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Abstract: In this article, a modified implicit hybrid method for solving the fractional Bagley-Torvik
boundary (BTB) value problem is investigated. This approach is of a higher order. We study the
convergence, zero stability, consistency, and region of absolute stability of the modified implicit
hybrid method. Three of our numerical examples are presented.
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1. Introduction

Several engineering and physical phenomena are modeled mathematically using fractional
derivatives. Fractional derivatives have many applications, such as diffusion problems, liquid crystals,
proteins, mechanics structural control, and biosystems [1–9]. Several analytical and numerical methods
are used to solve fractional boundary and initial value problems, such as generalized differential
transform, the Adomian decomposition method, the homotopy perturbation technique, fractional
multistep methods, the spline approximation method, and the collocation method [10–26].

In this article, we consider the Bagley-Torvik boundary (BTB) value problem in the form:

y′′ (x) = ay(
3
2 )(x) + by(x) + r(x) = f

(
x, y, y(

3
2 )
)

, x ∈ [0, X] (1)

subject to
y(0) = α, y(X) = β, (2)

where a, b, α, and β are constants, and y, f ∈ L1[0, X].
BTB was discussed analytically in [27]. Then, several numerical approaches were used to solve

it such as the discrete spline method [28], the Hybridizable discontinuous Galerkin method [29],
generalizing the Taylor collocation method [30], and the operational matrix of Haar wavelet
method [30]. Special attention was given when y(0) = y(1) = 0. In addition, analytical solutions
for such cases are investigated using the modified spectral method and the Adomian decomposition
method [31].

We use a local fractional derivative, which is presented in [32,33]. This definition of fraction
derivative works efficiently with the proposed method since it has several properties such as the
product rule, power rule, and chain rule. These properties are given in the next section.

We modify an implicit hybrid method to solve Equations (1) and (2). We find an explicit formula
to solve such a problem. We investigate some analytical properties of the proposed method such as
consistency, stability, convergence, and order of convergence.
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We organize our paper as follow. In Section 2, we mention some definitions and results which
we use in this article. A modified fractional implicit hybrid method and its analytical properties are
presented in Section 3. Three of our numerical examples are presented in Section 4. We compare our
results with the results in [19,29]. Finally, we draw some conclusions in Section 5.

2. Preliminaries

First, we mention the definition of fractional derivative which we will use.

Definition 1. Let u(x) ∈ Cα(0, X), the fractional derivatives of order 1 ≥ α > 0 at x0 is defined as [33,34]:

Dαu(x) = lim
x→x0

∆α(u(x)− u(x0)

(x− x0)
α , (3)

where ∆α(u(x)− u(x0) ≈ Γ(α + 1)∆(u(x)− u(x0)).

The power rule of this local fractional derivative is given in the following theorem.

Theorem 1. This fractional derivative satisfies the following power rule:

Dαxp =

{
Γ(p+1)

Γ(p−α+1) xp−α, p ≥ α

0 otherwise

}
. (4)

In addition, it is easy to see that:

• Dαc = 0 for constant c.

• Dα(l(◦m)(x)) =
(

dm
dx

)α
Dαl(m(x)).

• Dkαl(x) = DαDα . . . Dαl(x).
• Dα(l(x)m(x)) = l(x)Dαm(x) + m(x)Dαl(x).

In this paper, a modified fractional implicit hybrid multistep method will be presented. To the
best of our knowledge, no work has been done to discuss this problem using the implicit hybrid
multistep methods.

Two major techniques are used to solve

w(m) = f
(

x, w, w′, . . . , w(m−1)
)

, w(a) = w0, w′(a) = w1, . . . , w(m−1)(a) = wm−1, (5)

which are one step methods, such as Taylor and Runge-Kutta methods, and multistep methods such
as Adams-Bashforth and Adams-Moulton methods. One-step methods are suitable only for the first
order since they have a very low order of accuracy. If the higher order Runge-Kutta method is used,
more function evaluations per step are required. Hence, solving Equation (5) using one-step methods
requires the transformation of the problem into a system of first order differential equations which
makes the dimension of the problem high and its scale also high. As a result, it will be time consuming
for large scale problems with a low accuracy.

On the other hand, multistep step methods do not need to transform Equation (5) into a system of
first order differential equations. These methods give higher order accuracy. However, they are not
efficient in terms of function evaluations as are the one step methods and require more than one value
to start the integration process.

In this paper, we look for a method that is a continuous implicit hybrid one step method. This
method is as efficient as the one step methods and has as high an accuracy as the multistep methods.
Next, we define the k-step hybrid formula. Let {x0, x1, . . . , xN} be a uniform partition of [a, b] with
xi = a + ih, i = 0, 1, . . . , N, and h = b−a

N .
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Definition 2. A k-step hybrid formula is defined by:

∑ k
i=0aiyn+i + ∑ l

i=0an+vi yn+vi = h ∑ k
i=0bi fn+i + h ∑ l

i=0bn+vi fn+vi ,

where ak = 1, a0 and b0 are nonzero, v /∈ {0, 1, . . . , k}, yn+i = y(xn + ih) and fn+vi = f (xn+vi , yn+vi ).
For more details, see in [34].

Definition 3. Let:

L[y[xn]; h] =
k

∑
i=0

aiyn+i +
l

∑
i=0

an+vi yn+vi = h
k

∑
i=0

bi fn+i + h
l

∑
i=0

bn+vi fn+vi= c0yn + c1y′n + . . .

If c0 = 0, c1 = 0, . . . , cp+1 = 0, cp+2 6= 0, then the order of the method is p and the error constant is
cp+2.

Definition 4. If the first and second characteristic polynomials are ρ(z) = ∑k
i=0 αi zi and σ(z) = ∑l

i=0 βi zi

with:

• α2
0 + β2

0 6= 0,
• The order is greater than or equal 1,

• ∑k
i=0 αi = 0,

• ρ(1) = ρ′(1) = 0,
• ρ′′ (1) = 2σ(1),

then, it and its block method are called consistent.

Definition 5. If no zeros of the first characteristic polynomial have a modulus greater than one and every root of
modulus one has multiplicity not greater than one, then it is called zero stable.

Definition 6. If the method is consistent and zero stable, it is convergent.

3. Method of Solution

To derive the modified fractional implicit hybrid method, we approximate the solution of
Equation (1) by:

y(x) = ∑ 4
k=0ax xk, (6)

with second derivative given by:

y′′ (x) = ∑ 4
k=2k(k− 1)ax xk−2. (7)

Let {x0, x1, x2, . . . , xm} be a uniform partition of [0, X] with h = X
m . Collocate Equation (7) at

xn, xn+ 1
2
, xn+1 and interpolate Equation (6) at xn, xn+ 1

2
to get:



1 xn x2
n x3

n x4
n

1 xn+ 1
2

x2
n+ 1

2
x3

n+ 1
2

x4
n+ 1

2

0
0
0

0
0
0

2 6xn 12x2
n

2 6xn+ 1
2

12x2
n+ 1

2

2 6xn+1 12x2
n+1




a0

a1

a2

a3

a4

 =


yn

yn+ 1
2

fn

fn+ 1
2

fn+1

, (8)

where:

fn = f
(

xn, yn, y(
3
2 )

n

)
, fn+ 1

2
= f

(
xn+ 1

2
, yn+ 1

2
, y(

3
2 )

n

)
, fn+1 = f

(
xn+1, yn+1, y(

3
2 )

n+1

)
.
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Let xn = x − ht
3
2 . Then, xn+ 1

2
= x − ht

3
2 + h

2 and xn+1 = x − ht
3
2 + h. Solving Equation (8),

we get:
y(x) = α0(t)yn + α1(t)yn+ 1

2
+ β0(t) fn + β1(t) fn+ 1

2
+ β2(t) fn+1, (9)

where:
α0(t) = 1− 2t

3
2 ,

α1(t) = 2t
3
2 ,

β0(t) = h2
(
− 7

48
t

3
2 +

1
2

t3 − 1
2

t
9
2 +

t6

6

)
,

β1(t) = h2
(
−1

8
t

3
2 +

2
3

t
9
2 − t6

3

)
,

β2(t) = h2
(

1
48

t
3
2 − 1

6
t

9
2 +

t6

6

)
.

For x = xn+1, t = 1 and

yn+1 = −yn + 2yn+ 1
2
+

h2

48

(
fn+1 + 10 fn+ 1

2
+ fn

)
. (10)

Using the Taylor series about x = xn for Equation (9), we get:

yn+1 + yn − 2yn+ 1
2
− h2

48

(
fn+1 + 10 fn+ 1

2
+ fn

)
= − h6

15360
y(6)(xn)−

h7

30360
y(7)(xn)− · · ·

which means that the order of Equation (10) is 4 and the error constant is O
(
0.000065h6).

The first and the second characteristic functions are given by:

ρ(z) = z− 2z
1
2 + 1 =

(√
z− 1

)2,

and
σ(z) =

1
48

(
z + 10z

1
2 + 1

)
.

Simple calculation implies that:

• The roots of ρ for which |z| = 1 are simple.
• Sum of coefficients of ρ is zero.
• ρ′(1) = 0 = ρ(1).
• ρ′′ (1) = 2!σ (1) = 1

2 .

This means that Equation (10) is consistent and zero stable which means that it is convergent. To
find the region of absolute stability, let:

g(z) =
ρ(z)
σ(z)

=
48
(

z− 2z
1
2 + 1

)
z + 10z

1
2 + 1

.

Let z = eiθ , then:

g(θ) = −
96 sin2

(
θ
4

)
5 + cos

(
θ
2

) .

Thus, the interval of absolute stability is (−9.6, 0) and the region of absolute stability is given in
Figure 1.
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𝐷
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ଷ
ଶ𝑦(𝑡) =

8

√27𝜋
ଷ
ସℎ

ଷ
ଶ

⎝

⎜
⎛

𝐷௧

ଷ
ଶ𝛼଴(𝑡)𝑦௡ + 𝐷௧

ଷ
ଶ𝛼ଵ(𝑡)𝑦

௡ା
ଵ
ଶ

+ 𝐷௧

ଷ
ଶ𝛽଴(𝑡)𝑓௡

+𝐷௧

ଷ
ଶ𝛽ଵ(𝑡)𝑓

௡ା
ଵ
ଶ

+ 𝐷௧

ଷ
ଶ𝛽ଶ(𝑡)𝑓௡ାଵ       

⎠
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Differentiate αi and βi to get:

D
3
2 α0(t) = −

3
2
√

π,

D
3
2 α1(t) =

3
2
√

π,

D
3
2 β0(t) = h2

(
−7
√

π

64
+

4√
π

t
3
2 − 315

√
π

128
t3 +

256
63
√

π
t

9
2

)
,

D
3
2 β1(t) = h2

(
−3
√

π

32
+

105
√

π

32
t3 − 512

63
√

π
t

9
2

)
,

D
3
2 β2(t) = h2

(√
π

64
− 105

√
π

128
t3 +

256
63
√

π
t

9
2

)
.

Similarly

D
3
2
t y(x) =

√
27
8

π
3
4 h

3
2 D

3
2
t y(t),

Thus

D
3
2
t y(t) =

8
√

27π
3
4 h

3
2

 D
3
2
t α0(t)yn + D

3
2
t α1(t)yn+ 1

2
+ D

3
2
t β0(t) fn

+D
3
2
t β1(t) fn+ 1

2
+ D

3
2
t β2(t) fn+1

. (11)

Then, at xn, xn+ 1
2

, xn+1, t = 0, 1
3√4

, 1, which imply that:

D
3
2 yn =

4
√

3 4
√

πh
3
2

(
−yn + yn+ 1

2

)
− 8

√
h

4
√

π
√

27

(
7 fn + 6 fn+ 1

2
− fn+1

)
, (12)

D
3
2 yn+ 1

2
=

4
√

3 4
√

πh
3
2

(
−yn + yn+ 1

2

)
+

8
√

h√
27 4√

π5


90896−23373π

32256 fn

+−9192+5859π
8064 fn+ 1

2

+ 16384−6611π
326 fn+1

, (13)

D
3
2 yn+1 =

4
√

3 4
√

πh
3
2

(
−yn + yn+ 1

2

)
+

8
√

h√
27 4√

π5


65024−20727π

8064 fn

− 8192−3213π
1008 fn+ 1

2

+ 32768−6489π
8064 fn+1

, (14)
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From Equation (12), we get:

yn+ 1
2
= yn −

√
3 4
√

πh
3
2

4
D

3
2 yn −

2h2

3π

(
7 fn + 6 fn+ 1

2
− fn+1

)
. (15)

Let D
3
2 y0 = θ. Then, y1, . . . , ym are functions of θ. Using the shooting method, we find the value

of θ.

4. Numerical Results

In this section, we present three of our examples. Comparison with References [19] and [29] will
be presented.

Example 1. Consider the following problem:

D2y(t) + D
3
2 y(t) + y(t) = 2 + 4

√
t
π

+ t2 + α = g(t),

subject to
y(0) = α, y(5) = 25 + α2,

where the exact solution is y(t) = t2 + α2. Let h = 0.01 and xi = ih, i = 0, 1, . . . , 500. Let D
3
2 y(0) = θ.

Using the modified fractional implicit hybrid method, we get the following system:

yn+1 = −yn + 2yn+ 1
2
− 10−4

48

 D
3
2

(
yn+1 + 10yn+ 1

2
+ yn−

)
+yn+1 + 10yn+ 1

2
+ yn

+
10−4

4
g(tn),

yn+ 1
2
= yn −

√
3 4
√

πh
3
2

4
D

3
2 yn −

2 ∗ 10−4

3π

 D
3
2

(
7yn+1 + 6yn+ 1

2
− yn(t)

)
+7yn+1 + 6yn+ 1

2
− yn

+
24 ∗ 10−4

3π
g(tn),

D
3
2 yn+ 1

2
=

4
√

3 4
√

πh
3
2

(
−yn + yn+ 1

2

)
− 0.8√

27 4√
π5


90896−23373π

32256

(
D

3
2 yn + yn − g(tn)

)
+−9192+5859π

8064 (D
3
2 yn+ 1

2
+ yn+ 1

2
− g(tn)

+ 16384−6611π
326

(
D

3
2 yn+1 + yn+1 − g(tn)

) )

,

D
3
2 yn+1 =

4
√

3 4
√

πh
3
2

(
−yn + yn+ 1

2

)
+

0.8√
27 4√

π5


65024−20727π

8064

(
D

3
2 yn + yn − g(tn)

)
− 8192−3213π

1008 (D
3
2 yn+ 1

2
+ yn+ 1

2
− g(tn))

+ 32768−6489π
8064

(
D

3
2 yn+1 + yn+1 − g(tn)

)
,

where y500 = 25 + α2 − 0.0000790783θ. To find θ, we set:

y500 = 25 + α2

to get θ = 0. The effect of α on the solution is given in Table 1 where:

e(α) = max{|y(tn)− yn|, n = 0, 1, . . . , 100}.



Mathematics 2018, 6, 109 7 of 11

Table 1. Comparison between our results and the results in Reference [20] for Example 1.

α e(ff) in [19] e(ff) Using Our Method

0 1.71× 10−10 1.12× 10−16

0.001 2.10× 10−10 2.21× 10−16

0.01 3.84× 10−10 2.27× 10−16

0.1 7.14× 10−10 3.01× 10−16

0.5 2.92× 10−10 3.02× 10−16

1 8.73× 10−10 3.07× 10−16

We compare our results with the results in Reference [19].
From Table 1, we see that there is no significant effect for the initial condition. In addition,

the proposed method gives more accurate results than Reference [19]. The approximate and exact
solutions are given in Figure 2.
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Example 2. Consider the following problem:

D2y(t) + D
3
2 y(t) + y(t) = 1 +

8
π

t
3
2 + 6t + t3 = g(t)

subject to
y(0) = 1, y(1) = 2

then, the exact solution is y(t) = t3 + 1. Let h = 0.01 and xi = ih, i = 0, 1, . . . , 100. Let D
3
2 y(0) = θ.

Following the procedure described in Example 1, we find that θ = 1.2× 10−14.

The errors for Example 2 are given in Table 2. The approximate and exact solutions are given in
Figure 3.
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Table 2. The errors for Example 2.

t |y(tn)− yn|
0 1.01× 10−16

0.1 1.21× 10−16

0.2 1.35× 10−16

0.3 1.39× 10−16

0.4 2.62× 10−16

0.5 3.53× 10−16

0.6 2.89× 10−16

0.7 2.21× 10−16

0.8 1.98× 10−16

0.9 1.45× 10−16

1.0 1.11× 10−16
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Example 3. Consider the following problem:

D2y(t) + D
3
2 y(t) + y(t) =

8√
π

t
3
2 + t3 + 7t + 1 = g(t),

subject to
y(0) = 1, y(1) = 3.

then, the exact solution is y(t) = t3 + t + 1. Let h = 0.01 and xi = ih, i = 0, 1, . . . , 300. Let D
3
2 y(0) = θ.

Following the procedure described in Example 1, we find that θ = 2.6× 10−15.

We compare our results with the results in Reference [29]. Let

error = max{|y(tn)− yn| : n = 0, 1, . . . , 300}.

In Table 3, we present the comparison between our results and the results in Reference [29] for
Example 3. The approximate and exact solutions are given in Figure 4.
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Table 3. Comparison between our results and the results in Reference [29] for Example 3.

Method Error

Our method 2.89× 10−16

Results in Reference [29] 1.98× 10−13
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5. Conclusions

In this paper, the modified fractional implicit hybrid method is presented for solving a class of
fractional BTB. The proposed method is based on an implicit hybrid multistep method. We study the
convergence, zero stability, consistency, and region of absolute stability. Three numerical examples are
presented. We notice the following:

• The modified implicit hybrid method is consistent, zero stable, and the order of convergence is 4.
• The interval of convergence is (−9.6, 0) and the region of absolute stability is given in Figure 1.
• The order of convergence is high without the need to refer to more initial conditions.
• As seen in Tables 1 and 3, the modified fractional implicit hybrid method gives more accurate

results than other methods.
• From Tables 1–3 and Figures 2–4, we see that the approximate solutions are very accurate and

very close to the exact solutions.
• The modified fractional implicit hybrid method can be applied to more physical and

engineering applications.
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