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Abstract: Maxwell equations have two types of asymmetries between the electric and magnetic
fields. The first asymmetry is the inhomogeneity induced by the absence of magnetic charge sources.
The second asymmetry is due to parity. We show how both asymmetries are naturally resolved under
an alternative formulation of Maxwell equations for fields or potentials that uses a compact complex
vector operator representation. The developed complex symmetric operator formalism can be easily
applied to performing the continuity equation, the field wave equations, the Maxwell equations for
potentials, the gauge transformations, and the 4-momentum representation; in general, the developed
formalism constitutes a simple way of unfolding the Maxwell theory. Finally, we provide insights for
extending the presented analysis within the context of (i) bicomplex numbers and tessarine algebra;
and (ii) Lp-spaces in nonlinear Maxwell equations.

Keywords: Maxwell equations; complex representation; E/M waves; gauge transformation;
gravitomagnetism; Lp norms

1. Introduction

There are various representations of Maxwell equations. Some examples are the following:
standard complex representation [1,2], spinor form [3], Silberstein–Bateman–Majorana form [4–6],
Kemmer–Duffin–Petiau form (also known as the meson algebra) [4,7], matrix representation [8],
Dirac form [9–11], Poincaré algebra [12], Debye sources [13,14], Penrose’s transformation presented in
terms of integral geometry [15,16], integral representation [17], and multipolar presentation [18].

This paper uses the complex vector representation of Maxwell equations in order to develop
the presented complex operator formalism. This developed formalism: (i) emerges naturally from the
symmetry between electric and magnetic fields; and (ii) exhibits a compact set of equations for the
fields and their potentials.

Most importantly, the presented formulation of Maxwell equations constitutes a much simpler
and compact way of unfolding the Maxwell theory compared to previous complex formulations
(e.g., continuity equation, wave equations, Maxwell equations for potentials, gauge symmetry).

The presented formulation of Maxwell equations constitutes a much simpler way of unfolding
the Maxwell theory compared with previous complex formulations (e.g., continuity equation, wave
equations, Maxwell equations for potentials, gauge symmetry). The analysis can trigger several
theoretical developments and applications different from the standard Maxwell equations. Indeed,
in the last section, we expose two examples where the presented analysis can be applied and extended,
that is, within the context of (i) bicomplex numbers and tessarine algebra; and (ii) Lp-spaces in nonlinear
Maxwell equations.

Next, in Section 2, we present the compact complex formalism of Maxwell equations. In Section 3,
we apply this formalism in the derivations of the basic concepts of (i) continuity equation; (ii) wave
equations; (iii) Maxwell equations for potentials; (iv) gauge transformation; and (v) 4-momentum
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of electromagnetic field. In Section 4, we summarize the conclusions, while in Section 5, we discuss
what’s next for further theoretical developments and applications of this formalism.

2. Compact Complex Representation of Maxwell Equations

The differential formalism of Maxwell equations for the electric
→
E and magnetic

→
B fields in the

presence of electric charge sources with density ρe and current
→
J e, are written as:

→
∇ ·

→
E =

ρe

ε0
(1a)

µ0ε0
∂
→
E

∂t
=
→
∇×

→
B − µ0

→
J e (1b)

→
∇ ·

→
B = 0 (1c)

∂
→
B

∂t
= −

→
∇×

→
E (1d)

which is consistent [19] with the sources continuity equation (by applying ∂/∂t and −
→
∇ to (1a) and

(1b), respectively, then, summing):
∂ρe

∂t
+
→
∇ ·

→
J e = 0. (2)

(Note: Electric/magnetic charge sources are denoted in bold letters throughout the letter.) The first
two equations are inhomogeneous due to the electric charge sources. The source-free equations are
homogeneous, but still suffer from the units and parity asymmetry:

→
∇ ·

→
E = 0 (3a)

µ0ε0
∂
→
E

∂t
=
→
∇×

→
B (3b)

→
∇ ·

→
B = 0 (3c)

∂
→
B

∂t
= −

→
∇×

→
E (3d)

The units asymmetry can be easily resolved by setting the spatial coordinates (ct,x,y,z) and the

magnetic field c
→
B . In this way, the:

→
∇ ·

→
E = 0 (4a)

∂
→
E

∂ct
=
→
∇× c

→
B (4b)

→
∇ · c

→
B = 0 (4c)

∂c
→
B

∂ct
= −

→
∇×

→
E (4d)

(where we used c2µ0ε0 = 1).
The parity transformation flips the sign of spatial coordinates, P̂

→
r = −→r . The electric field has

parity −1 (as any vector), while the magnetic field has parity +1 (as any axial vector, defined by a curl

of a vector). Using the complex Riemann–Silberstein vector field
→
G ≡

→
E + ic

→
B [20] and Minkowski
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metric [21], the spacetime is represented by four equivalent spatial components (ict,x,y,z) and the parity

of ic
→
B is −1 (as any regular vector),

→
∇ ·

→
E = 0 (5a)

∂
→
E

∂ict
= −

→
∇× ic

→
B (5b)

→
∇ · ic

→
B = 0 (5c)

∂ic
→
B

∂ict
= −

→
∇×

→
E (5d)

The Maxwell equations in (5) are symmetric. In fact, they can be compacted to:

→
∇ ·

→
G = 0 (6a)(

∂

∂ict
+
→
∇×

)→
G = 0 (6b)

by setting:
→
G ≡

→
E + ic

→
B , (7)

(where ic
→
B and

→
G are vectors having parity −1).

The corresponding equations with electric charge sources are:

→
∇ ·

→
E =

ρe

ε0
(8a)

∂
→
E

∂ict
= −

→
∇× ic

→
B + µ0ic

→
J e (8b)

→
∇ · ic

→
B = 0 (8c)

∂ic
→
B

∂ict
= −

→
∇×

→
E (8d)

which can be compacted, analogously to Equation (6):

→
∇ ·

→
G =

ρe

ε0
(9a)

(
∂

∂ict
+
→
∇×

)→
G = µ0ic

→
J e (9b)

The Maxwell equations in Equation (8) are still asymmetric due to the absence of magnetic
charge sources (monopoles). If there were monopoles, Maxwell equations would be written in the
symmetric form:

→
∇ ·

→
E = (µ0c) · (cρe) (10a)

∂
→
E

∂(ict)
= −

→
∇× ic

→
B − (µ0c) · (

→
J e/i) (10b)

→
∇ · (ic

→
B) = (iµ0mc) · (cρm) (10c)

∂(ic
→
B)

∂(ict)
= −

→
∇×

→
E − (iµ0mc) · (

→
J m/i) (10d)
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where the magnetic permeability caused by moving electric charges µ0 or by magnetic monopoles µ0m

can be symbolized by the complex µ = µ0 + iµ0m. The unified complex charge density and current can
be set by:

(cρ) ≡ (µ0c)(cρe) + (iµ0mc)(cρm) (11a)

(
→
J /i) ≡ (µ0c)(

→
J e/i) + (iµ0mc)(

→
J m/i) (11b)

The compact equations become:
→
∇ ·

→
G = cρ (12a)(

∂

∂ict
+
→
∇×

)→
G = i

→
J (12b)

Moreover, we define the 4-current:

j =

(
cρ

i
→
J

)
= (µ0c)je + (iµ0mc)jm = (µ0c)

(
cρe

i
→
J e

)
+ (iµ0mc)

(
cρm

i
→
J m

)
with je =

(
cρe

i
→
J e

)
, jm =

(
cρm

i
→
J m

)
, (13)

and the 4-E/M-operator:

L̂E/M ≡

 →
∇·

∂
∂ict +

→
∇×

, (14)

that acts on three-dimensional (3D) vectors to produce 4-vectors, i.e.,
(
L̂ E/M

→
a )

1D
=
→
∇ · →a and(

L̂ E/M
→
a )

3D
= ∂

→
a /∂ict +

→
∇×→a . Then, the compact and symmetric Maxwell Equations (12) can be

written as:  →
∇·

∂
∂ict +

→
∇×

→G =

(
cρ

i
→
J

)
or L̂E/M

→
G = j, (15)

which in the absence of magnetic monopoles become: →
∇·

∂
∂ict +

→
∇×

→G = (µ0c) ·
(

cρe

i
→
J e

)
or L̂E/M

→
G = (µ0c) · je. (16)

The action of the 4-Laplace operator ∇4 on L̂E/M
→
G is:

∇4 · L̂E/M =

(
− ∂

∂ict
,
→
∇·
)  →

∇·
∂

∂ict +
→
∇×

 = − ∂

∂ict
(
→
∇·) + (

→
∇·) ∂

∂ict
+
→
∇ · (

→
∇×) = 0, (17)

leading to the continuity equation:

0 = ∇4 · j =
(
− ∂

∂ict
,
→
∇·
) ( cρ

i
→
J

)
= − ∂cρ

∂ict
+
→
∇ · i

→
J = i

(
∂ρ

∂t
+
→
∇ ·

→
J
)

or
∂ρ

∂t
+
→
∇ ·

→
J = 0. (18)

Given Equation (11), the continuity equation can be decomposed for the electric and magnetic
charge, separately:

∂ρe

∂t
+
→
∇ ·

→
J e = 0 and

∂ρm

∂t
+
→
∇ ·

→
J m = 0. (19)

3. Applications

Next, we examine how the symmetric form of Equation (15) can be applied to the wave equations
of fields and gauge transformations. We also obtain the respective equations for potentials.
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First, we define the 4-operator ˆ̃LE/M that acts on 4-vectors to produce a 3D vector.

ˆ̃LE/M ≡
(→
∇ ,

∂

∂ict
−
→
∇×

)
, ˆ̃LE/M

(
a0
→
a

)
=
→
∇a0 +

∂
→
a

∂ict
−
→
∇×→a . (20)

3.1. Identities

Below, we examine the action of this 4-operator on two specific 4-vectors, as well the action of the
4-E/M-operator L̂E/M on ˆ̃LE/M:

The 4-operator ˆ̃LE/M acts on the E/M 4-vector operator L̂E/M and produces the wave d’Alembert
operator that acts on the 3D vectors:

ˆ̃LE/M · L̂E/M =

(→
∇ , ∂

∂ict −
→
∇×

)  →
∇·

∂
∂ict +

→
∇×

 =
→
∇(
→
∇·) + ∂2

∂(ict)2 +
∂

∂ict (
→
∇×)−

→
∇× ∂

∂ict −
→
∇× (

→
∇×)

= ∇2 + ∂2

∂(ict)2 ≡ �2

(21)

(because
→
∇× (

→
∇×) =

→
∇(
→
∇·)−∇2).

- The 4-operator ˆ̃LE/M acts on the gauge transformation 4-vector and vanishes:

(→
∇ ,

∂

∂ict
−
→
∇×

) ( − ∂
∂ict→
∇

)
= −

→
∇ ∂

∂ict
+

∂

∂ict

→
∇− (

→
∇×)

→
∇ = 0. (22)

- The action of the 4-E/M-operator L̂E/M on ˆ̃LE/M,

L̂E/M · ˆ̃LE/M =

 →
∇·

∂
∂ict +

→
∇×

 (→
∇ ,

∂

∂ict
−
→
∇×

)
=

 ∇2 ∂
∂ict

→
∇·

∂
∂ict

→
∇ ∂2

∂(ict)2 −
→
∇× (

→
∇×)

. (23)

3.2. Wave Equations

The first identity, in Equation (21), can be applied to producing the field wave equations:

�2
→
G = − ˆ̃LE/M

(
cρ

i
→
J

)
, (24a)

expanded as follows:

�2
→
G =

(→
∇ , − ∂

∂ict
+
→
∇×

) ( cρ

i
→
J

)
=
→
∇(cρ)− ∂(i

→
J )

∂ict
+
→
∇× (i

→
J ), (24b)

which can be further decomposed to the specific wave equations of the electric field:

�2
→
E = (µ0c)

→
∇(cρe)− (µ0c)

∂
→
J e

∂ct
− (µ0mc)

→
∇×

→
J m, or (25)

�2
→
E =

1
ε0

→
∇ρe − µ0

∂
→
J e

∂t
− µ0mc

→
∇×

→
J m. (26)

and the magnetic field:

�2(c
→
B) = (µ0mc)

→
∇(cρm)− (µ0mc)

∂
→
J m

∂ct
+ (µ0c)

→
∇×

→
J e, or (27)
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�2
→
B =

1
ε0m

→
∇ρm − µ0m

∂
→
J m
∂t

+ µ0c
→
∇×

→
J e. (28)

3.3. Gauge Transformations

The identity in Equation (22) can be applied to producing the gauge transformations. First, the
potential representation is written as:

→
G = − ˆ̃LE/MAe = −

(→
∇ ,

∂

∂ict
−
→
∇×

)
Ae, Ae ≡

(
Φe

ic
→
Ae

)
. (29)

Note that in the presence of magnetic monopoles, the 4-potential becomes:

→
G = − ˆ̃LE/MA = −

(→
∇ ,

∂

∂ict
−
→
∇×

)
A, with (30)

A ≡ Ae + i Am =

(
Φ

ic
→
A

)
=

(
Φe

ic
→
Ae

)
+ i

(
Φm

ic
→
Am

)
=

(
Φe + i Φm

ic
→
Ae − c

→
Am

)
. (31)

which can be decomposed to the respective potential equations of the electric field:

→
E = −

→
∇Φe −

∂
→
Ae

∂t
− c

→
∇×

→
Am, (32)

and the magnetic field:

c
→
B = −

→
∇Φm −

∂
→
Am

∂t
+ c

→
∇×

→
Ae. (33)

The gauge transformations can be set as:

A′ = A +

(
− ∂

∂ict→
∇

)
· icΨ, with

→
G
′
= − ˆ̃LE/MA′ and

→
G = − ˆ̃LE/MA. (34)

Hence:
→
G
′
=
→
G −

(→
∇ ,

∂

∂ict
−
→
∇×

) ( − ∂
∂ict→
∇

)
· icΨ =

→
G. (35)

3.4. Symmetric Complex Maxwell Equations for Potentials

Finally, using the third identity in Equation (23), we derive the Maxwell equations for the
potentials:

L̂E/M
→
G = −(L̂E/M · ˆ̃LE/M

)
A = J, i.e., (36)

−

 ∇2 ∂
∂ict

→
∇·

∂
∂ict

→
∇ ∂2

∂(ict)2 −
→
∇× (

→
∇×)

 (
Φ

ic
→
A

)
=

(
cρ

i
→
J

)
, (37)

which can be decomposed to:

−∇2Φe − ∂
∂t

→
∇
→
Ae =

1
ε0

ρe

∂
∂t

→
∇Φe +

∂2
→
Ae

∂t2 − c2
→
∇× (

→
∇×

→
Ae) = µ0c2

→
J e

(38)
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and:
−∇2Φm − ∂

∂t

→
∇
→
Am = 1

ε0m
ρm

∂
∂t

→
∇Φm + ∂2

→
Am

∂t2 + c2
→
∇× (

→
∇×

→
Am) = µ0mc2

→
J m

(39)

3.5. Energy–Momentum

The energy and momentum of the electromagnetic field can be expressed in terms of the vector
→
G ≡

→
E + ic

→
B . Indeed, the energy (density) is given by 1

2 ε0
→
E

2
and 1

2 µ0
−1
→
B

2
= 1

2 ε0(c
→
B)

2
for the electric

and magnetic fields, respectively, that is, 1
2 ε0[

→
E

2
+ (c

→
B)

2
], or:

E =
1
2

ε0[
→
E

2
+ (c

→
B)

2
] =

1
2

ε0‖
→
G‖

2
=

1
2

ε0(
→
G ·
→
G
∗
). (40a)

The momentum is proportional to the pointing vector,
→
p = c−2 ·

→
S , and can be written as:

→
p = ε0(

→
E ×

→
B) =

1
2

iε0

c
(
→
G ×

→
G
∗
). (40b)

Hence, the 4-momentum (in Minkowski space) is expressed by:(
i
E
c

,
→
p
)
=

1
2

iε0

c
(
→
G ·
→
G
∗
,
→
G ×

→
G
∗
). (40c)

4. Conclusions

In this paper, we presented the complex representation of Maxwell equations, indicating the
symmetry between electric and magnetic fields, and concluding with a compact form of equations for
the fields and their potentials. Using these compact symmetric forms, the wave equations and gauge
transformation of the electric and magnetic fields were derived.

The complex symmetric operator formulation presented here can be used as a different way
to express the physical content of Maxwell equations. Nevertheless, the developed formulation
of Maxwell equations constitutes a much simpler way of unfolding the Maxwell theory rather
than previous complex formulations. The simplicity of the presented formulation was shown in
the derivations of the basic concepts of (i) continuity equation; (ii) wave equations; (iii) Maxwell
equations for potentials; (iv) gauge transformation; and (v) 4-momentum of E/M field, which are
briefly summarized below:

By setting,

- Definitions:
→
G ≡

→
E + ic

→
B , A ≡

(
Φ

ic
→
A

)
, j ≡

(
cρ

i
→
J

)
. (41)

- Maxwell equations:  →
∇·

∂
∂ict +

→
∇×

 →
G = j. (42)

- Potential representation:
→
G = −

(→
∇ ,

∂

∂ict
−
→
∇×

)
A. (43)

we obtain the derivations:
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(i) Continuity equation: Action of
(
− ∂

∂ict ,
→
∇·
)

on Equation (42):

(
− ∂

∂ict
,
→
∇·
)

j = 0. (44)

(ii) Wave equations: Action of
(→
∇ , ∂

∂ict −
→
∇×

)
on Equation (42):

�2
→
G =

(→
∇ , − ∂

∂ict
+
→
∇×

)
· j. (45)

(iii) Maxwell equations for potentials: Action of

 →
∇·

∂
∂ict +

→
∇×

 on
(→
∇ , ∂

∂ict −
→
∇×

)
in

Equation (43):

−

 ∇2 ∂
∂ict

→
∇·

∂
∂ict

→
∇ ∂2

∂(ict)2 −
→
∇× (

→
∇×)

 A =

(
Φ

ic
→
A

)
=

(
cρ

i
→
J

)
. (46)

(iv) Gauge transformation: Action of
(→
∇ , ∂

∂ict −
→
∇×

)
in Equation (43) on

(
− ∂

∂ict→
∇

)
:

A′ = A +

(
− ∂

∂ict→
∇

)
· icΨ,

→
G
′
=
→
G. (47)

(v) 4-momentum (energy and momentum) of electromagnetic field:(
i
E
c

,
→
p
)
=

1
2

iε0

c
(
→
G ·
→
G
∗
,
→
G ×

→
G
∗
). (48)

5. What’s Next

The presented analysis can trigger theoretical developments and applications that differ from the
standard Maxwell equations. For example, it will be very exciting to extend the presented analysis
within the context of (i) bicomplex numbers and tessarine algebra, that is a four-dimensional vector
space over the reals, two-dimensional over the complex numbers [22]; and (ii) Lp-spaces [23,24] in
nonlinear Maxwell equations [25].

In particular, the linearization of general relativity (weak field limit approximation) [26] makes
two fields, the gravitoelectric (that is simply the conventional gravity), and the gravitomagnetic (caused
by twist of spacetime, e.g., spinning massive objects) [27] that appears in a frame of reference different
from that of a freely moving inertial body.

→
∇ ·

→
E g = − ρg

ε0 g

→
∇ ·

→
E = ρe

ε0

µ0gε0g
∂
→
E g
∂t =

→
∇×

→
B g + µ0g

→
J g µ0ε0

∂
→
E

∂t =
→
∇×

→
B − µ0

→
J e

→
∇ ·

→
B g = 0

→
∇ ·

→
B = 0

∂
→
B g
∂t = −

→
∇×

→
E g

∂
→
B

∂t = −
→
∇×

→
E

(49)
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where Eg is the static gravitational or gravitoelectric field and Bg is the gravitomagnetic field; and
sources ρg and Jg are the mass density and current density, respectively. The involved constants are
defined by:

1/(4π ε0 g) ≡ G and µ0g = 1/( c2ε0 g) ≡ 4πG/c2, (50)

where G is the conventional gravitational constant; the quasi-particle involved in the gravitational
Maxwell equations—the graviton—is characterized by the speed of light at vacuum (similar to a
photon). The presented formalism can be applied to both sets of Maxwell equations: →

∇·
∂

∂ict +
→
∇×

 →
Gg =

(
cρg

i
→
J g

)
,

 →
∇·

∂
∂ict +

→
∇×

 →
G =

(
cρe

i
→
J e

)
(51)

with: →
Gg ≡

→
E g + ic

→
B g,

→
G ≡

→
E + ic

→
B . (52)

The algebra of bicomplex numbers can be used to unify the two sets of Maxwell equations. Lastly,
it will be interesting to investigate whether gravitons can be involved in large-scale quantization
constants (e.g., see the work of Carneiro [28] and Livadiotis & McComas [29]).

In the example that uses Lp-norms, we can generalize Equation (15) to: →
∇p·

∂
∂ict +

→
∇p×

 →
G =

(
cρ

i
→
J

)
, (53a)

by using a well-defined Lp-normed divergence and curl [30]:

→
∇ ·→u →

→
∇p ·

→
u ≡

∣∣∣∣→∇ ·→u ∣∣∣∣p−2
(
→
∇ ·→u ),

→
∇×→u →

→
∇p ×

→
u ≡

∣∣∣∣→∇×→u ∣∣∣∣p−2
(
→
∇×→u ). (53b)

Then, we may investigate the generated Maxwell equations.
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