
mathematics

Article

Near Fixed Point Theorems in the Space of
Fuzzy Numbers

Hsien-Chung Wu ID

Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 802, Taiwan;
hcwu@nknucc.nknu.edu.tw

Received: 24 May 2018; Accepted: 21 June 2018; Published: 25 June 2018
����������
�������

Abstract: The fuzzy numbers are fuzzy sets owning some elegant mathematical structures. The space
consisting of all fuzzy numbers cannot form a vector space because it lacks the concept of the additive
inverse element. In other words, the space of fuzzy numbers cannot be a normed space even though
the normed structure can be defined on this space. This also says that the fixed point theorems
established in the normed space cannot apply directly to the space of fuzzy numbers. The purpose of
this paper is to propose the concept of near fixed point in the space of fuzzy numbers and to study
its existence. In order to consider the contraction of fuzzy-number-valued function, the concepts
of near metric space and near normed space of fuzzy numbers are proposed based on the almost
identical concept. The concepts of Cauchy sequences in near metric space and near normed space
of fuzzy numbers are also proposed. Under these settings, the existence of near fixed points of
fuzzy-number-valued contraction function in complete near metric space and near Banach space of
fuzzy numbers are established.

Keywords: Cauchy sequence; near fixed point; near metric space of fuzzy numbers; near normed
space of fuzzy numbers; null set
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1. Introduction

The fuzzy numbers can be treated as the imprecise data. For example, in the financial market,
the data may not be precisely measured owing to the fluctuation. However, based on the knowledge
of experts, it may be said that each numerical data will be around some certain value. In this case,
these imprecise data can be described as the fuzzy numbers. In other words, the fuzzy sets theory may
provide a useful tool to tackle this kind of imprecision. The basic ideas and applications of fuzzy sets
theory can refer to the monographs [1–6].

Let Fcc(R) denote the family of all fuzzy numbers, which will be described in detail below.
However, this family Fcc(R) cannot form a vector space. The main reason is that each fuzzy number
in Fcc(R) does not have the additive inverse element. Although the space Fcc(R) is not a vector space,
the Hahn-Banach extension theorems on Fcc(R) still can be studied by referring to Wu [7]. On the
other hand, the fixed point theorems in fuzzy metric space have been studied in [8–19]. However,
the fuzzy metric space is completely different from the near metric space of fuzzy numbers that is
adopted in this paper. The purpose of this paper is to study the near fixed point theorem in the near
metric space Fcc(R).

Some of the conventional fixed point theorems were established in normed space. Since Fcc(R)
is not a vector space, it cannot also be a normed space even though we can define a norm structure
on Fcc(R). Therefore, the conventional fixed point theorems will not be applicable in Fcc(R). In this
paper, based on the norm structure defined on Fcc(R), the concept of Cauchy sequence in Fcc(R) can
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be similarly defined. In this case, the Banach space of fuzzy numbers can be defined according to the
concept of Cauchy sequence. The main aim of this paper is to study and establish the so-called near
fixed point theorems in Banach space of fuzzy numbers.

Let U be a topological space. The fuzzy subset Ã of U is defined by a membership function
ξ Ã : U → [0, 1]. The α-level set of Ã, denoted by Ãα, is defined by

Ãα = {x ∈ U : ξ Ã(x) ≥ α}

for all α ∈ (0, 1]. The 0-level set Ã0 is defined as the closure of the set {x ∈ U : ξ Ã(x) > 0}.
Let� denote any one of the four basic arithmetic operations⊕,	,⊗,� between two fuzzy subsets

Ã and B̃. The membership function of Ã� B̃ is defined by

ξ Ã�B̃(z) = sup
{(x,y):z=x◦y}

min {ξ Ã(x), ξ B̃(y)}

for all z ∈ R. More precisely, the membership functions are given by

ξ Ã⊕B̃(z) = sup
{(x,y):z=x+y}

min {ξ Ã(x), ξ B̃(y)} ;

ξ Ã	B̃(z) = sup
{(x,y):z=x−y}

min {ξ Ã(x), ξ B̃(y)} ;

ξ Ã⊗B̃(z) = sup
{(x,y):z=x∗y}

min {ξ Ã(x), ξ B̃(y)} ;

ξ Ã�B̃(z) = sup
{(x,y):z=x/y,y 6=0}

min {ξ Ã(x), ξ B̃(y)} ,

where Ã	 B̃ ≡ Ã⊕ (−B̃).
Let U be a real topological vector space. We denote by Fcc(U) the set of all fuzzy subsets of U

such that each ã ∈ Fcc(U) satisfies the the following conditions:

• ã is normal, i.e., ξ ã(x) = 1 for some x ∈ U;
• ã is convex, i.e., the membership function ξ ã(x) is quasi-concave;
• the membership function ξ ã is upper semicontinuous;
• the 0-level set ã(0) is a compact subset of U.

In particular, if U = R then each element of Fcc(R) is called a fuzzy number.
For ã ∈ Fcc(R), it is well-known that, for each α ∈ [0, 1], the α-level set ãα is a bounded closed

interval in R, which is also denoted by ãα = [ãL
α , ãU

α ].
We say 1̃{a} is a crisp number with value a if and only if the membership function of 1̃{a} is given by

ξ1̃{a}
(r) =

{
1 if r = a
0 if r 6= a.

It is clear that each α-level set of 1̃{a} is a singleton set {a} for α ∈ [0, 1]. Therefore, the crisp
number 1̃{a} can be identified with the real number a. In this case, we have the inclusion R ⊂ Fcc(R).
For convenience, we also write λã ≡ 1̃λ ⊗ ã.

Let ã and b̃ be two fuzzy numbers with ãα = [ãL
α , ãU

α ] and b̃α = [b̃L
α , b̃U

α ] for α ∈ [0, 1]. It is well
known that (

ã⊕ b̃
)

α
=
[

ãL
α + b̃L

α , ãU
α + b̃U

α

]
and, for λ ∈ R,

(λã)α =

{
[λãL

α , λãU
α ] if λ ≥ 0

[λãU
α , λãL

α ] if λ < 0.
(1)
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For any λ ∈ R and ã, b̃ ∈ Fcc(R), it is clear to see that

λ(ã⊕ b̃) = λã⊕ λb̃. (2)

Suppose that ã ∈ Fcc(R). Then we have

(ã	 ã)α =
[

ãL
α − ãU

α , ãU
α − ãL

α

]
=
[
−
(

ãU
α − ãL

α

)
, ãU

α − ãL
α

]
,

which says that each α-level set (ã 	 ã)α is an “approximated real zero number” with symmetric
uncertainty ãU

α − ãL
α . It is also clear that the real zero number has the highest membership degree 1

given by ξ ã	ã(0) = 1. In this case, we can say that ã	 ã is a fuzzy zero number.
Let

Ω = {ã	 ã : ã ∈ Fcc(R)}.

Equivalently, ω̃ ∈ Ω if and only if ω̃U
α ≥ 0 and ω̃L

α = −ω̃U
α for all α ∈ [0, 1], i.e.,

ω̃α =
[
ω̃L

α , ω̃U
α

]
=
[
−ω̃U

α , ω̃U
α

]
,

where the bounded closed interval ω̃α is an “approximated real zero number” with symmetric
uncertainty ω̃U

α . In other words, each ω̃ ∈ Ω is a fuzzy zero number. We also call Ω as the null
set in Fcc(R). It is also clear that 1̃{0} the crisp number with value 0 is in the null set Ω. Since the null
set Ω collects all of the fuzzy zero numbers, it can be regarded as a kind of “zero element” of Fcc(R).
The true zero element of Fcc(R) is 1̃{0}, since it is clear that ã⊕ 1̃{0} = ã for any ã ∈ Fcc(R). On the
other hand, since ã	 ã is not a zero element of Fcc(R), this says that Fcc(R) cannot form a vector
space under the above fuzzy addition and scalar multiplication.

Recall that the (conventional) normed space is based on the vector space. Since Fcc(R) is not
a vector space, we cannot consider the (conventional) normed space (Fcc(R), ‖ · ‖). Therefore we
cannot study the fixed point theorem in (Fcc(R), ‖ · ‖) using the conventional way. In this paper,
although Fcc(R) is not a vector space, we still can endow a norm to Fcc(R) in which the axioms are
almost the same as the axioms of conventional norm. The only difference is that the concept of null set
is involved in the axioms. Under these settings, we shall study the so-called near fixed point theorem
in the near normed space of fuzzy numbers (Fcc(R), ‖ · ‖).

Let T̃ : Fcc(R)→ Fcc(R) be a function from Fcc(R) into itself. We say that ã ∈ Fcc(R) is a fixed
point if and only if T̃(ã) = ã. Since Fcc(R) lacks the vector structure, we cannot expect to obtain the
fixed point of the mapping T̃ using the conventional ways. In this paper, we shall try to find a fuzzy
number ã satisfying T̃(ã)⊕ ω̃(1) = ã⊕ ω̃(2) for some ω̃(1), ω̃(2) ∈ Ω. Since the null set Ω can play
the role of “zero element” in Fcc(R), i.e., the elements ω̃(1) and ω̃(2) can be ignored in some sense,
this kind of fuzzy number ã is said to be a near fixed point of the mapping T̃.

In Section 2, the concept of the null set in fuzzy numbers is proposed, where some interesting
properties are derived in order to study the near fixed point theorem. In Sections 3 and 4, the concepts
of near metric space and near normed space of fuzzy numbers are proposed, where some interesting
properties are also derived for further discussion. In Section 5, the concepts of Cauchy sequence in
metric space and normed space of fuzzy numbers are similarly defined according to the conventional
way. In Section 6, the concept of near fixed point of fuzzy-number-valued function is proposed.
Also, three concepts of metric contraction of fuzzy-number-valued functions are proposed. Using the
completeness of near metric space of fuzzy numbers, many near fixed point theorems are established.
In Section 7, we also propose three concepts of norm contraction of fuzzy-number-valued functions.
In this case, many near fixed point theorems in near Banach space of fuzzy numbers are established.
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2. Space of Fuzzy Numbers

Under the fuzzy addition and scalar multiplication in Fcc(R), it is clear to see that Fcc(R) cannot
form a vector space. One of the reasons is that, given any ã ∈ Fcc(R), the difference ã	 ã is not a zero
element of Fcc(R). It is clear to see that 1̃{0} is a zero element, since

ã⊕ 1̃{0} = 1̃{0} ⊕ ã = ã

for any ã ∈ Fcc(R). However, we cannot have ã	 ã = 1̃{0} for any ã ∈ Fcc(R). We also recall that the
following family

Ω = {ã	 ã : ã ∈ Fcc(R)}

is called the null set of Fcc(R), which can be regarded as a kind of “zero element” of Fcc(R).
In this section, we shall present some properties involving the null set Ω, which will be used for
establishing the so-called near fixed point theorems in Fcc(R). For further discussion, we present some
useful properties.

Proposition 1. The following statements hold true.

• λ(ã⊕ b̃) = λã⊕ λb̃ for λ ∈ R and ã, b̃ ∈ Fcc(R);
• λ1(λ2 ã) = (λ1λ2)ã for λ1, λ2 ∈ R and ã ∈ Fcc(R);
• ω̃ ∈ Ω implies −ω̃ = ω̃.
• λΩ = Ω for λ ∈ R with λ 6= 0.
• Ω is closed under the fuzzy addition; that is, ω̃(1) ⊕ ω̃(2) ∈ Ω for any ω̃(1), ω̃(2) ∈ Ω.

Since the null set Ω can be regarded as a kind of “zero element”, we can propose the almost
identical concept for elements in Fcc(R).

Definition 1. Given any ã, b̃ ∈ Fcc(R), we say that ã and b̃ are almost identical if and only if there exist

ω̃(1), ω̃(2) ∈ Ω such that ã⊕ ω̃(1) = b̃⊕ ω̃(2). In this case, we write ã Ω
= b̃.

Given any ã, b̃, c̃ ∈ Fcc(R) with ã	 b̃ = c̃, we cannot obtain the equality ã = b̃⊕ c̃ as the usual

sense. As a matter of fact, we can just have ã Ω
= b̃⊕ c̃. Indeed, since ã	 b̃ = c̃, by adding b̃ on both

sides, we obtain ã⊕ ω̃ = b̃⊕ c̃, where ω̃ = b̃	 b̃ ∈ Ω. This says that ã Ω
= b̃⊕ c̃.

Proposition 2. The binary relation Ω
= is an equivalence relation.

Proof. For any ã ∈ Fcc(R), ã = ã implies ã Ω
= ã, which shows the reflexivity. The symmetry is obvious

by the definition of the binary relation Ω
=. Regarding the transitivity, for ã Ω

= b̃ and b̃ Ω
= c̃, we want to

claim ã Ω
= c̃. By definition, we have

ã⊕ ω̃(1) = b̃⊕ ω̃(2) and b̃⊕ ω̃(3) = c̃⊕ ω̃(4)

for some ω̃i ∈ Ω for i = 1, · · · , 4. Then

ã⊕ ω̃(1) ⊕ ω̃(3) = b̃⊕ ω̃(3) ⊕ ω̃(2) = c̃⊕ ω̃(4) ⊕ ω̃(2),

which shows ã Ω
= c̃, since Ω is closed under the fuzzy addition as shown in Proposition 1.

This completes the proof.

According to the equivalence relation Ω
=, for any ã ∈ Fcc(R), we define the equivalence class

[ã] =
{

b̃ ∈ Fcc(R) : ã Ω
= b̃

}
.
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The family of all classes [ã] for ã ∈ Fcc(R) is denoted by [Fcc(R)]. In this case, the family [Fcc(R)]
is called the quotient set of Fcc(R). We also have that b̃ ∈ [ã] implies [ã] = [b̃]. In other words, the
family of all equivalence classes form a partition of the whole set Fcc(R). We also remark that the
quotient set [Fcc(R)] is still not a vector space. The reason is

(α + β)[ã] 6= α[ã]⊕ β[ã]

for α · β < 0, since (α + β)ã 6= αã⊕ βã for ã ∈ Fcc(R) with α · β < 0.

3. Near Metric Space of Fuzzy Numbers

To study the near fixed point in Fcc(R), we are going to consider the metric d defined on
Fcc(R)×Fcc(R).

Definition 2. For the nonnegative real-valued function d : Fcc(R)×Fcc(R)→ R+ defined on the product
space Fcc(R)×Fcc(R), we consider the following conditions:

(i) d(ã, b̃) = 0 if and only if ã Ω
= b̃ for all ã, b̃ ∈ Fcc(R);

(ii) d(ã, b̃) = d(b̃, ã) for all ã, b̃ ∈ Fcc(R);
(iii) d(ã, b̃) ≤ d(ã, c̃) + d(c̃, b̃) for all ã, b̃, c̃ ∈ Fcc(R);

• A pair (Fcc(R), d) is called a near pseudo-metric space of fuzzy numbers if and only if d satisfies
conditions (ii) and (iii).

• A pair (Fcc(R), d) is called a near metric space of fuzzy numbers if and only if d satisfies conditions
(i), (ii) and (iii).

We say that d satisfies the null equalities if and only if the following condition (iv) is satisfied:

(iv) for any ω̃(1), ω̃(2) ∈ Ω and ã, b̃ ∈ Fcc(R), the following three equalities are satisfied:

• d(ã⊕ ω̃(1), b̃⊕ ω̃(2)) = d(ã, b̃);
• d(ã⊕ ω̃(1), b̃) = d(ã, b̃);
• d(ã, b̃⊕ ω̃(2)) = d(ã, b̃).

Example 1. Let us define a nonnegative real-valued function d : Fcc(R)×Fcc(R)→ R+ by

d(ã, b̃) = sup
α∈[0,1]

∣∣∣(ãL
α + ãU

α

)
−
(

b̃L
α + b̃U

α

)∣∣∣ . (3)

Then (Fcc(R), d) is not a (conventional) metric space, since d(ã, b̃) = 0 cannot imply ã = b̃. However, we
are going to claim that (Fcc(R), d) is a near metric space of fuzzy numbers such that d satisfies the null equality.

(i) Given any fuzzy numbers ã and b̃, we see that ãL
α − b̃U

α ≤ ãU
α − b̃L

α for all α ∈ [0, 1]. Therefore

if ãU
α − b̃L

α < 0 for some α ∈ [0, 1], then d(ã, b̃) = sup
α∈[0,1]

∣∣∣ãL
α + ãU

α − b̃L
α − b̃U

α

∣∣∣ 6= 0.

Suppose that
0 = d(ã, b̃) = sup

α∈[0,1]

∣∣∣ãL
α + ãU

α − b̃L
α − b̃U

α

∣∣∣ . (4)

We are going to claim ã Ω
= b̃. From (4), we must have ãU

α − b̃L
α ≥ 0 for all α ∈ [0, 1]. Now we also have

|ãL
α + ãU

α − b̃L
α − b̃U

α | = 0 for all α ∈ [0, 1], which also says that ãL
α + ãU

α = b̃L
α + b̃U

α for all α ∈ [0, 1],
i.e., ãL

α + b̃L
α − b̃U

α = 2b̃L
α − ãU

α for all α ∈ [0, 1]. It is easy to see that ãL
α + b̃L

α − b̃U
α ≤ ãU

α + b̃U
α − b̃L

α and
2b̃L

α − ãU
α ≤ ãU

α + b̃U
α − b̃L

α by using the facts of ãL
α ≤ ãU

α , b̃L
α ≤ b̃U

α and ãU
α ≥ b̃L

α . Therefore we can form
two identical closed intervals

[ãL
α + b̃L

α − b̃U
α , ãU

α + b̃U
α − b̃L

α ] = [2b̃L
α − ãU

α , ãU
α + b̃U

α − b̃L
α ]. (5)
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Now the closed intervals [ãL
α + b̃L

α − b̃U
α , ãU

α + b̃U
α − b̃L

α ] and [2b̃L
α − ãU

α , ãU
α + b̃U

α − b̃L
α ] can be written as

[ãL
α + b̃L

α − b̃U
α , ãU

α + b̃U
α − b̃L

α ] = [ãL
α , ãU

α ] + [b̃L
α − b̃U

α , b̃U
α − b̃L

α ] (6)

and
[2b̃L

α − ãU
α , ãU

α + b̃U
α − b̃L

α ] = [b̃L
α , b̃U

α ] + [b̃L
α − ãU

α , ãU
α − b̃L

α ]. (7)

Then we can form two fuzzy numbers ω̃(1) and ω̃(2) such that(
ω̃(1)

)
α
= [b̃L

α − b̃U
α , b̃U

α − b̃L
α ] and

(
ω̃(2)

)
α
= [b̃L

α − ãU
α , ãU

α − b̃L
α ].

It is clear to we see that ω̃(1), ω̃(2) ∈ Ω. Therefore, from (5)–(7), we obtain ã⊕ ω̃(1) = b̃⊕ ω̃(2), which

shows ã Ω
= b̃, since ω̃(1), ω̃(2) ∈ Ω. Conversely, suppose that ã Ω

= b̃. Then ã⊕ ω̃(1) = b̃⊕ ω̃(2) for some
ω̃(1), ω̃(2) ∈ Ω. By the definition of Ω, we have

(ω̃(1))α = [−(ω̃(1))U
α , (ω̃(1))U

α ] and (ω̃(2))α = [−(ω̃(2))U
α , (ω̃(2))U

α ],

where (ω̃(1))U
α , (ω̃(2))U

α ≥ 0 for all α ∈ [0, 1]. From ã⊕ ω̃(1) = b̃⊕ ω̃(2), we obtain[
ãL

α − (ω̃(1))U
α , ãU

α + (ω̃(1))U
α

]
=
[
b̃L

α − (ω̃(2))U
α , b̃U

α + (ω̃(2))U
α

]
,

i.e., ãL
α − (ω̃(1))U

α = b̃L
α − (ω̃(2))U

α and ãU
α + (ω̃(1))U

α = b̃U
α + (ω̃(2))U

α for all α ∈ [0, 1].

Then we obtain

d(ã, b̃) = sup
α∈[0,1]

∣∣∣(ãL
α − b̃L

α

)
+
(

ãU
α − b̃U

α

)∣∣∣
= sup

α∈[0,1]

∣∣∣((ω̃(1))U
α − (ω̃(2))U

α

)
+
(
(ω̃(2))U

α − (ω̃(1))U
α

)∣∣∣ = 0.

(ii) We have

d
(
ã, b̃
)
= sup

α∈[0,1]

∣∣∣ãL
α + ãU

α − b̃L
α − b̃U

α

∣∣∣ = sup
α∈[0,1]

∣∣∣b̃L
α + b̃U

α − ãL
α − ãU

α

∣∣∣ = d
(
b̃, ã
)

.

(iii) Given any ã, b̃, c̃ ∈ Fcc(R), we have

d
(
ã, b̃
)
= sup

α∈[0,1]

∣∣∣ãL
α + ãU

α − b̃L
α − b̃U

α

∣∣∣ = sup
α∈[0,1]

∣∣∣(ãL
α + ãU

α − c̃L
α − c̃U

α

)
+
(

c̃L
α + c̃U

α − b̃L
α − b̃U

α

)∣∣∣
≤ sup

α∈[0,1]

(∣∣∣ãL
α + ãU

α − c̃L
α − c̃U

α

∣∣∣+ ∣∣∣c̃L
α + c̃U

α − b̃L
α − b̃U

α

∣∣∣)
≤ sup

α∈[0,1]

∣∣∣ãL
α + ãU

α − c̃L
α − c̃U

α

∣∣∣+ sup
α∈[0,1]

∣∣∣c̃L
α + c̃U

α − b̃L
α − b̃U

α

∣∣∣
= d (ã, c̃) + b̃U

α

(
c̃, b̃
)

.

(iv) For any ã, b̃ ∈ Fcc(R) and ω̃(1), ω̃(2) ∈ Ω, i.e., (ω̃(1))U
α , (ω̃(2))U

α ≥ 0, where (ω̃(1))L
α = −(ω̃(1))U

α and
(ω̃(2))L

α = −(ω̃(2))U
α , we have
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d
(

ã⊕ ω̃(1), b̃⊕ ω̃(2)
)
= sup

α∈[0,1]

∣∣∣∣(ã⊕ ω̃(1)
)L

α
+
(

ã⊕ ω̃(1)
)U

α
−
(

b̃⊕ ω̃(2)
)L

α
−
(

b̃⊕ ω̃(2)
)U

α

∣∣∣∣
= sup

α∈[0,1]

∣∣∣ãL
α + (ω̃(1))L

α + ãU
α + (ω̃(1))U

α − b̃L
α − (ω̃(2))L

α − b̃U
α − (ω̃(2))U

α

∣∣∣
= sup

α∈[0,1]

∣∣∣ãL
α − (ω̃(1))U

α + ãU
α + (ω̃(1))U

α − b̃L
α + (ω̃(2))U

α − b̃U
α − (ω̃(2))U

α

∣∣∣
= sup

α∈[0,1]

∣∣∣(ãL
α + ãU

α

)
−
(

b̃L
α + b̃U

α

)∣∣∣ = d
(
ã, b̃
)

The verification is complete.

4. Near Normed Space of Fuzzy Numbers

Recall that Fcc(R) is not a vector space. Therefore we cannot endow a norm to Fcc(R) in the
conventional way to consider the normed space (Fcc(R), ‖ · ‖). However, we can propose the so-called
near normed space of fuzzy numbers involving the null set Ω as follows.

Definition 3. Given the nonnegative real-valued function ‖ · ‖: Fcc(R) → R+ defined on Fcc(R),
we consider the following conditions:

(i) ‖ λã ‖= |λ|· ‖ ã ‖ for any ã ∈ Fcc(R) and λ ∈ F;
(i′) ‖ λã ‖= |λ|· ‖ ã ‖ for any ã ∈ Fcc(R) and λ ∈ F with λ 6= 0.
(ii) ‖ ã⊕ b̃ ‖≤‖ ã ‖ + ‖ b̃ ‖ for any ã, b̃ ∈ Fcc(R).

(iii) ‖ ã ‖= 0 implies ã ∈ Ω.

We say that ‖ · ‖ satisfies the null condition when condition (iii) is replaced by ‖ ã ‖= 0 if and only if
ã ∈ Ω. Different kinds of near normed space of fuzzy numbers are defined below.

• We say that (Fcc(R), ‖ · ‖) is a near pseudo-seminormed space of fuzzy numbers if and only if conditions
(i′) and (ii) are satisfied.

• We say that (Fcc(R), ‖ · ‖) is a near seminormed space of fuzzy numbers if and only if conditions (i) and
(ii) are satisfied.

• We say that (Fcc(R), ‖ · ‖) is a near pseudo-normed space of fuzzy numbers if and only if conditions (i′),
(ii) and (iii) are satisfied.

• We say that (Fcc(R), ‖ · ‖) is a near normed space of fuzzy numbers if and only if conditions (i), (ii) and
(iii) are satisfied.

Now we consider the following definitions:

• We say that ‖ · ‖ satisfies the null super-inequality if and only if ‖ ã⊕ ω̃ ‖≥‖ ã ‖ for any ã ∈ Fcc(R)
and ω̃ ∈ Ω.

• We say that ‖ · ‖ satisfies the null sub-inequality if and only if ‖ ã⊕ ω̃ ‖≤‖ ã ‖ for any ã ∈ Fcc(R) and
ω̃ ∈ Ω.

• We say that ‖ · ‖ satisfies the null equality if and only if ‖ ã⊕ ω̃ ‖=‖ ã ‖ for any ã ∈ Fcc(R) and
ω̃ ∈ Ω.

For any ã, b̃ ∈ Fcc(R), since −(b̃	 ã) = ã	 b̃, we have

‖ ã	 b̃ ‖=‖ b̃	 ã ‖ .

Example 2. For any ã ∈ Fcc(R), we define

‖ ã ‖= sup
α∈[0,1]

∣∣∣ãL
α + ãU

α

∣∣∣ .

Then we have the following properties.
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• ‖ ã ‖= 0 if and only if ã ∈ Ω. Indeed, if ‖ ã ‖= 0, then |ãL
α + ãU

α | = 0 for all α ∈ [0, 1], which also says
that ãL

α = −ãU
α for all α ∈ [0, 1]. This shows that ã ∈ Ω. For the converse, if ã ∈ Ω then ãL

α = −ãU
α for

all α ∈ [0, 1]. This shows that ‖ ã ‖= 0. Therefore ‖ · ‖ satisfies the null condition.
• We have

‖ λã ‖ = sup
α∈[0,1]

∣∣∣(λã)L
α + (λã)U

α

∣∣∣ = sup
α∈[0,1]

∣∣∣λãL
α + λãU

α

∣∣∣ (using (1))

= |λ| · sup
α∈[0,1]

∣∣∣ãL
α + ãU

α

∣∣∣ = |λ|· ‖ ã ‖ .

• We have

‖ ã⊕ b̃ ‖ = sup
α∈[0,1]

∣∣∣(ã⊕ b̃
)L

α
+
(
ã⊕ b̃

)U
α

∣∣∣ = sup
α∈[0,1]

∣∣∣ãL
α + b̃L

α + ãU
α + b̃U

α

∣∣∣
≤ sup

α∈[0,1]

(∣∣∣ãL
α + ãU

α

∣∣∣+ ∣∣∣b̃L
α + b̃U

α

∣∣∣) ≤ sup
α∈[0,1]

∣∣∣ãL
α + ãU

α

∣∣∣+ sup
α∈[0,1]

∣∣∣b̃L
α + b̃U

α

∣∣∣
=‖ ã ‖ + ‖ b̃ ‖ .

• For any ω̃ ∈ Ω, i.e., ω̃L
α = −ω̃U

α for all α ∈ [0, 1], we have

‖ ã⊕ ω̃ ‖ = sup
α∈[0,1]

∣∣∣(ã⊕ ω̃)L
α + (ã⊕ ω̃)U

α

∣∣∣ = sup
α∈[0,1]

∣∣∣ãL
α + ω̃L

α + ãU
α + ω̃U

α

∣∣∣
= sup

α∈[0,1]

∣∣∣ãL
α − ω̃U

α + ãU
α + ω̃U

α

∣∣∣ = sup
α∈[0,1]

∣∣∣ãL
α + ãU

α

∣∣∣ =‖ ã ‖ .

We conclude that (Fcc(R), ‖ · ‖) is a near normed space of fuzzy numbers such that the null condition
and null equality are satisfied.

Proposition 3. Let (Fcc(R), ‖ · ‖) be a near pseudo-seminormed space of fuzzy numbers such that ‖ · ‖
satisfies the null super-inequality. For any ã, c̃, b̃(1), · · · , b̃(m) ∈ Fcc(R), we have

‖ ã	 c̃ ‖≤‖ ã	 b̃(1) ‖ + ‖ b̃(1) 	 b̃(2) ‖ + · · ·+ ‖ b̃(j) 	 b̃(j+1) ‖ + · · ·+ ‖ b̃(m) 	 c̃ ‖ .

Proof. We have

‖ ã	 c̃ ‖ ≤‖ ã⊕ (−c̃)⊕ b̃(1) ⊕ · · · ⊕ b̃(m) ⊕ (−b̃(1))⊕ · · · ⊕ (−b̃(m)) ‖
(using the null super-inequality for m times)

=‖ [ã⊕ (−b̃(1))]⊕ [b̃(1) ⊕ (−b̃(2))] + · · ·+ [b̃(j) ⊕ (−b̃(j+1))] + · · ·+ [b̃(m) ⊕ (−c̃)] ‖

≤‖ ã	 b̃(1) ‖ + ‖ b̃(1) 	 b̃(2) ‖ + · · ·+ ‖ b̃(j) 	 b̃(j+1) ‖ + · · ·+ ‖ b̃(m) 	 c̃ ‖
(using the triangle inequality).

This completes the proof.

Proposition 4. According to Definitions 1 and 3, the following statements hold true.

(i) Let (Fcc(R), ‖ · ‖) be a near pseudo-seminormed space of fuzzy numbers such that ‖ · ‖ satisfies the null

equality. For any ã, b̃ ∈ Fcc(R), if ã Ω
= b̃, then ‖ ã ‖=‖ b̃ ‖.

(ii) Let (Fcc(R), ‖ · ‖) be a near pseudo-normed space of fuzzy numbers. For any ã, b̃ ∈ Fcc(R), we have

that ‖ ã	 b̃ ‖= 0 implies ã Ω
= b̃.

(iii) Let (Fcc(R), ‖ · ‖) be a near pseudo-seminormed space of fuzzy numbers such that ‖ · ‖ satisfies the null

super-inequality and null condition. For any ã, b̃ ∈ Fcc(R), we have that ã Ω
= b̃ implies ‖ ã	 b̃ ‖= 0.



Mathematics 2018, 6, 108 9 of 27

Proof. To prove part (i), we see that ã Ω
= b̃ implies ã ⊕ ω̃(1) = b̃ ⊕ ω̃(2) for some ω̃(1), ω̃(2) ∈ Ω.

Therefore, using the null equality, we have

‖ ã ‖=‖ ã⊕ ω̃(1) ‖=‖ b̃⊕ ω̃(2) ‖=‖ b̃ ‖ .

To prove part (ii), suppose that ‖ ã	 b̃ ‖= 0. Then ã	 b̃ ∈ Ω, i.e., ã	 b̃ = ω̃(1) for some ω̃(1) ∈ Ω.

By adding b̃ on both sides, we have ã⊕ ω̃(2) = b̃⊕ ω̃(1) for some ω̃(2) ∈ Ω, which says that ã Ω
= b̃.

To prove part (iii), for ã Ω
= b̃, we have ã⊕ ω̃(1) = b̃⊕ ω̃(2) for some ω̃(1), ω̃(2) ∈ Ω. Since Ω is

closed under the fuzzy addition, it follows that

ã	 b̃⊕ ω̃(1) = ã⊕ ω̃(1) 	 b̃ = b̃⊕ ω̃(2) 	 b̃ = ω̃(3) (8)

for some ω̃(3) ∈ Ω. Using the null super-inequality, null condition and (8), we have

‖ ã	 b̃ ‖≤‖ ã	 b̃⊕ ω̃(1) ‖=‖ ω̃(3) ‖= 0.

This completes the proof.

5. Cauchy Sequences

In this section, we are going to introduce the concepts of Cauchy sequences and completeness in
the near metric space of fuzzy numbers and the near normed space of fuzzy numbers.

5.1. Cauchy Sequences in Near Metric Space of Fuzzy Numbers

We first introduce the concept of limit in the near metric space of fuzzy numbers.

Definition 4. Let (Fcc(R), d) be a near pseudo-metric space of fuzzy numbers. The sequence {ã(n)}∞
n=1 in

Fcc(R) is said to be convergent if and only if

lim
n→∞

d(ã(n), ã) = 0 for some ã ∈ Fcc(R).

The element ã is called the limit of the sequence {ã(n)}∞
n=1.

Let {ã(n)}∞
n=1 be a sequence in (Fcc(R), d). If there exist ã, b̃ ∈ Fcc(R) such that

lim
n→∞

d(ã(n), ã) = 0 = lim
n→∞

d(ã(n), b̃),

then, by the triangle inequality (iii) in Definition 2, we have

0 ≤ d(ã, b̃) ≤ d(ã, ã(n)) + d(ã(n), b̃)→ 0 + 0 = 0 as n→ ∞, (9)

which says that d(ã, b̃) = 0. By condition (i) in Definition 2, we see that ã Ω
= b̃, which also says that b̃ is

in the equivalence class [ã].

Proposition 5. Suppose that d satisfies the null equality (iv) in Definition 2. Let {ã(n)}∞
n=1 be a sequence in

Fcc(R) satisfying d(ã(n), ã)→ 0 as n→ ∞. Then d(ã(n), b̃)→ 0 as n→ ∞ for any b̃ ∈ [ã].

Proof. For b̃ ∈ [ã], we have ã ⊕ ω̃(1) = b̃ ⊕ ω̃(2) for some ω̃(1), ω̃(2) ∈ Ω. Using the null equality,
we obtain

0 ≤ d(ã(n), b̃) = d(ã(n), ω̃(2) ⊕ b̃) = d(ã(n), ω̃(1) ⊕ ã)

= d(ã(n), ã)→ 0 as n→ ∞.
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This completes the proof.

Inspired by the above result, we propose the following definition.

Definition 5. If {ã(n)}∞
n=1 is a sequence in Fcc(R) satisfying

lim
n→∞

d(ã(n), ã) = 0

for some ã ∈ Fcc(R), then the equivalence class [ã] is called the class limit of {ã(n)}∞
n=1. We also write

lim
n→∞

ã(n) = [ã] or ã(n) → [ã].

Proposition 6. The class limit in the near metric space of fuzzy numbers (Fcc(R), d) is unique.

Proof. Suppose that the sequence {ã(n)}∞
n=1 is convergent with the class limits [ã] and [b̃].

Then we have
lim

n→∞
d(ã(n), ã) = 0 and lim

n→∞
d(ã(n), b̃) = 0,

which says that d(ã, b̃) = 0 by referring to (9). Therefore we obtain b̃ ∈ [ã], i.e., [ã] = [b̃]. This completes
the proof.

Definition 6. Let (Fcc(R), d) be a near metric space of fuzzy numbers.

• A sequence {ã(n)}∞
n=1 in Fcc(R) is called a Cauchy sequence if and only if, given any ε > 0, there exists

N ∈ N such that d(ã(n), ã(m)) < ε for all n > N and m > N.
• A subsetM of Fcc(R) is said to be complete if and only if every Cauchy sequence inM is convergent to

some element inM.

The following result is not hard to prove.

Proposition 7. Every convergent sequence in a near metric space of fuzzy numbers is a Cauchy sequence.

Example 3. Continued from Example 1, we see that d satisfies the null equality, where the metric d is defined
in (3). Now we want to show that this space is also complete. Suppose that {ã(n)}∞

n=1 is a Cauchy sequence in
the near metric space of fuzzy numbers (Fcc(R), d). For convenience, the end-points of α-level closed interval of
ã(n) is written by

(ã(n))L
α = ã(n,L)

α and (ã(n))U
α = ã(n,U)

α .

Then we have

d
(

ã(n), ã(m)
)
= sup

α∈[0,1]

∣∣∣(ã(n,L)
α + ã(n,U)

α

)
−
(

ã(m,L)
α + ã(m,U)

α

)∣∣∣ < ε (10)

for sufficiently large n and m. For each fixed α ∈ [0, 1], we define

c(n)α = ã(n,L)
α + ã(n,U)

α and c(m)
α = ã(m,L)

α + ã(m,U)
α .

Let fn(α) = c(n)α . Then we can consider a sequence of continuous functions { fn(α)}∞
n=1 on [0, 1]. Then (10)

shows that the sequence of functions { fn(α)}∞
n=1 satisfies the Cauchy condition for uniform convergence by

referring to Apostol ([20], Theorem 9.3). This also says that { fn(α)}∞
n=1 converges uniformly to a limit function

f (α) ≡ cα on [0, 1]. Therefore, for sufficiently large n, we have∣∣∣c(n)α − cα

∣∣∣ < ε

2
for all α ∈ [0, 1]. (11)
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Since each fn is continuous on [0, 1], Apostol ([20], Theorem 9.2) also says that the limit function f (α) ≡ cα

is continuous on [0, 1]. The continuity of cα on [0, 1] allows us to find a fuzzy number ã such that ãL
α + ãU

α = cα.
Therefore, using (16), we have

d
(

ã(n), ã
)
= sup

α∈[0,1]

∣∣∣(ã(n,L)
α + ã(n,U)

α

)
−
(

ãL
α + ãU

α

)∣∣∣ = sup
α∈[0,1]

∣∣∣c(n)α − cα

∣∣∣ ≤ ε

2
< ε

for sufficiently large n. This shows that the sequence {ã(n)}∞
n=1 is convergent, i.e., the space (Fcc(R), d)

is complete.

5.2. Cauchy Sequences in Near Normed Space of Fuzzy Numbers

Let (Fcc(R), ‖ · ‖) be a near pseudo-seminormed space of fuzzy numbers. Given a sequence
{ã(n)}∞

n=1 in Fcc(R), it is clear that ‖ ã(n) 	 ã ‖=‖ ã	 ã(n) ‖. The concept of limit is defined below.

Definition 7. Let (Fcc(R), ‖ · ‖) be a near pseudo-seminormed space of fuzzy numbers. A sequence {ã(n)}∞
n=1

in Fcc(R) is said to converge to ã ∈ Fcc(R) if and only if

lim
n→∞

‖ ã(n) 	 ã ‖= 0.

We have the following interesting results.

Proposition 8. Let (Fcc(R), ‖ · ‖) be a near pseudo-normed space of fuzzy numbers with the null set Ω,
and let {ã(n)}∞

n=1 be a sequence in (Fcc(R), ‖ · ‖).

(i) If the sequence {ã(n)}∞
n=1 converges to ã and b̃ simultaneously, then [ã] = [b̃].

(ii) Suppose that ‖ · ‖ satisfies the null equality. If the sequence {ã(n)}∞
n=1 converges to ã, then, give any

b̃ ∈ [ã], the sequence {ã(n)}∞
n=1 converges to b̃.

Proof. To prove the first case of part (i), we have

lim
n→∞

‖ ã	 ã(n) ‖= lim
n→∞

‖ ã(n) 	 b̃ ‖= 0.

By Proposition 3, we have

0 ≤‖ ã	 b̃ ‖≤‖ ã	 ã(n) ‖ + ‖ ã(n) 	 b̃ ‖→ 0 + 0 = 0, (12)

which says that ‖ ã	 b̃ ‖= 0. By Definition 3, we see that ã	 b̃ ∈ Ω, i.e., ã Ω
= b̃, which also says that b̃

is in the equivalence class [ã].
To prove part (ii), for any b̃ ∈ [ã], i.e., ã⊕ ω̃(1) = b̃⊕ ω̃(2) for some ω̃(1), ω̃(2) ∈ Ω, using the null

equality, we have

0 ≤‖ ã(n) 	 b̃ ‖=‖ b̃	 ã(n) ‖=‖ ω̃(2) ⊕ b̃	 ã(n) ‖=‖ ω̃(1) ⊕ ã	 ã(n) ‖=‖ ã	 ã(n) ‖→ 0.

This completes the proof.

Inspired by part (ii) of Proposition 8, we propose the following concept of limit.

Definition 8. Let (Fcc(R), ‖ · ‖) be a near pseudo-seminormed space of fuzzy numbers. If the sequence
{ã(n)}∞

n=1 in Fcc(R) converges to some ã ∈ Fcc(R), then the equivalence class [ã] is called the class limit of
{ã(n)}∞

n=1. We also write
lim

n→∞
ã(n) = [ã] or ã(n) → [ã].
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We need to remark that if [ã] is a class limit and b̃ ∈ [ã] then it is not necessarily that the sequence
{ã(n)}∞

n=1 converges to b̃ unless ‖ · ‖ satisfies the null equality. In other words, for the class limit [ã],
if ‖ · ‖ satisfies the null equality, then part (ii) of Proposition 8 says that sequence {ã(n)}∞

n=1 converges
to b̃ for any b̃ ∈ [ã].

Proposition 9. Let (Fcc(R), ‖ · ‖) be a near pseudo-normed space of fuzzy numbers such that ‖ · ‖ satisfies
the null super-inequality. Then the class limit is unique.

Proof. Suppose that the sequence {ã(n)}∞
n=1 is convergent with the class limits [ã] and [b̃].

Then, by definition, we have

lim
n→∞

‖ ã	 ã(n) ‖= lim
n→∞

‖ ã(n) 	 ã ‖= lim
n→∞

‖ b̃	 ã(n) ‖= lim
n→∞

‖ ã(n) 	 b̃ ‖= 0,

which implies ‖ ã	 b̃ ‖= 0 by referring to (12). By part (ii) of Proposition 4, we have ã Ω
= b̃, i.e., [ã] = [b̃].

This shows the uniqueness in the sense of class limit.

Definition 9. Let (Fcc(R), ‖ · ‖) be a near pseudo-seminormed space of fuzzy numbers.

• A sequence {ã(n)}∞
n=1 in Fcc(R) is called a Cauchy sequence if and only if, given any ε > 0, there exists

N ∈ N such that
‖ ã(n) 	 ã(m) ‖=‖ ã(m) 	 ã(n) ‖< ε

for m, n > N with m 6= n.
• A subsetM of Fcc(R) is said to be complete if and only if every Cauchy sequence inM is convergent to

some element inM.

Proposition 10. Let (Fcc(R), ‖ · ‖) be a near pseudo-seminormed space of fuzzy numbers such that ‖ · ‖
satisfies the null super-inequality. Then every convergent sequence is a Cauchy sequence.

Proof. If the sequence {ã(n)}∞
n=1 converges to ã, then, given any ε > 0,

‖ ã(n) 	 ã ‖=‖ ã	 ã(n) ‖< ε/2

for sufficiently large n. Therefore, by Proposition 3, we have

‖ ã(n) 	 ã(m) ‖=‖ ã(m) 	 ã(n) ‖≤‖ ã(m) 	 ã ‖ + ‖ ã	 ã(n) ‖< ε

2
+

ε

2
= ε

for sufficiently large n and m, which says that {ã(n)}∞
n=1 is a Cauchy sequence. This completes

the proof.

Definition 10. Different kinds of near Banach spaces of fuzzy numbers are defined below.

• Let (Fcc(R), ‖ · ‖) be a near pseudo-seminormed space of fuzzy numbers. If Fcc(R) is complete, then it is
called a near pseudo-semi-Banach space of fuzzy numbers.

• Let (Fcc(R), ‖ · ‖) be a seminormed space of fuzzy numbers. If Fcc(R) is complete, then it is called a near
semi-Banach space of fuzzy numbers.

• Let (Fcc(R), ‖ · ‖) be a near pseudo-normed space of fuzzy numbers. If Fcc(R) is complete, then it is
called a near pseudo-Banach space of fuzzy numbers.

• Let (Fcc(R), ‖ · ‖) be a near normed space of fuzzy numbers. If Fcc(R) is complete, then it is called a
near Banach space of fuzzy numbers.
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Example 4. Continued from Example 2, we want to show that the near normed space of fuzzy numbers
(Fcc(R), ‖ · ‖) is complete. Suppose that {ã(n)}∞

n=1 is a Cauchy sequence in (Fcc(R), ‖ · ‖). Then we have
‖ ã(n) 	 ã(m) ‖< ε for m, n > N with m 6= n, i.e.

ε >‖ ã(n) 	 ã(m) ‖= sup
α∈[0,1]

∣∣∣∣(ã(n) 	 ã(m)
)L

α
+
(

ã(n) 	 ã(m)
)U

α

∣∣∣∣
= sup

α∈[0,1]

∣∣∣ã(n,L)
α − ã(m,U)

α + ã(n,U)
α − ã(m,L)

α

∣∣∣
= sup

α∈[0,1]

∣∣∣(ã(n,L)
α + ã(n,U)

α

)
−
(

ã(m,L)
α + ã(m,U)

α

)∣∣∣ . (13)

For each fixed α ∈ [0, 1], we define

c(n)α = ã(n,L)
α + ã(n,U)

α and c(m)
α = ã(m,L)

α + ã(m,U)
α .

By referring to Example 3, we can find a fuzzy number ã such that, for sufficiently large n,

ãL
α + ãU

α = cα and
∣∣∣c(n)α − cα

∣∣∣ < ε

2
for all α ∈ [0, 1].

Therefore, for sufficiently large n, we have

‖ ã(n) 	 ã ‖ = sup
α∈[0,1]

∣∣∣∣(ã(n) 	 ã
)L

α
+
(

ã(n) 	 ã
)L

α

∣∣∣∣ = sup
α∈[0,1]

∣∣∣ã(n,L)
α − ãU

α + ã(n,U)
α − ãL

α

∣∣∣
= sup

α∈[0,1]

∣∣∣(ã(n,L)
α + ã(n,U)

α

)
−
(

ãL
α + ãU

α

)∣∣∣ = sup
α∈[0,1]

∣∣∣c(n)α − cα

∣∣∣ ≤ ε

2
< ε.

This shows that the sequence {ã(n)}∞
n=1 is convergent, i.e., (Fcc(R), ‖ · ‖) is a near Banach space of

fuzzy numbers.

6. Near Fixed Point Theorems in Near Metric Space of Fuzzy Numbers

Let T̃ : Fcc(R)→ Fcc(R) be a fuzzy-number-valued function from Fcc(R) into itself. We say that
ã ∈ Fcc(R) is a fixed point of T̃ if and only if T̃(ã) = ã. The well-known Banach contraction principle
presents the fixed point of function T̃ when (Fcc(R), d) is taken to be a metric space. Since (Fcc(R), d)
presented in Example 1 is not a metric space (it is a near metric space), we cannot study the Banach
contraction principle on this space (Fcc(R), d). In other words, we cannot study the fixed point of
contractive mappings defined on (Fcc(R), d) into itself in the conventional way. However, we can
investigate the so-called near fixed point defined below.

Definition 11. Let T̃ : Fcc(R) → Fcc(R) be a fuzzy-number-valued function defined on Fcc(R) into itself.

A point ã ∈ Fcc(R) is called a near fixed point of T̃ if and only if T̃(ã) Ω
= ã.

By definition, we see that T̃(ã) Ω
= ã if and only if there exist ω̃(1), ω̃(2) ∈ Ω such that one of the

following equalities is satisfied:

• T̃(ã)⊕ ω̃(1) = ã;
• T̃(ã) = ã⊕ ω̃(1);
• T̃(ã)⊕ ω̃(1) = ã⊕ ω̃(2).

We also see that if T̃(ã) = ã then T̃(ã) Ω
= ã, since the crisp number 1̃{0} with value 0 is in Ω and

ã⊕ 1̃{0} = ã.



Mathematics 2018, 6, 108 14 of 27

Definition 12. A fuzzy-number-valued function T̃ : (Fcc(R), d)→ (Fcc(R), d) is called a metric contraction
on Fcc(R) if and only if there is a real number 0 < λ < 1 such that

d(T̃(ã), T̃(b̃)) ≤ λ · d(ã, b̃)

for any ã, b̃ ∈ Fcc(R).

Given any initial element ã(0) ∈ Fcc(R), we define the iterative sequence {ã(n)}∞
n=1 using the

fuzzy-number-valued function T̃ as follows:

ã(1) = T̃(ã(0)), ã(2) = T̃(ã(1)) = T̃2(ã(0)), · · · , ã(n) = T̃n(ã(0)), · · · . (14)

Under some suitable conditions, we are going to show that the sequence {ã(n)}∞
n=1 can converge

to a near fixed point. If the near metric space of fuzzy numbers (Fcc(R), d) is complete, then it is also
called a complete near metric space of fuzzy numbers.

Theorem 1. (Near Fixed Point Theorem) Let (Fcc(R), d) be a complete near metric space of fuzzy numbers such
that d satisfies the null equality. Suppose that the fuzzy-number-valued function T̃ : (Fcc(R), d)→ (Fcc(R), d)

is a metric contraction on Fcc(R). Then T̃ has a near fixed point ã ∈ Fcc(R) satisfying T̃(ã) Ω
= ã. Moreover,

the near fixed point ã is obtained by the limit

d
(

ã(n), ã
)
→ 0 as n→ ∞

in which the sequence {ã(n)}∞
n=1 is generated according to (14). We also have the following properties.

• The uniqueness is in the sense that there is a unique equivalence class [ã] such that any ã◦ 6∈ [ã] cannot be
a near fixed point.

• Each point ã◦ ∈ [ã] is also a near fixed point of T̃ satisfying T̃(ã◦) Ω
= ã◦ and [ã◦] = [ã].

• If ã◦ is a near fixed point of T̃, then ã◦ ∈ [ã], i.e., [ã◦] = [ã]. Equivalently, if ã and ã◦ are the near fixed

points of T̃, then ã Ω
= ã◦.

Proof. Given any initial element ã(0) ∈ Fcc(R), we have the iterative sequence {ã(n)}∞
n=1 according

to (14). We are going to show that {ã(n)}∞
n=1 is a Cauchy sequence. Since T̃ is a metric contraction on

Fcc(R), we have

d
(

ã(m+1), ã(m)
)
= d

(
T̃(ã(m)), T̃(ã(m−1))

)
≤ λ · d

(
ã(m), ã(m−1)

)
= λ · d

(
T̃(ã(m−1)), T̃(ã(m−2))

)
≤ λ2 · d

(
ã(m−1), ã(m−2)

)
≤ · · · ≤ λm · d

(
ã(1), ã(0)

)
.

For n < m, using the triangle inequality, we obtain

d
(

ã(m), ã(n)
)
≤ d

(
ã(m), ã(m−1)

)
+ d

(
ã(m−1), ã(m−2)

)
+ · · ·+ d

(
ã(n+1), ã(n)

)
≤
(

λm−1 + λm−2 + · · ·+ λn
)
· d
(

ã(1), ã(0)
)

= λn · 1− λm−n

1− λ
· d
(

ã(1), ã(0)
)

.
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Since 0 < λ < 1, we have 1− λm−n < 1 in the numerator, which says that

d
(

ã(m), ã(n)
)
≤ λn

1− λ
· d
(

ã(1), ã(0)
)
→ 0 as n→ ∞.

This proves that {ã(n)}∞
n=1 is a Cauchy sequence. Since the near metric space of fuzzy numbers

Fcc(R) is complete, there exists ã ∈ Fcc(R) such that d(ã(n), ã) → 0, i.e., ã(n) → [ã] according to
Definition 5 and Proposition 6.

We are going to show that any point ã◦ ∈ [ã] is a near fixed point. Now we have

ã◦ ⊕ ω̃(1) = ã⊕ ω̃(2) for some ω̃(1), ω̃(2) ∈ Ω. (15)

Therefore we obtain

d
(

ã◦, T̃(ã◦)
)
= d

(
ã◦ ⊕ ω̃(1), T̃(ã◦)

)
(since d satisfies the null equality)

≤ d
(

ã◦ ⊕ ω̃(1), ã(m)
)
+ d

(
ã(m), T̃(ã◦)

)
(using the triangle inequality)

= d
(

ã◦ ⊕ ω̃(1), ã(m)
)
+ d

(
T̃(ã(m−1)), T̃(ã◦)

)
≤ d

(
ã◦ ⊕ ω̃(1), ã(m)

)
+ λ · d

(
ã(m−1), ã◦

)
(using the metric contraction)

= d
(

ã◦ ⊕ ω̃(1), ã(m)
)
+ λ · d

(
ã(m−1), ã◦ ⊕ ω̃(1)

)
(since d satisfies the null equality)

= d
(

ã⊕ ω̃(2), ã(m)
)
+ λ · d

(
ã(m−1), ã⊕ ω̃(2)

)
(using (15))

= d
(

ã, ã(m)
)
+ λ · d

(
ã(m−1), ã

)
(since d satisfies the null equality),

which implies d(ã◦, T̃(ã◦)) = 0 as m→ ∞, i.e., T̃(ã◦) Ω
= ã◦ for any point ã◦ ∈ [ã].

Now we assume that there is another near fixed point ã◦ of T̃ with ã◦ 6∈ [ã], i.e., ã◦ Ω
= T̃(ã◦). Then

ã◦ ⊕ ω̃(1) = T̃(ã◦)⊕ ω̃(2) and ã⊕ ω̃(3) = T̃(ã)⊕ ω̃(4)

for some ω̃i ∈ Ω, i = 1, · · · , 4. Since T̃ is a metric contraction on Fcc(R) and d satisfies the null equality,
we obtain

d (ã◦, ã) = d
(

ã◦ ⊕ ω̃(1), ã⊕ ω̃(3)
)
= d

(
T̃(ã◦)⊕ ω̃(2), T̃(ã)⊕ ω̃(4)

)
= d

(
T̃(ã◦), T̃(ã)

)
≤ λ · d (ã◦, ã) .

Since 0 < λ < 1, we must have d(ã◦, ã) = 0, i.e., ã◦ Ω
= ã, which contradicts ã◦ 6∈ [ã]. Therefore,

any ã◦ 6∈ [ã] cannot be a near fixed point. Equivalently, if ã◦ is a near fixed point of T̃, then ã◦ ∈ [ã].
This completes the proof.

Example 5. Continued from Example 3, the near metric space of fuzzy numbers (Fcc(R), d) is complete.
Given a real number 0 < λ < 1, we consider the fuzzy-number-valued function

T̃(ã) = 1̃{λ} ⊗ ã, where 1̃{λ} is a crisp number with value λ.

It is clear to see that

(T̃(ã))L
α = λ · ãL

α and (T̃(ã))U
α = λ · ãU

α for α ∈ [0, 1]. (16)
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Then, using (16) and (3), we have

d(T̃(ã), T̃(b̃)) = sup
α∈[0,1]

∣∣∣((T̃(ã))L
α + (T̃(ã))U

α

)
−
(
(T̃(b̃))L

α + (T̃(b̃))U
α

)∣∣∣
= sup

α∈[0,1]

∣∣∣λ · (ãL
α + ãU

α

)
− λ ·

(
b̃L

α + b̃U
α

)∣∣∣ = λ · d(ã, b̃),

which says that T̃ is a metric contraction. Theorem 1 says that T̃ has a near fixed point. It is clear to see that the
crisp number 1̃{0} with value 0 is a near fixed point, since

T̃(1̃{0}) = 1̃{λ} ⊗ 1̃{0} = 1̃{0}.

Now, given any ω̃ ∈ Ω, we see that 1̃{λ} ⊗ ω̃ ∈ Ω. It is not hard to show that there exists another
ω̃(1) ∈ Ω such that

1̃{λ} ⊗ ω̃ = ω̃⊕ ω̃(1).

In this case, we have
T̃(ω̃) = 1̃{λ} ⊗ ω̃ = ω̃⊕ ω̃(1),

which shows that ω̃ is a near fixed point. Therefore, we obtain the unique equivalence class

[1̃{0}] = [ω] = Ω

for ω ∈ Ω, which illustrates the first property of Theorem 1.

Definition 13. A fuzzy-number-valued function T̃ : (Fcc(R), d) → (Fcc(R), d) is called a weakly strict
metric contraction on Fcc(R) if and only if the following conditions are satisfied:

• ã Ω
= b̃, i.e., [ã] = [b̃] implies d(T̃(ã), T̃(b̃)) = 0;

• ã 6Ω= b̃, i.e., [ã] 6= [b̃] implies d(T̃(ã), T̃(b̃)) < d(ã, b̃).

It is clear that if T̃ is a metric contraction onFcc(R), then it is also a weakly strict metric contraction
on Fcc(R).

Theorem 2. (Near Fixed Point Theorem) Let (Fcc(R), d) be a complete near metric space of fuzzy numbers.
Suppose that the fuzzy-number-valued function T̃ : (Fcc(R), d) → (Fcc(R), d) is a weakly strict metric
contraction on Fcc(R). If {T̃n(ã(0))}∞

n=1 forms a Cauchy sequence for some ã(0) ∈ Fcc(R), then T̃ has a near

fixed point ã ∈ Fcc(R) satisfying T̃(ã) Ω
= ã. Moreover, the near fixed point ã is obtained by the limit

d
(

T̃n(ã(0)), ã
)
→ 0 as n→ ∞.

Assume further that d satisfies the null equality. Then we also have the following properties.

• The uniqueness is in the sense that there is a unique equivalence class [ã] such that any ã◦ 6∈ [ã] cannot be
a near fixed point.

• Each point ã◦ ∈ [ã] is also a near fixed point of T̃ satisfying T̃(ã◦) Ω
= ã◦ and [ã◦] = [ã].

• If ã◦ is a near fixed point of T̃, then ã◦ ∈ [ã], i.e., [ã◦] = [ã]. Equivalently, if ã and ã◦ are the near fixed

points of T̃, then ã Ω
= ã◦.

Proof. Since {T̃n(ã(0))}∞
n=1 is a Cauchy sequence, the completeness says that there exists ã ∈ Fcc(R)

such that d(T̃n(ã(0)), ã)→ 0, i.e., T̃n(ã(0))→ [ã] according to Definition 5 and Proposition 6. Therefore,
given any ε > 0, there exists an integer N such that d(T̃n(ã(0)), ã) < ε for n ≥ N. Since T̃ is a weakly
strict metric contraction on Fcc(R), we consider the following two cases.
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• Suppose that T̃n(ã(0)) Ω
= ã. Then

d
(

T̃n+1(ã(0)), T̃(ã)
)
= 0 < ε.

• Suppose that T̃n(ã(0))
Ω
6= ã. Then

d
(

T̃n+1(ã(0)), T̃(ã)
)
< d

(
T̃n(ã(0)), ã

)
< ε for n ≥ N.

The above two cases say that d(T̃n+1(ã(0)), T̃(ã))→ 0. Using the triangle inequality, we obtain

d
(

T̃(ã), ã
)
≤ d

(
T̃(ã), T̃n+1(ã(0))

)
+ d

(
T̃n+1(ã(0)), ã

)
→ 0 as n→ ∞,

which says that d(T̃(ã), ã) = 0, i.e., T̃(ã) Ω
= ã. This shows that ã is a near fixed point.

Assume further that d satisfies the null equality. We are going to claim that each point ã◦ ∈ [ã]

is also a near fixed point of T̃. Since ã◦ Ω
= ã, we have ã◦ ⊕ ω̃(1) = ã⊕ ω̃(2) for some ω̃(1), ω̃(2) ∈ Ω.

Then, using the null equality for d, we obtain

d
(

T̃n(ã(0)), ã◦
)
= d

(
T̃n(ã(0)), ã◦ ⊕ ω̃(1)

)
= d

(
T̃n(ã(0)), ã⊕ ω̃(2)

)
= d

(
T̃n(ã(0)), ã

)
→ 0 as n→ ∞.

We can similarly obtain d(T̃n+1(ã(0)), T̃(ã◦)) → 0 as n → ∞. Using the triangle inequality,
we have

d
(

ã◦, T̃(ã◦)
)
≤ d

(
ã◦, T̃n+1(ã(0))

)
+ d

(
T̃n+1(ã(0)), T̃(ã◦)

)
→ 0 as n→ ∞,

which says that d(ã◦, T̃(ã◦)) = 0. Therefore we conclude that T̃(ã◦) Ω
= ã◦ for any ã◦ ∈ [ã].

Suppose that ã◦ 6∈ [ã] is another near fixed point of T̃. Then T̃(ã◦) Ω
= ã◦ and [ã◦] 6= [ã], i.e.,

ã 6Ω= ã◦. Then
T̃(ã)⊕ ω̃(1) = ã⊕ ω̃(2) and T̃(ã◦)⊕ ω̃(3) = ã◦ ⊕ ω̃(4)

for some ω̃i ∈ Ω for i = 1, 2, 3, 4. Therefore we obtain

d (ã, ã◦) = d
(

ã⊕ ω̃(2), ã◦ ⊕ ω̃(4)
)

(since d satisfies the null equality)

= d
(

T̃(ã)⊕ ω̃(1), T̃(ã◦)⊕ ω̃(3)
)
= d

(
T̃(ã), T̃(ã◦)

)
(since d satisfies the null equality)

< d (ã, ã◦) (since ã 6Ω= ã◦ and T̃ is a weakly strict metric contraction).

This contradiction says that ã◦ cannot be a near fixed point of T̃. Equivalently, if ã◦ is a near fixed
point of T̃, then ã◦ ∈ [ã]. This completes the proof.

Now we consider another fixed point theorem based on the weakly uniformly strict metric
contraction which was proposed by Meir and Keeler [21]. Under the near metric space of fuzzy

numbers (Fcc(R), d), we have d(ã, b̃) = 0 for ã Ω
= b̃. Therefore we propose the following

different definition.

Definition 14. A fuzzy-number-valued function T̃ : (Fcc(R), d)→ (Fcc(R), d) is called a weakly uniformly
strict metric contraction on Fcc(R) if and only if the following conditions are satisfied:

• for ã Ω
= b̃, i.e., [ã] = [b̃], d(T̃(ã), T̃(b̃)) = 0;
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• for ã 6Ω= b̃, i.e., [ã] 6= [b̃], given any ε > 0, there exists δ > 0 such that

ε ≤ d
(
ã, b̃
)
< ε + δ implies d

(
T̃(ã), T̃(b̃)

)
< ε.

Remark 1. We observe that if T̃ is a weakly uniformly strict metric contraction on Fcc(R), then T̃ is also a
weakly strict metric contraction on Fcc(R) by taking ε = d(ã, b̃).

Lemma 1. Let T̃ : (Fcc(R), d) → (Fcc(R), d) be a weakly uniformly strict metric contraction on Fcc(R).
Then the sequence {

d
(

T̃n(ã), T̃n+1(ã)
)}∞

n=1

is decreasing to zero for any ã ∈ Fcc(R).

Proof. For convenience, we write T̃n(ã) = ã(n) for all n. Let ηn = d(ã(n), ã(n+1)).

• Suppose that [ã(n−1)] 6= [ã(n)]. By Remark 1, since T̃ is also a weakly strict metric contraction on
Fcc(R), we have

ηn = d
(

ã(n), ã(n+1)
)
= d

(
T̃n(ã), T̃n+1(ã)

)
< d

(
T̃n−1(ã), T̃n(ã)

)
= d

(
ã(n−1), ã(n)

)
= ηn−1.

• Suppose that [ã(n−1)] = [ã(n)]. Then, by the first condition of Definition 14, we have

ηn = d
(

T̃n(ã), T̃n+1(ã)
)
= d

(
T̃(ã(n−1)), T̃(ã(n))

)
= 0 ≤ ηn−1.

The above two cases say that the sequence {ηn}∞
n=1 is decreasing. We consider the following cases.

• Let m be the first index in the sequence {ã(n)}∞
n=1 such that [ã(m−1)] = [ã(m)]. Then we want to

claim ηm−1 = ηm = ηm+1 = · · · = 0. Since ã(m−1) Ω
= ã(m), we have

ηm−1 = d
(

ã(m−1), ã(m)
)
= 0.

Using the first condition of Definition 14, we also have

0 = d
(

T̃(ã(m−1)), T̃(ã(m))
)
= d

(
T̃(T̃m−1(ã)), T̃(T̃m(ã))

)
= d

(
T̃m(ã), T̃m+1(ã)

)
= d

(
ã(m), ã(m+1)

)
= ηm,

which says that ã(m) Ω
= ã(m+1), i.e., [ã(m)] = [ã(m+1)]. Using the similar argument, we can obtain

ηm+1 = 0 and [ã(m+1)] = [ã(m+2)]. Therefore the sequence {ηn}∞
n=1 is decreasing to zero.

• Suppose that [ã(m+1)] 6= [ã(m)] for all m ≥ 1. Since the sequence {ηn}∞
n=1 is decreasing, we assume

that ηn ↓ ε > 0, i.e., ηn ≥ ε > 0 for all n. Then there exists δ > 0 such that ε ≤ ηm < ε + δ for
some m, i.e.,

ε ≤ d(ã(m), ã(m+1)) < ε + δ.

By the second condition of Definition 14, we have

ηm+1 = d
(

ã(m+1), ã(m+2)
)
= d

(
T̃m+1(ã), T̃m+2(ã)

)
= d

(
T̃(ã(m)), T̃(ã(m+1))

)
< ε,

which contradicts ηm+1 ≥ ε. Therefore we must have ηn ↓ 0.
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This completes the proof.

Theorem 3. (Near Fixed Point Theorem) Let (Fcc(R), d) be a complete near metric space of fuzzy numbers
with the null set Ω, and let T̃ : (Fcc(R), d)→ (Fcc(R), d) be a weakly uniformly strict metric contraction on

Fcc(R). Then T̃ has a near fixed point satisfying T̃(ã) Ω
= ã. Moreover, the near fixed point ã is obtained by

the limit
d
(

T̃n(ã(0)), ã
)
→ 0 as n→ ∞ for some ã(0).

Assume further that d satisfies the null equality. Then we also have the following properties.

• The uniqueness is in the sense that there is a unique equivalence class [ã] such that any ã◦ 6∈ [ã] cannot be
a near fixed point.

• Each point ã◦ ∈ [ã] is also a near fixed point of T̃ satisfying T̃(ã◦) Ω
= ã◦ and [ã◦] = [ã].

• If ã◦ is a near fixed point of T̃, then ã◦ ∈ [ã], i.e., [ã◦] = [ã]. Equivalently, if ã and ã◦ are the near fixed

points of T̃, then ã Ω
= ã◦.

Proof. According to Theorem 2 and Remark 1, we just need to claim that if T̃ is a weakly uniformly
strict metric contraction, then {T̃n(ã(0))}∞

n=1 ≡ {ã(n)}∞
n=1 is a Cauchy sequence for ã(0) ∈ Fcc(R).

Suppose that {ã(n)}∞
n=1 is not a Cauchy sequence. Then there exists ε > 0 such that, given any

N, there exist m, n ≥ N satisfying d(ã(m), ã(n)) > 2ε. Since T̃ is a weakly uniformly strict metric

contraction on Fcc(R), for ã 6Ω= b̃, there exists δ > 0 such that

ε ≤ d
(
ã, b̃
)
< ε + δ implies d

(
T̃(ã), T̃(b̃)

)
< ε.

Let δ′ = min{δ, ε}. For ã 6Ω= b̃, we are going to claim

ε ≤ d
(
ã, b̃
)
< ε + δ′ implies d

(
T̃(ã), T̃(b̃)

)
< ε. (17)

Indeed, if δ′ = δ, then it is done, and if δ′ = ε, i.e., ε < δ, then ε + δ′ = ε + ε < ε + δ. This proves
the statement (17).

Let ηn = d(ã(n), ã(n+1)). Since the sequence {ηn}∞
n=1 is decreasing to zero by Lemma 1, we can

find N such that ηN < δ′/3. For n > m ≥ N, we have

d
(

ã(m), ã(n)
)
> 2ε ≥ ε + δ′, (18)

which says that ã(m) 6Ω= ã(n). Since the sequence {ηn}∞
n=1 is decreasing by Lemma 1 again, we obtain

d
(

ã(m), ã(m+1)
)
= ηm ≤ ηN <

δ′

3
≤ ε

3
< ε. (19)

For j with m < j ≤ n, using the triangle inequality, we also have

d
(

ã(m), ã(j+1)
)
≤ d

(
ã(m), ã(j)

)
+ d

(
ã(j), ã(j+1)

)
. (20)

We want to show that there exists j with m < j ≤ n such that ã(m) 6Ω= ã(j) and

ε +
2δ′

3
< d

(
ã(m), ã(j)

)
< ε + δ′. (21)
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Let γj = d(ã(m), ã(j)) for j = m + 1, · · · , n. Then (18) and (19) says that γm+1 < ε and γn > ε + δ′.
Let j0 be an index such that

j0 = max
{

j ∈ [m + 1, n] : γj ≤ ε +
2δ′

3

}
.

Then we see that j0 < n, since γn > ε + δ′. By the definition of j0, we also see that j0 + 1 ≤ n and

γj0+1 > ε +
2δ′

3
, (22)

which also says that ã(m) 6Ω= ã(j0+1); otherwise, γj0+1 = 0 that is a contradiction. Therefore, from (22),
expression (21) will be sound if we can show that γj0+1 < ε + δ′. Suppose that this is not true, i.e.,
γj0+1 ≥ ε + δ′. We also see that γj0 ≤ ε + 2δ′

3 . Since {ηn}∞
n=1 is decreasing, from (19) and (20), we have

δ′

3
> ηN ≥ ηj0 = d

(
ã(j0), ã(j0+1)

)
≥ γj0+1 − γj0 ≥ ε + δ′ − ε− 2δ′

3
=

δ′

3
.

This contradiction says that (21) is sound. Since ã(m) 6Ω= ã(j), using (17), we see that (21) implies

d
(

ã(m+1), ã(j+1)
)
= d

(
T̃(ã(m)), T̃(ã(j))

)
< ε. (23)

Therefore, using the triangle inequality, we obtain

d
(

ã(m), ã(j)
)

≤ d
(

ã(m), ã(m+1)
)
+ d

(
ã(m+1), ã(j+1)

)
+ d

(
ã(j+1), ã(j)

)
< ηm + ε + ηj (by (23))

≤ ηm + ε + ηm <
δ′

3
+ ε +

δ′

3
(by (19))

= ε +
2δ′

3
,

which contradicts (21). This contradiction says that every sequence {T̃n(ã)}∞
n=1 = {ã(n)}∞

n=1 is a
Cauchy sequence. This completes the proof.

7. Near Fixed Point Theorems in Near Banach Space of Fuzzy Numbers

Let (Fcc(R), ‖ · ‖) be a near Banach space of fuzzy numbers. In this section, we shall study the
near fixed point in (Fcc(R), ‖ · ‖).

Definition 15. Let (Fcc(R), ‖ · ‖) be a near pseudo-seminormed space of fuzzy numbers.
A fuzzy-number-valued function T̃ : (Fcc(R), ‖ · ‖) → (Fcc(R), ‖ · ‖) is called a norm contraction on
Fcc(R) if and only if there is a real number 0 < α < 1 such that

‖ T̃(ã)	 T̃(b̃) ‖≤ α· ‖ ã	 b̃ ‖

for any ã, b̃ ∈ Fcc(R).

Theorem 4. Let (Fcc(R), ‖ · ‖) be a near Banach space of fuzzy numbers with the null set Ω such that ‖ · ‖
satisfies the null equality. Suppose that the fuzzy-number-valued function T̃ : (Fcc(R), ‖ · ‖)→ (Fcc(R), ‖ · ‖)
is a norm contraction on Fcc(R). Then T̃ has a near fixed point ã ∈ Fcc(R) satisfying T̃(ã) Ω

= ã. Moreover, the
near fixed point ã is obtained by the limit
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‖ ã	 ã(n) ‖=‖ ã(n) 	 ã ‖→ 0 as n→ ∞

in which the sequence {ã(n)}∞
n=1 is generated according to (14). We also have the following properties.

• The uniqueness is in the sense that there is a unique equivalence class [ã] such that any ã◦ 6∈ [ã] cannot be
a near fixed point.

• Each point ã◦ ∈ [ã] is also a near fixed point of T̃ satisfying T̃(ã◦) Ω
= ã◦ and [ã◦] = [ã].

• If ã◦ is a near fixed point of T̃, then ã◦ ∈ [ã], i.e., [ã◦] = [ã]. Equivalently, if ã and ã◦ are the near fixed

points of T̃, then ã Ω
= ã◦.

Proof. Given any initial element ã(0) ∈ Fcc(R), we are going to show that {ã(n)}∞
n=1 is a Cauchy

sequence. Since T̃ is a norm contraction on Fcc(R), we have

‖ ã(m+1) 	 ã(m) ‖ =‖ T̃(ã(m))	 T̃(ã(m−1)) ‖≤ α ‖ ã(m) 	 ã(m−1) ‖

= α ‖ T̃(ã(m−1))	 T̃(ã(m−2)) ‖≤ α2 ‖ ã(m−1) 	 ã(m−2) ‖

≤ · · · ≤ αm ‖ ã(1) 	 ã(0) ‖ .

For n < m, using Proposition 3, we obtain

‖ ã(m) 	 ã(n) ‖ ≤‖ ã(m) 	 ã(m−1) ‖ + ‖ ã(m−1) 	 ã(m−2) ‖ + · · ·+ ‖ ã(n+1) 	 ã(n) ‖

≤
(

αm + αm+1 + · · ·+ αn
)
· ‖ ã(1) 	 ã(0) ‖

= αn · 1− αm−n

1− α
· ‖ ã(1) 	 ã(0) ‖ .

Since 0 < α < 1, we have 1− αm−n < 1 in the numerator, which says that

‖ ã(m) 	 ã(n) ‖≤ αn

1− α
· ‖ ã(1) 	 ã(0) ‖→ 0 as n→ ∞.

This proves that {ã(n)}∞
n=1 is a Cauchy sequence. Since Fcc(R) is complete, there exists ã ∈ Fcc(R)

such that
‖ ã	 ã(n) ‖=‖ ã(n) 	 ã ‖→ 0 as n→ ∞.

We are going to show that any point ã◦ ∈ [ã] is a near fixed point. Now we have ã◦ ⊕ ω̃(1) = ã⊕ ω̃(2)

for some ω̃(1), ω̃(2) ∈ Ω. Using the triangle inequality and the fact of norm contraction on Fcc(R),
we have

‖ ã◦ 	 T̃(ã◦) ‖ =‖ (ã◦ ⊕ ω̃(1))	 T̃(ã◦) ‖ (since ‖ · ‖ satisfies the null equality)

≤‖ (ã◦ ⊕ ω̃(1))	 ã(m) ‖ + ‖ ã(m) 	 T̃(ã◦) ‖ (using Proposition 3)

=‖ (ã◦ ⊕ ω̃(1))	 ã(m) ‖ + ‖ T̃(ã(m−1))	 T̃(ã◦) ‖

≤‖ (ã◦ ⊕ ω̃(1))	 ã(m) ‖ +α ‖ ã(m−1) 	 ã◦ ‖

=‖ (ã◦ ⊕ ω̃(1))	 ã(m) ‖ +α ‖ ã(m−1) 	 ã◦ ⊕ (−ω̃(1)) ‖
(since −ω̃(1) ∈ Ω and ‖ · ‖ satisfies the null equality)

=‖ (ã◦ ⊕ ω̃(1))	 ã(m) ‖ +α ‖ ã(m−1) 	 (ã◦ ⊕ ω̃(1)) ‖ (using Proposition 1)

=‖ (ã⊕ ω̃(2))	 ã(m) ‖ +α ‖ ã(m−1) 	 (ã⊕ ω̃(2)) ‖

=‖ ã	 ã(m) ‖ +α ‖ ã(m−1) 	 ã ‖
(using −ω̃(2) ∈ Ω, the null equality and Proposition 1),
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which implies ‖ ã◦ 	 T̃(ã◦) ‖= 0 as m → ∞. We conclude that T̃(ã◦) Ω
= ã◦ for any point ã◦ ∈ [ã] by

part (ii) of Proposition 4.

Now assume that there is another near fixed point ã◦ of T̃ with ã◦ 6∈ [ã], i.e., ã◦ Ω
= T̃(ã◦). Then

ã◦ ⊕ ω̃(1) = T̃(ã◦)⊕ ω̃(2) and ã⊕ ω̃(3) = T̃(ã)⊕ ω̃(4)

for some ω̃i ∈ Ω, i = 1, · · · , 4. Since T̃ is a norm contraction on Fcc(R) and ‖ · ‖ satisfies the null
equality, we obtain

‖ ã◦ 	 ã ‖ =‖ (ã◦ ⊕ ω̃(1))	 (ã⊕ ω̃(3)) ‖
(using −ω̃(3) ∈ Ω, the null equality and Proposition 1)

=‖
(

T̃(ã◦)⊕ ω̃(2)
)
	
(

T̃(ã)⊕ ω̃(4)
)
‖=‖ T̃(ã◦)	 T̃(ã) ‖

(using −ω̃(4) ∈ Ω, the null equality and Proposition 1)

≤ α ‖ ã◦ 	 ã ‖ .

Since 0 < α < 1, we conclude that ‖ ã◦	 ã ‖= 0, i.e., ã◦ Ω
= ã, which contradicts ã◦ 6∈ [ã]. Therefore,

any ã◦ 6∈ [ã] cannot be the near fixed point. Equivalently, if ã◦ is a near fixed point of T̃, then ã◦ ∈ [ã].
This completes the proof.

Definition 16. Let (Fcc(R), ‖ · ‖) be a near pseudo-normed space of fuzzy numbers. A fuzzy-number-valued
function T̃ : (Fcc(R), ‖ · ‖) → (Fcc(R), ‖ · ‖) is called a weakly strict norm contraction on Fcc(R) if and
only if the following conditions are satisfied:

• ã Ω
= b̃, i.e., [ã] = [b̃] implies ‖ T̃(ã)	 T̃(b̃) ‖= 0.

• ã 6Ω= b̃, i.e., [ã] 6= [b̃] implies ‖ T̃(ã)	 T̃(b̃) ‖<‖ ã	 b̃ ‖.

By part (ii) of Proposition 4, we see that if ã 6Ω= b̃, then ‖ ã 	 b̃ ‖6= 0, which says that the
weakly strict norm contraction is well-defined. In other words, (Fcc(R), ‖ · ‖) should be assumed to
be a near pseudo-normed space of fuzzy numbers rather than pseudo-seminormed space of fuzzy
numbers. We further assume that ‖ · ‖ satisfies the null super-inequality and null condition. Part (iii)
of Proposition 4 says that if T̃ is a norm contraction on Fcc(R), then it is also a weakly strict norm
contraction on Fcc(R).

Theorem 5. Let (Fcc(R), ‖ · ‖) be a near Banach space of fuzzy numbers with the null set Ω. Suppose that
‖ · ‖ satisfies the null super-inequality and null condition, and that the fuzzy-number-valued function
T̃ : (Fcc(R), ‖ · ‖)→ (Fcc(R), ‖ · ‖) is a weakly strict norm contraction on Fcc(R). If {T̃n(ã(0))}∞

n=1 forms

a Cauchy sequence for some ã(0) ∈ Fcc(R), then T̃ has a near fixed point ã ∈ Fcc(R) satisfying T̃(ã) Ω
= ã.

Moreover, the near fixed point ã is obtained by the limit

‖ T̃n(ã(0))	 ã ‖=‖ ã	 T̃n(ã(0)) ‖→ 0 as n→ ∞.

Assume further that ‖ · ‖ satisfies the null equality. Then we also have the following properties.

• The uniqueness is in the sense that there is a unique equivalence class [ã] such that any ã◦ 6∈ [ã] cannot be
a near fixed point.

• Each point ã◦ ∈ [ã] is also a near fixed point of T̃ satisfying T̃(ã◦) Ω
= ã◦ and [ã◦] = [ã].

• If ã◦ is a near fixed point of T̃, then ã◦ ∈ [ã], i.e., [ã◦] = [ã]. Equivalently, if ã and ã◦ are the near fixed

points of T̃, then ã Ω
= ã◦.
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Proof. Since {T̃n(ã(0))}∞
n=1 is a Cauchy sequence, the completeness says that there exists ã ∈ Fcc(R)

such that
‖ T̃n(ã(0))	 ã ‖=‖ ã	 T̃n(ã(0)) ‖→ 0.

Therefore, given any ε > 0, there exists an integer N such that ‖ T̃n(ã(0))	 ã ‖< ε for n ≥ N.
We consider the following two cases.

• Suppose that T̃n(ã(0)) Ω
= ã. Since T̃ is a weakly strict norm contraction on Fcc(R), it follows that

‖ T̃n+1(ã(0))	 T̃(ã) ‖= 0 < ε.

by part (iii) of Proposition 4.

• Suppose that T̃n(ã(0))
Ω
6= ã. Since T̃ is a weakly strict norm contraction on Fcc(R), we have

‖ T̃n+1(ã(0))	 T̃(ã) ‖<‖ T̃n(ã(0))	 ã ‖< ε for n ≥ N.

The above two cases say that ‖ T̃n+1(ã(0))	 T̃(ã) ‖→ 0. Using Proposition 3, we obtain

‖ ã	 T̃(ã) ‖≤‖ ã	 T̃n+1(ã(0)) ‖ + ‖ T̃n+1(ã(0))	 T̃(ã) ‖→ 0 as n→ ∞,

which says that ‖ ã	 T̃(ã) ‖= 0, i.e., T̃(ã) Ω
= ã by part (ii) of Proposition 4. This shows that ã is a near

fixed point.
Assume that ‖ · ‖ satisfies the null equality. We are going to claim that each point ã◦ ∈ [ã] is also

a near fixed point of T̃. Since ã◦ Ω
= ã, we have ã◦ ⊕ ω̃(1) = ã⊕ ω̃(2) for some ω̃(1), ω̃(2) ∈ Ω. Then,

using the null equality for ‖ · ‖, we obtain

‖ T̃n(ã(0))	 ã◦ ‖ =‖ ã◦ 	 T̃n(ã(0)) ‖=‖ (ã◦ ⊕ ω̃(1))	 T̃n(ã(0)) ‖=‖ (ã⊕ ω̃(2))	 T̃n(ã(0)) ‖

=‖ ã	 T̃n(ã(0)) ‖→ 0 as n→ ∞.

Using the above argument, we can also obtain ‖ T̃n+1(ã(0)) 	 T̃(ã◦) ‖→ 0 as n → ∞.
Using Proposition 3, we have

‖ ã◦ 	 T̃(ã◦) ‖≤‖ ã◦ 	 T̃n+1(ã(0)) ‖ + ‖ T̃n+1(ã(0))	 T̃(ã◦) ‖→ 0 as n→ ∞,

which says that ‖ ã◦ 	 T̃(ã◦) ‖= 0. Therefore we conclude that T̃(ã◦) Ω
= ã◦ for any point ã◦ ∈ [ã] by

part (ii) of Proposition 4.

Suppose that ã◦ 6∈ [ã] is another near fixed point of T̃. Then T̃(ã◦) Ω
= ã◦ and [ã◦] 6= [ã], i.e., ã 6Ω= ã◦.

Then T̃(ã)⊕ ω̃(1) = ã⊕ ω̃(2) and T̃(ã◦)⊕ ω̃(3) = ã◦ ⊕ ω̃(4), where ω̃i ∈ Ω for i = 1, 2, 3, 4. Therefore
we obtain

‖ ã	 ã◦ ‖ =‖ (ã⊕ ω̃(2))	 (ã◦ ⊕ ω̃(4)) ‖
(using −ω̃(4) ∈ Ω, the null equality and Proposition 1)

=‖ (T̃(ã)⊕ ω̃(1))	 (T̃(ã◦)⊕ ω̃(3)) ‖=‖ T̃(ã)	 T̃(ã◦) ‖
(using −ω̃(3) ∈ Ω, the null equality and Proposition 1)

<‖ ã	 ã◦ ‖ (since ã 6Ω= ã◦ and T̃ is a weakly strict norm contraction).

This contradiction says that ã◦ cannot be a near fixed point of T̃. Equivalently, if ã◦ is a near fixed
point of T̃, then ã◦ ∈ [ã]. This completes the proof.

Now we consider another fixed point theorem based on the concept of weakly uniformly strict
norm contraction which was proposed by Meir and Keeler [21].
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Definition 17. Let (Fcc(R), ‖ · ‖) be a near pseudo-normed space of fuzzy numbers with the null set Ω.
A fuzzy-number-valued function T̃ : (Fcc(R), ‖ · ‖) → (Fcc(R), ‖ · ‖) is called a weakly uniformly strict
norm contraction on Fcc(R) if and only if the following conditions are satisfied:

• for ã Ω
= b̃, i.e., [ã] = [b̃], ‖ T̃(ã)	 T̃(b̃) ‖= 0;

• for ã 6Ω= b̃, i.e., [ã] 6= [b̃], given any ε > 0, there exists δ > 0 such that ε ≤‖ ã	 b̃ ‖< ε + δ implies
‖ T̃(ã)	 T̃(b̃) ‖< ε.

By part (ii) of Proposition 4, we see that if ã 6Ω= b̃, then ‖ ã 	 b̃ ‖6= 0, which says that the
weakly uniformly strict norm contraction is well-defined. In other words, (Fcc(R), ‖ · ‖) should be
assumed to be a near pseudo-normed space of fuzzy numbers rather than pseudo-seminormed space
of fuzzy numbers.

Remark 2. We observe that if T̃ is a weakly uniformly strict norm contraction on Fcc(R), then T̃ is also a
weakly strict norm contraction on Fcc(R).

Lemma 2. Let (Fcc(R), ‖ · ‖) be a near pseudo-normed space of fuzzy numbers with the null set Ω, and let
T̃ : (Fcc(R), ‖ · ‖) → (Fcc(R), ‖ · ‖) be a weakly uniformly strict norm contraction on Fcc(R). Then the
sequence {‖ T̃n(ã)	 T̃n+1(ã) ‖}∞

n=1 is decreasing to zero for any ã ∈ Fcc(R).

Proof. For convenience, we write T̃n(ã) = ã(n) for all n. Let cn =‖ ã(n) 	 ã(n+1) ‖.

• Suppose that [ã(n−1)] 6= [ã(n)]. By Remark 2, we have

cn =‖ ã(n) 	 ã(n+1) ‖=‖ T̃n(ã)	 T̃n+1(ã) ‖<‖ T̃n−1(ã)	 T̃n(ã) ‖=‖ ã(n−1) 	 ã(n) ‖= cn−1.

• Suppose that [ã(n−1)] = [ã(n)]. Then, by the first condition of Definition 17,

cn =‖ T̃n(ã)	 T̃n+1(ã) ‖=‖ T̃(ã(n−1))	 T̃(ã(n)) ‖= 0 < cn−1.

The above two cases say that the sequence {cn}∞
n=1 is decreasing. We consider the following cases.

• Let m be the first index in the sequence {ã(n)}∞
n=1 such that [ã(m−1)] = [ã(m)]. Then we want to

claim cm−1 = cm = cm+1 = · · · = 0. Since ã(m−1) Ω
= ã(m), we have

cm−1 =‖ ã(m−1) 	 ã(m) ‖= 0.

Using the first condition of Definition 17, we also have

0 =‖ T̃(ã(m−1))	 T̃(ã(m)) ‖=‖ T̃m(ã)	 T̃m+1(ã) ‖=‖ ã(m) 	 ã(m+1) ‖= cm,

which says that ã(m) Ω
= ã(m+1), i.e., [ã(m)] = [ã(m+1)]. Using the similar arguments, we can obtain

cm+1 = 0 and [ã(m+1)] = [ã(m+2)]. Therefore the sequence {cn}∞
n=1 is decreasing to zero.

• Suppose that [ã(m+1)] 6= [ã(m)] for all m ≥ 1. Since the sequence {cn}∞
n=1 is decreasing, we assume

that cn ↓ ε > 0, i.e., cn ≥ ε > 0 for all n. There exists δ > 0 such that ε ≤ cm < ε + δ for
some m, i.e.,

ε ≤‖ ã(m) 	 ã(m+1) ‖< ε + δ.

By the second condition of Definition 17, we have

cm+1 =‖ ã(m+1) 	 ã(m+2) ‖=‖ T̃m+1(ã)	 T̃m+2(ã) ‖=‖ T̃(ã(m))	 T̃(ã(m+1)) ‖< ε,

which contradicts cm+1 ≥ ε. Therefore we must have ε = 0.
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This completes the proof.

Theorem 6. Let (Fcc(R), ‖ · ‖) be a near Banach space of fuzzy numbers with the null set Ω. Suppose that
‖ · ‖ satisfies the null super-inequality, and that the fuzzy-number-valued function T̃ : (Fcc(R), ‖ · ‖) →
(Fcc(R), ‖ · ‖) is a weakly uniformly strict norm contraction on Fcc(R). Then T̃ has a near fixed point

satisfying T̃(ã) Ω
= ã. Moreover, the near fixed point ã is obtained by the limit

‖ T̃n(ã(0))	 ã ‖=‖ ã	 T̃n(ã(0)) ‖→ 0 as n→ ∞.

Assume further that ‖ · ‖ satisfies the null equality. Then we also have the following properties.

• The uniqueness is in the sense that there is a unique equivalence class [ã] such that any ã◦ 6∈ [ã] cannot be
a near fixed point.

• Each point ã◦ ∈ [ã] is also a near fixed point of T̃ satisfying T̃(ã◦) Ω
= ã◦ and [ã◦] = [ã].

• If ã◦ is a near fixed point of T̃, then ã◦ ∈ [ã], i.e., [ã◦] = [ã]. Equivalently, if ã and ã◦ are the near fixed

points of T̃, then ã Ω
= ã◦.

Proof. According to Theorem 5 and Remark 2, we just need to claim that if T̃ is a weakly uniformly
strict norm contraction, then {T̃n(ã(0))}∞

n=1 ≡ {ã(n)}∞
n=1 forms a Cauchy sequence. Suppose that

{ã(n)}∞
n=1 is not a Cauchy sequence. Then there exists 2ε > 0 such that, given any N, there exist

n > m ≥ N satisfying ‖ ã(m) 	 ã(n) ‖> 2ε. Since T̃ is a weakly uniformly strict norm contraction on

Fcc(R), for ã 6Ω= b̃, there exists δ > 0 such that

ε ≤‖ ã	 b̃ ‖< ε + δ implies ‖ T̃(ã)	 T̃(b̃) ‖< ε.

Let δ′ = min{δ, ε}. For ã 6Ω= b̃, we are going to claim

ε ≤‖ ã	 b̃ ‖< ε + δ′ implies ‖ T̃(ã)	 T̃(b̃) ‖< ε. (24)

Indeed, if δ′ = δ then it is done, and if δ′ = ε, i.e., ε < δ, then ε + δ′ = ε + ε < ε + δ.
Let cn =‖ ã(n) 	 ã(n+1) ‖. Since the sequence {cn}∞

n=1 is decreasing to zero by Lemma 2, we can
find N such that cN < δ′/3. For n > m ≥ N, we have

‖ ã(m) 	 ã(n) ‖> 2ε ≥ ε + δ′, (25)

which implicitly says that ã(m) 6Ω= ã(n). Since the sequence {cn}∞
n=1 is decreasing by Lemma 2 again,

we obtain

‖ ã(m) 	 ã(m+1) ‖= cm ≤ cN <
δ′

3
≤ ε

3
< ε. (26)

For j with m < j ≤ n, using Proposition 3, we have

‖ ã(m) 	 ã(j+1) ‖≤‖ ã(m) 	 ã(j) ‖ + ‖ ã(j) 	 ã(j+1) ‖ . (27)

We want to show that there exists j with m < j ≤ n such that ã(m) 6Ω= ã(j) and

ε +
2δ′

3
<‖ ã(m) 	 ã(j) ‖< ε + δ′. (28)

Let γj =‖ ã(m)	 ã(j) ‖ for j = m+ 1, · · · , n. Then (25) and (26) says that γm+1 < ε and γn > ε+ δ′.
Let j0 be an index such that

j0 = max
{

j ∈ [m + 1, n] : γj ≤ ε +
2δ′

3

}
.
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Then we see that j0 < n, since γn > ε + δ′. By the definition of j0, we also see that j0 + 1 ≤ n and

γj0+1 > ε + 2δ′
3 , which also says that ã(m) 6Ω= ã(j0+1). Therefore expression (28) will be sound if we can

show that

ε +
2δ′

3
< γj0+1 < ε + δ′.

Suppose that this is not true, i.e., γj0+1 ≥ ε + δ′. From (27), we have

δ′

3
> cN ≥ cj0 =‖ ã(j0) 	 ã(j0+1) ‖≥ γj0+1 − γj0 ≥ ε + δ′ − ε− 2δ′

3
=

δ′

3
.

This contradiction says that (28) is sound. Since ã(m) 6Ω= ã(j), using (24), we see that (28) implies

‖ ã(m+1) 	 ã(j+1) ‖=‖ T̃(ã(m))	 T̃(ã(j)) ‖< ε. (29)

Therefore we obtain

‖ ã(m) 	 ã(j) ‖ ≤‖ ã(m) 	 ã(m+1) ‖ + ‖ ã(m+1) 	 ã(j+1) ‖ + ‖ ã(j+1) 	 ã(j) ‖ (by Proposition 3)

< cm + ε + cj (by (29))

<
δ′

3
+ ε +

δ′

3
= ε +

2δ′

3
,

which contradicts (28). This contradiction says that the sequence {T̃n(ã)}∞
n=1 ≡ {ã(n)}∞

n=1 is a Cauchy
sequence, and the proof is complete.
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