analogous ones which are valid for BM and a linear boundary (see [2]). As for the question of the existence of solutions to the IFPT problem, we have:



Proposition 1.

Let be [image: ] with [image: ] for [image: ] suppose that the FPT density [image: ] is given by


[image: ]



(20)




(namely the density [image: ] of [image: ] is the Gamma density with parameters [image: ] Then, the IFPT problem has solution, provided that [image: ] and the Laplace transform of the density g of the initial position η is given by:


[image: ]



(21)




which is the Laplace transform of the sum of two independent random variables, [image: ] and [image: ] such that [image: ] has distribution Gamma of parameters γ and [image: ] where [image: ] and [image: ]





Remark 5.

If f is given by Equation (20), that is [image: ] is the Gamma density, the compatibility condition in Equation (14) becomes [image: ] which is satisfied under the assumption [image: ] required by Proposition 1. In the special case when [image: ] then η has the same distribution as [image: ] where [image: ] are independent and exponential with parameter [image: ]





The following result also follows from Proposition 2.5 of [2].



Proposition 2.

Let be [image: ] with [image: ] for [image: ] suppose that the Laplace transform of [image: ] has the form:


[image: ]



(22)




for some [image: ] Then, there exists a value [image: ] such that the solution to the IFPT problem exists, provided that [image: ]



If [image: ] and the Laplace transform of [image: ] has the form:


[image: ]



(23)




then, the solution to the IFPT problem exists.






2.2. Approximate Solution to the IFPT Problem for Non Linear Boundaries


Now, we suppose that there exist [image: ] with [image: ] and [image: ] such that, for every [image: ]


[image: ]



(24)




namely [image: ] is enveloped from above and below by the functions [image: ] and [image: ]



Then, by using Proposition (3.13) of [16] (see also [1]), we obtain the following:



Proposition 3.

Let [image: ] a continuous, increasing boundary satisfying Equation (24) and suppose that the FPT τ of [image: ] below the boundary [image: ] has an assigned probability density f and that there exists a density g with support [image: ] which is solution to the IFPT problem for [image: ] and the boundary [image: ] as before, denote by [image: ] the density of [image: ] and by [image: ] its Laplace transform, for [image: ] Then:

	(i) 

	
If [image: ] and the function [image: ] for some [image: ] its Laplace transform [image: ] must satisfy:


[image: ]










[image: ]



(25)








	(ii) 

	
If [image: ] then Equation (25) holds without any further assumption on g (and the term [image: ] vanishes).











Remark 6.

The smaller [image: ] and [image: ] the better the approximation to the Laplace transform of [image: ] Notice that, if g is bounded, then the term [image: ] can be replaced with [image: ]






2.3. The IFPT Problem for [image: ] Large Jumps


As an application of the previous results, we consider now the piecewise-continuous process [image: ], obtained by superimposing to [image: ] a jump process, namely we set [image: ] for [image: ] where T is an exponential distributed time with parameter [image: ] we suppose that, for [image: ] the process [image: ] makes a downward jump and it crosses the continuous increasing boundary [image: ] irrespective of its state before the occurrence of the jump. This kind of behavior is observed e.g. in the presence of a so called catastrophes (see e.g., [17]). For [image: ] we denote by [image: ] the FPT of [image: ] below the boundary [image: ] The following holds:



Proposition 4.

If there exists a solution [image: ] to the IFPT problem of [image: ] below [image: ] with [image: ] then its Laplace transform is given by


[image: ]



(26)









Proof. 

For [image: ] one has:


[image: ]



(27)







Taking the derivative, one obtains the FPT density of [image: ]


[image: ]



(28)




where f is the density of [image: ] Then, by the same arguments used in the proof of Theorem 1, we obtain


[image: ]










[image: ]










[image: ]










[image: ]








that is Equation (26). ☐





Remark 7.


	(i) 

	
For [image: ] namely when no jump occurs, Equation (26) becomes Equation (4).




	(ii) 

	
If τ is exponentially distributed with parameter [image: ] then Equation (26) provides:


[image: ]



(29)








	(iii) 

	
In the special case when [image: ] we can reduce to the FPT [image: ] of BM + large jumps below the linear boundary [image: ] then, it is possible to write [image: ] in terms of the Laplace transform of [image: ] Really, by using Proposition 3.10 of [16] one gets


[image: ]








where, for simplicity of notation we have denoted again with [image: ] the Laplace transform of [image: ] of course, if [image: ] then [image: ] is the Laplace transform of [image: ] Notice that, if [image: ] the last equation is nothing but Equation (5) with [image: ] in place of [image: ]













3. Some Examples


Example 1.

If [image: ] with [image: ] and [image: ] examples of solution to the IFPT problem, for [image: ] and various FPT densities [image: ] can be found in [2].





Example 2.

Let be [image: ] with [image: ] and suppose that τ has density [image: ] (that is, the density [image: ] of [image: ] is exponential with parameter [image: ] By using Proposition 1 we get that [image: ] where [image: ] are independent random variable, such that [image: ] has exponential distribution with parameter [image: ] ([image: ] where [image: ] and [image: ] Then, the solution g to the IFPT problem for [image: ] the boundary S and the exponential FPT distribution, is:


[image: ]



(30)









In general, for a given continuous increasing boundary [image: ] and an assigned distribution of [image: ] it is difficult to calculate explicitly the expectation on the right-hand member of Equation (4) to get the Laplace transform of [image: ] Thus, a heuristic solution to the IFPT problem can be achieved by using Equation (4) to calculate the moments of [image: ] (those up to the fifth order are given by Equations (11), (12) and (15)–(17)). Of course, even if one was able to find the moments of [image: ] of any order, this would not determinate the distribution of [image: ] However, this procedure is useful to study the properties of the distribution of [image: ] provided that the solution to the IFPT problem exists.



Example 3.

Let be [image: ] and suppose that τ is exponentially distributed with parameter [image: ] we search for a solution [image: ] to the IFPT problem by using the method of moments, described above. The compatibility condition in Equation (14) requires that [image: ] (for instance, one can take [image: ] From Equations (11), (12) and (15)–(17), and calculating the moments of τ up to the eighth order, we obtain:


[image: ]










[image: ]













Notice that, under the condition [image: ] the first four moments of η are positive, as it must be. However, they do not match those of a Gamma distribution.



An information about the asymmetry is given by the skewness value


[image: ]








meaning that the candidate η has an asymmetric distribution with a tail toward the left.




4. Conclusions and Final Remarks


We have dealt with the IFPT problem for a continuously time-changed Brownian motion [image: ] starting from a random position [image: ] For a given continuous, increasing boundary [image: ] with [image: ] and an assigned continuous distribution function [image: ] the IFPT problem consists in finding the distribution, or the density g of [image: ] such that the first-passage time [image: ] of [image: ] below [image: ] has distribution [image: ] In this note, we have provided some extensions of the results, already known in the case when [image: ] is BM and [image: ] is a straight line, and we have reported some explicit examples. Really, the process we considered has the form [image: ] where [image: ] is standard Brownian motion, and [image: ] is a non random continuous function of time [image: ] such that the function [image: ] is increasing and it satisfies the condition [image: ] Thus, a standard BM [image: ] exists such that [image: ] Our main result states that


[image: ]



(31)




where, for [image: ] denotes the Laplace transform of the solution g to the IFPT problem.



Notice that the above result can be extended to diffusions which are more general than the process [image: ] considered, for instance to a process of the form


[image: ]



(32)




where w is a regular enough, increasing function; such a process U is obtained from BM by a space transformation and a continuous time-change (see e.g., the discussion in [2]). Since [image: ] the IFPT problem for the process [image: ] the boundary [image: ] and the FPT distribution [image: ] is reduced to the analogous IFPT problem for [image: ] starting from [image: ] instead of [image: ] the boundary [image: ] and the same FPT distribution [image: ] When [image: ] i.e. [image: ] the process [image: ] is conjugated to BM, according to the definition given in [2]; two examples of diffusions conjugated to BM are the Feller process, and the Wright–Fisher like (or CIR) process, (see e.g., [2]). The process [image: ] given by Equation (32) is indeed a weak solution of the SDE:


[image: ]



(33)




where [image: ] and [image: ] denote first and second derivative of [image: ]



Provided that the deterministic function [image: ] is replaced with a random function, the representation in Equation (32) is valid also for a time homogeneous one-dimensional diffusion driven by the SDE


[image: ]



(34)




where the drift [image: ] and diffusion coefficients [image: ] satisfy the usual conditions (see e.g., [18]) for existence and uniqueness of the solution of Equation (34). In fact, let [image: ] be the scale function associated to the diffusion [image: ] driven by the SDE Equation (34), that is, the solution of [image: ] where L is the infinitesimal generator of U given by [image: ] As easily seen, if the integral [image: ] converges, the scale function is explicitly given by


[image: ]



(35)







If [image: ] by It[image: ]’s formula one obtains


[image: ]



(36)




that is, the process [image: ] is a local martingale, whose quadratic variation is


[image: ]



(37)







The (random) function [image: ] is differentiable and [image: ] if it is increasing to [image: ] by the Dambis, Dubins–Schwarz theorem (see e.g., [3]) one gets that there exists a standard BM [image: ] such that [image: ] Thus, since w is invertible, one obtains the representation in Equation (32).



Notice, however, that the IFPT problem for the process U given by Equation (32) cannot be addressed as in the case when [image: ] is a deterministic function. In fact, if [image: ] given by Equation (37) is random, it results that [image: ] and the FPT [image: ] are dependent. Thus, in line of principle it would be possible to obtain information about the Laplace transform of [image: ] only in the case when the joint distribution of [image: ] was explicitly known.
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