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Abstract: This paper presents an alternative methodology for finding the solution of the boundary
value problem (BVP) for the linear partial differential operator. We are particularly interested in the
linear operator ⊕k, where ⊕k = ♥k♦k, ♥k is the biharmonic operator iterated k-times and ♦k is the
diamond operator iterated k-times. The solution is built on the Green’s identity of the operators ♥k

and ⊕k, in which their derivations are also provided. To illustrate our findings, the example with
prescribed boundary conditions is exhibited.
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1. Introduction

Boundary value problems (BVPs) for ordinary and partial differential equations have appeared
in widespread applications ranging from cognitive science to engineering. Some examples include
a vibrating string with time depending upon external force under the Dirichlet boundary conditions [1],
Laplace’s equation in polar coordinates with the Neumann boundary conditions [2], or the diffusion
equation with the Robin boundary conditions [3]. Finally, the heat flow in a nonuniform rod
without sources accompanied with initial—boundary conditions [4]. These types of problems
inevitably associate with the partial differential operators—for example, the Laplace operator [5,6],
the ultrahyperbolic operator [7,8], and the biharmonic operator [9,10].

One common choice to tackle such problems analytically is by using the method of separation of
variables, which is somewhat limited. For instance, it must be applied to lower-order linear partial
differential equations with a small number of variables. More sophisticated treatment for the BVPs
was proposed by F. John [11], who utilizes the Laplace operator using the following Green’s identity:

∫
Ω

v4udx =
∫

Ω
u4vdx +

∫
∂Ω

(
v

∂u
∂η
− u

∂v
∂η

)
dS,

where η is the exterior normal vector to a boundary ∂Ω and4 is the Laplace operator defined by

4 =
∂2

∂x2
1
+

∂2

∂x2
2
+ · · ·+ ∂2

∂x2
n

.

The solution, u(ξ), then becomes

u(ξ) =
∫

Ω
K(x, ξ)4udx−

∫
∂Ω

(
K(x, ξ)

∂u(x)
∂η

− u(x)
∂K(x, ξ)

∂η

)
dSx, ξ ∈ Ω,

where K(x, ξ) is the Green’s function of the Laplace operator.
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C. Bunpog [12] subsequently studied BVPs of the diamond operator ♦k in which it was originally
investigated by A. Kananthai [13] and later explored in more detail in [14,15]. It is denoted by

♦k =

( ∂2

∂x2
1
+

∂2

∂x2
2
+ · · ·+ ∂2

∂x2
p

)2

−
(

∂2

∂x2
p+1

+
∂2

∂x2
p+2

+ · · ·+ ∂2

∂x2
n

)2
k

= 4k2k = 2k4k, k = 1, 2, . . . , (1)

where the Laplace operator iterated k-times,4k, can be expressed as

4k =

(
∂2

∂x2
1
+

∂2

∂x2
2
+ · · ·+ ∂2

∂x2
n

)k

, (2)

and the ultrahyperbolic operator iterated k-times, 2k, is represented by

2k =

(
∂2

∂x2
1
+

∂2

∂x2
2
+ · · ·+ ∂2

∂x2
p
− ∂2

∂x2
p+1
− ∂2

∂x2
p+2
− · · · − ∂2

∂x2
n

)k

. (3)

The solution, u(ξ), can be formulated with the following expression:

u(ξ) =
∫

Ω
Dk(x, ξ)♦ku(x, ξ)dx−

k−1

∑
i=1

G(♦iu(x, ξ), Di+1(x, ξ))

− F(D1(x, ξ), u(x, ξ)), k = 2, 3, . . . ,

where Dk(x, ξ) is the Green’s function of the operator ♦k. The functions F and G involve some
boundary conditions on ∂Ω.

The partial differential operator ⊕k has some qualitative properties which can be found in [16–20].
It associates with the operators ♦k and ♥k such that

⊕k =

( ∂2

∂x2
1
+

∂2

∂x2
2
+ · · ·+ ∂2

∂x2
p

)4

−
(

∂2

∂x2
p+1

+
∂2

∂x2
p+2

+ · · ·+ ∂2

∂x2
n

)4
k

= ♥k♦k = ♦k♥k, k = 1, 2, . . . , (4)

where ♦k is defined by Equation (1) and ♥k is the biharmonic operator iterated k-times:

♥k =

( ∂2

∂x2
1
+

∂2

∂x2
2
+ · · ·+ ∂2

∂x2
p

)2

+

(
∂2

∂x2
p+1

+
∂2

∂x2
p+2

+ · · ·+ ∂2

∂x2
n

)2
k

. (5)

In this paper, the Green’s identity of the operator⊕k will be presented. Furthermore, the solution’s
existence under some suitable boundary conditions of the operator ⊕k is manifested by using Green’s
identity of the operators ♥ and ⊕k, as well as the BVP solution of the diamond operator ♦. Finally,
applications connected to the BVP of the linear partial differential operators are shown.

2. Preliminaries

Let us begin by introducing some functions and lemmas that are occasionally referred to in
the paper.

Let x = (x1, x2, . . . , xn) be a point of Rn and v(x) = x2
1 + x2

2 + · · · + x2
n. The elliptic kernel of

Marcel Riesz defined by Riesz [21] has the following expression
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Re
α(v) =

Γ
( n− α

2
)

v
α− n

2

2απ
n
2 Γ( α

2 )
, (6)

where α is any complex number and Γ is the Gamma function. It is an ordinary function if Re(α) ≥ n
and is a distribution of α if Re(α) < n. In addition, (−1)kRe

2k(v) is the Green’s function of the operator
4k defined by Equation (2) (see [13]).

Let y(x) = x2
1 + x2

2 + · · · + x2
p − x2

p+1 − x2
p+2 − · · · − x2

n be a nondegenerated quadratic form.
The interior of the forward cone is denoted by F = {x ∈ Rn | x1 > 0, y > 0}. The ultrahyperbolic
kernel of Marcel Riesz presented by Nozaki [22] is expressed as

RH
β (y)

 y
β− n

2

Kn(β)
, for x ∈ F ;

0, for x 6∈ F ,
(7)

where

Kn(β) =
π

n, 1
2 Γ
(

2+ β− n
2

)
Γ
(

1− β
2

)
Γ(β)

Γ
(

2+ β− p
2

)
Γ
(

p− β
2

) ,

and β is a complex number. Note that RH
β (y) is an ordinary function if Re(β) ≥ n and is a distribution of

β if Re(β) < n. Furthermore, RH
2k(y) is the Green’s function of the operator 2k in the form of Equation (3)

(see [23]).
Let w(x) = x2

1 + x2
2 + · · ·+ x2

p− i(x2
p+1 + x2

p+2 + · · ·+ x2
n) and z(x) = x2

1 + x2
2 + · · ·+ x2

p + i(x2
p+1 +

x2
p+2 + · · ·+ x2

n), where i =
√
−1. Functions Sγ(w) and Tη(z) are defined by

Sγ(w) =
Γ
(

n− γ
2

)
w

γ−n
2

2γπ
n
2 Γ(γ

2 )
, (8)

Tκ(z) =
Γ
( n− κ

2
)

z
κ−n

2

2κπ
n
2 Γ( κ

2 )
, (9)

for any complex numbers γ and κ. The convolution S2k(w) ∗ T2k(z) is a tempered distribution
(or a distribution of slow growth, [24]) and the Green’s function of the operator ♥k defined by
Equation (5), that is,

♥k (S2k(w) ∗ T2k(z)) = δ(x), (10)

where δ(x) is the Dirac delta distribution [18].
We modify these functions by introducing the following definitions.
Let ξ = (ξ1, ξ2, . . . , ξn) be a point of Rn and x− ξ = (x1 − ξ1, x2 − ξ2, . . . , xn − ξn). We define

Re
α(x, ξ) ≡ Re

α(v(x− ξ)),

RH
β (x, ξ) ≡ RH

β (y(x− ξ)),

Sγ(x, ξ) ≡ Sγ(w(x− ξ)),

Tκ(x, ξ) ≡ Tκ(z(x− ξ)),

where Re
α(v), RH

β (y), Sγ(w) and Tκ(z) are defined by Equations (6)–(9), respectively. We let

Dk(x, ξ) ≡ (−1)kRe
2k(x, ξ) ∗ RH

2k(x, ξ), k = 1, 2, . . . . (11)

Mk(x, ξ) ≡ (−1)kRe
2k(x, ξ) ∗ RH

2k(x, ξ) ∗ S2k(x, ξ) ∗ T2k(x, ξ), k = 1, 2, . . . . (12)
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Note that functions Dk(x, ξ) and Mk(x, ξ) are tempered distributions [13,16], which can be written
in the form of functions Re

2(x, ξ), RH
2 (x, ξ), S2(x, ξ), and T2(x, ξ). Equations (11) and (12) can thus be

computed via [25]:

Dk(x, ξ) =
(−1)2k−1 (v(x, ξ))k−1 Re

2(x, ξ) ∗ (y(x, ξ))k−1 RH
2 (x, ξ)

22(k−1) ((k− 1)!)2
k−1

∏
l=1

(n− 2(l + 1))2

, k = 2, 3, . . . ,

Mk(x, ξ) =
(−1)kDk(x, ξ) ∗ (w(x, ξ))k−1 S2(x, ξ) ∗ (z(x, ξ))k−1 T2(x, ξ)

22(k−1) ((k− 1)!)2
k−1

∏
l=1

(n− 2(l + 1))2

, k = 2, 3, . . . .

Moreover, the function Mk(x, ξ) satisfies

⊕m Mk(x, ξ) = Mk−m(x, ξ), 0 ≤ m < k, k = 1, 2, . . . . (13)

Lemma 1 (Gauss divergence theorem). Let Ω be a bounded open subset of Rn, ∂Ω is the boundary of Ω, and
u ∈ C1(Ω), Ω = Ω ∪ ∂Ω. Then

∫
Ω

∂u(x)
∂xk

dx =
∫

∂Ω
u(x)

∂xk
∂η

dSx =
∫

∂Ω
u(x)ηkdSx, (14)

where ∂
∂η denotes a differentiation in the direction of the exterior unit normal η = (η1, . . . , ηn) of ∂Ω,

dx = dx1 · · · dxn and dSx is a surface element with integration on x.

Proof of Lemma 1. (see [26]).

Lemma 2 (Green’s identity of the biharmonic operator). Let Ω be a bounded open subset of Rn, ∂Ω be the
boundary of Ω and u, v ∈ C4(Ω), Ω = Ω ∪ ∂Ω. Then, the Green’s identity of the biharmonic operator ♥ is∫

Ω
v♥udx−

∫
Ω

u♥vdx =
∫

Ω
(L2uL1v− L2vL1u) dx + H(u, v), (15)

where H(u, v) is given by

H(u, v) =
∫

∂Ω

[(
v

∂(L2u)
∂η?

− u
∂(L2v)

∂η?

)
+

(
L2v

∂u
∂η?
− L2u

∂v
∂η?

)]
dSx, (16)

η? = (η1, η2, . . . , ηp, iηp+1, iηp+2, . . . , iηn) denotes the complex-transversal to ∂Ω, and ∂
∂η?

denotes the
derivative in the complex-transversal direction.

Proof of Lemma 2. From Equation (5) with k = 1, we can write

♥ = L1L2, (17)

where L1 and L2 are defined by

L1 =
p

∑
l=1

∂2

∂x2
l
+ i

p+q

∑
j=p+1

∂2

∂x2
j

and

L2 =
p

∑
l=1

∂2

∂x2
l
− i

p+q

∑
j=p+1

∂2

∂x2
j

, i =
√
−1.
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Since
∂(vu)

∂xk
= v

∂u
∂xk

+ u
∂v
∂xk

,

thus ∫
Ω

v
∂u
∂xk

dx =
∫

Ω

∂(vu)
∂xk

dx−
∫

Ω
u

∂v
∂xk

dx.

By Equation (14), we obtain∫
Ω

v
∂u
∂xk

dx =
∫

∂Ω
(vu)ηkdSx −

∫
Ω

u
∂v
∂xk

dx,

and ∫
Ω

v
∂2u
∂x2

k
dx =

∫
∂Ω

v
∂u
∂xk

ηkdSx −
∫

Ω

∂u
∂xk
· ∂v

∂xk
dx.

Therefore

∫
Ω

vL1udx =
∫

∂Ω
v

(
p

∑
l=1

∂u
∂xl

ηl + i
p+q

∑
j=p+1

∂u
∂xj

ηj

)
dSx

−
∫

Ω

(
p

∑
l=1

∂u
∂xl
· ∂v

∂xl
+ i

p+q

∑
j=p+1

∂u
∂xj
· ∂v

∂xj

)
dx

=
∫

∂Ω
v

∂u
∂η?

dSx −
∫

Ω

(
p

∑
l=1

∂u
∂xl
· ∂v

∂xl
+ i

p+q

∑
j=p+1

∂u
∂xj
· ∂v

∂xj

)
dx

which follows

∫
Ω

uL1vdx =
∫

∂Ω
u

∂v
∂η?

dSx −
∫

Ω

(
p

∑
l=1

∂v
∂xl
· ∂u

∂xl
+ i

p+q

∑
j=p+1

∂v
∂xj
· ∂u

∂xj

)
dx.

Hence ∫
Ω

vL1udx =
∫

Ω
uL1vdx +

∫
∂Ω

(
v

∂u
∂η?
− u

∂v
∂η?

)
dSx. (18)

From Equations (17) and (18), we derive

∫
Ω

v♥udx =
∫

Ω
L2uL1vdx +

∫
∂Ω

(
v

∂(L2u)
∂η?

− L2u
∂v
∂η?

)
dSx. (19)

Similarly, we find that

∫
Ω

u♥vdx =
∫

Ω
L2vL1udx +

∫
∂Ω

(
u

∂(L2v)
∂η?

− L2v
∂u
∂η?

)
dSx. (20)

By Equations (19) and (20), it can be concluded that∫
Ω

v♥udx−
∫

Ω
u♥vdx =

∫
Ω
(L2uL1v− L2vL1u) dx + H(u, v),

where H(u, v) is defined by Equation (16). The proof is completed.

Lemma 3. Let Ω be a bounded open subset of the Euclidian space Rn, ∂Ω be the boundary of Ω, and D1(x, ξ)

be a function which is given by Equation (11) with k = 1. Accordingly, the BVP solution of the diamond operator
♦ becomes

u(ξ) =
∫

Ω
D1(x, ξ)♦u(x, ξ)dx− F(D1(x, ξ), u(x, ξ)), ξ ∈ Ω, (21)
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where

F(D1, u) =
∫

∂Ω

(
D1

∂(4u)
∂η∗

−4u
∂D1

∂η∗

)
dSx +

∫
∂Ω

(
2D1

∂u
∂η
− u

∂(2D1)

∂η

)
dSx, (22)

η∗ = (η1, η2, . . . , ηp,−ηp+1,−ηp+2, . . . ,−ηn) denotes the transversal to ∂Ω, and ∂
∂η∗

denotes the derivative in
the transversal direction [27].

Proof of Lemma 3. (see [12]).

3. Results

In this section, the Green’s identity along with the solution of the BVP of the operator ⊕k are
described. The results stated in the previous section are used to show the existence of a solution.

Theorem 1 (Green’s identity of the operator⊕k). Let Ω be a bounded open subset of Rn, ∂Ω be the boundary
of Ω and u, v ∈ C8k(Ω), Ω = Ω∪ ∂Ω. Then, the Green’s identity of the operator ⊕k defined by Equation (4) is∫

Ω v⊕k udx−
∫

Ω u⊕k vdx =
∫

Ω

[
♦
(
⊕k−1u

)
♥v−♦

(
⊕k−1v

)
♥u
]

dx

+
∫

Ω

[
L2♦

(
⊕k−1u

)
L1v− L2vL1♦

(
⊕k−1u

)]
dx

+
∫

Ω

[
L2uL1♦

(
⊕k−1v

)
− L2♦

(
⊕k−1v

)
L1u
]

dx

+ H
(
♦
(
⊕k−1u

)
, v
)
+ H

(
u,♦

(
⊕k−1v

))
.

(23)

Proof of Theorem 1. Since u ∈ C8k(Ω), replacing it by ♦
(
⊕k−1u

)
in Equation (15), we have

∫
Ω v⊕k udx−

∫
Ω♦

(
⊕k−1u

)
♥vdx =

∫
Ω

[
L2♦

(
⊕k−1u

)
L1v− L2vL1♦

(
⊕k−1u

)]
dx

+ H(♦
(
⊕k−1u

)
, v).

(24)

Likewise, since v ∈ C8k(Ω), replacing it by ♦
(
⊕k−1v

)
in Equation (15), we have

∫
Ω u⊕k vdx−

∫
Ω♦

(
⊕k−1v

)
♥udx =

∫
Ω

[
L2♦

(
⊕k−1v

)
L1u− L2uL1♦

(
⊕k−1v

)]
dx

− H(u,♦
(
⊕k−1v

)
).

(25)

Equation (23) can be obtained according to Equations (24) and (25).

Theorem 2. Let Ω be a bounded open subset of Rn, ∂Ω be the boundary of Ω, u ∈ C8k(Ω), Ω = Ω∪ ∂Ω and
Mk(x, ξ) be a function which is given by Equation (12). Consequently

(1) the BVP solution of the operator ⊕ becomes

u(ξ) =
∫

Ω
M1(x, ξ)⊕ u(x, ξ)dx

−
∫

Ω
[L2♦u(x, ξ)L1M1(x, ξ)− L2M1(x, ξ)L1♦u(x, ξ)] dx

− H(♦u(x, ξ), M1(x, ξ))− F(D1(x, ξ), u(x, ξ)), ξ ∈ Ω,
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(2) the BVP solution of the operator ⊕k, for k ≥ 2, is

u(ξ) =
∫

Ω
Mk(x, ξ)⊕k u(x, ξ)dx

−
∫

Ω

[
♦⊕k−1 u(x, ξ)♥Mk(x, ξ)−♦M2(x, ξ)♥⊕ u(x, ξ)

]
dx

−
∫

Ω

[
L2♦⊕k−1 u(x, ξ)L1Mk(x, ξ)− L2Mk(x, ξ)L1♦⊕k−1 u(x, ξ)

]
dx

−
∫

Ω
[L2 ⊕ u(x, ξ)L1♦M2(x, ξ)− L2♦M2(x, ξ)L1 ⊕ u(x, ξ)] dx

−
∫

Ω
[L2♦u(x, ξ)L1M1(x, ξ)− L2M1(x, ξ)L1♦u(x, ξ)] dx

− H
(
♦⊕k−1 u(x, ξ), Mk(x, ξ)

)
− H (⊕u(x, ξ),♦M2(x, ξ))

− H(♦u(x, ξ), M1(x, ξ))− F(D1(x, ξ), u(x, ξ)), ξ ∈ Ω,

where H and F are defined by Equations (16) and (22), respectively.

Proof of Theorem 2. (1) By Equation (15), u and v are replaced by♦u and M1, respectively. It follows that∫
Ω

M1 ⊕ udx−
∫

Ω
♦u♥M1dx =

∫
Ω
[L2♦uL1M1 − L2M1L1♦u] dx

+ H(♦u, M1).

By Equations (10)–(12), with k = 1, we have ♥M1 = D1. Therefore∫
Ω♦uD1dx =

∫
Ω M1 ⊕ udx−

∫
Ω [L2♦uL1M1 − L2M1L1♦u] dx

− H(♦u, M1).
(26)

According to Equations (21) and (26), the solution u(ξ) becomes

u(ξ) =
∫

Ω M1(x, ξ)⊕ u(x, ξ)dx

−
∫

Ω [L2♦u(x, ξ)L1M1(x, ξ)− L2M1(x, ξ)L1♦u(x, ξ)] dx

− H(♦u(x, ξ), M1(x, ξ))− F(D1(x, ξ), u(x, ξ)), ξ ∈ Ω.

(27)

(2) By Equation (23) k, u, and v are replaced by k− 1, ⊕u, and Mk, respectively. This leads to∫
Ω

Mk ⊕k udx −
∫

Ω
⊕u⊕k−1 Mkdx

=
∫

Ω

[
♦
(
⊕k−1u

)
♥Mk −♦

(
⊕k−2Mk

)
♥⊕ u

]
dx

−
∫

Ω

[
L2♦

(
⊕k−1u

)
L1Mk − L2MkL1♦

(
⊕k−1u

)]
dx

−
∫

Ω

[
L2 ⊕ uL1♦

(
⊕k−2Mk

)
− L2♦

(
⊕k−2Mk

)
L1 ⊕ u

]
dx

− H
(
♦
(
⊕k−1u

)
, Mk

)
− H

(
⊕u,♦

(
⊕k−2Mk

))
, k = 2, 3, . . . .
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We have ⊕k−1Mk = M1 and ⊕k−2Mk = M2 resulting from Equation (13). Thus∫
Ω⊕uM1dx =

∫
Ω Mk ⊕k udx−

∫
Ω

[
♦
(
⊕k−1u

)
♥Mk −♦M2♥⊕ u

]
dx

−
∫

Ω

[
L2♦

(
⊕k−1u

)
L1Mk − L2MkL1♦

(
⊕k−1u

)]
dx

−
∫

Ω [L2 ⊕ uL1♦M2 − L2♦M2L1 ⊕ u] dx

− H
(
♦
(
⊕k−1u

)
, Mk

)
− H (⊕u,♦M2) , k = 2, 3, . . . .

(28)

From Equations (27) and (28), we obtain

u(ξ) =
∫

Ω Mk ⊕k udx−
∫

Ω

[
♦
(
⊕k−1u

)
♥Mk −♦M2♥⊕ u

]
dx

−
∫

Ω

[
L2♦

(
⊕k−1u

)
L1Mk − L2MkL1♦

(
⊕k−1u

)]
dx

−
∫

Ω [L2 ⊕ uL1♦M2 − L2♦M2L1 ⊕ u] dx
−

∫
Ω [L2♦uL1M1 − L2M1L1♦u] dx

− H
(
♦
(
⊕k−1u

)
, Mk

)
− H (⊕u,♦M2)

− H(♦u, M1)− F(D1, u), k = 2, 3, . . . .

(29)

Our claim is now completely proved.

3.1. Example 1

To illustrate the results, let us consider an equation

⊕ u(ξ) = f (ξ), ξ ∈ Ω, (30)

where f is any tempered distribution on Ω. The boundary conditions on ∂Ω = ∂Ω1 ∪ ∂Ω2 are given by

♦u(x, ξ) = M1(x, ξ), x ∈ ∂Ω1, (31)

u(x, ξ) = 0, x ∈ ∂Ω2. (32)

From Equation (30) and [18] (p. 226), we have

L2♦u(x, ξ) = −(−i)
n−p

2 S2(x, ξ) ∗ f (x, ξ), ξ ∈ Ω (33)

L1M1(x, ξ) = −Re
2(x, ξ) ∗ RH

2 (x, ξ) ∗
[
−(i)

n−p
2 T2(x, ξ)

]
, ξ ∈ Ω (34)

L2M1(x, ξ) = −Re
2(x, ξ) ∗ RH

2 (x, ξ) ∗
[
−(−i)

n−p
2 S2(x, ξ)

]
, ξ ∈ Ω (35)

L1♦u(x, ξ) = −(i)
n−p

2 T2(x, ξ) ∗ f (x, ξ), ξ ∈ Ω. (36)

By taking the convolution operator D1(x, ξ) on both sides of Equation (31), it follows that

D1(x, ξ) ∗ ♦u(x, ξ) = D1(x, ξ) ∗M1(x, ξ),

♦D1(x, ξ) ∗ u(x, ξ) = D1(x, ξ) ∗M1(x, ξ),

δ(x, ξ) ∗ u(x, ξ) = D1(x, ξ) ∗M1(x, ξ),

u(x, ξ) = D1(x, ξ) ∗M1(x, ξ), x ∈ ∂Ω1.

(37)



Mathematics 2018, 6, 115 9 of 11

By Equations (31) and (32), we get

H(♦u, M1) = 0, x ∈ ∂Ω. (38)

According to Equations (22), (32), and (37), this leads to

F(D1, u) = F(D1, D1 ∗M1)

=
∫

∂Ω

(
D1

∂(4D1∗M1)
∂η∗

−4D1 ∗M1
∂D1
∂η∗

)
dSx

+
∫

∂Ω

(
2D1

∂D1∗M1
∂η −D1 ∗M1

∂(2D1)
∂η

)
dSx.

(39)

By substituting Equations (30), (33)–(36), (38), and (39) into Equation (27), the solution becomes

u(ξ) =
∫

Ω[M1 f + ((−i)
n−p

2 S2 ∗ f )(Re
2 ∗ RH

2 ∗ (i)
n−p

2 T2)

− (Re
2 ∗ RH

2 ∗ (−i)
n−p

2 S2)((i)
n−p

2 T2 ∗ f )]dx

−
∫

∂Ω

(
D1

∂(4D1∗M1)
∂η∗

−4D1 ∗M1
∂D1
∂η∗

)
dSx

−
∫

∂Ω

(
2D1

∂D1∗M1
∂η −D1 ∗M1

∂(2D1)
∂η

)
dSx, ξ ∈ Ω.

(40)

Since all terms within the integrand are tempered distribution, the solution u(ξ) therefore exists.
Generally speaking, if we consider

⊕k1,k2,k3 = 4k12k2♥k3 , (41)

where k1, k2 and k3 are nonnegative integers. The operator ⊕k1,k2,k3 can reduce to the diamond operator
iterated k-times, the Laplace operator iterated k-times, the ultrahyperbolic operator iterated k-times
and the biharmonic operator iterated k-times, defined by Equations (1), (2), (3) and (5), respectively.
For example, if we put k1 = k, k2 = k3 = 0, the operator ⊕k1,k2,k3 becomes the Laplace operator iterated
k-times4k.

3.2. Example 2 (Potential on Sphere with Dirichlet Boundary)

In the case that the operator ⊕k reduces to the Laplace operator iterated k-times4k,

4ku(ξ) = f (ξ), ξ ∈ Ω, (42)

where f is any tempered distribution and Ω = B(0, a) = {ξ, |ξ| < a} is a ball of radius a. The boundary
conditions on Ω are given by

4iu(x, ξ) = Re
2i(x, ξ), i = 1, 2, . . . , k− 1; x ∈ ∂Ω, (43)

and
u(x, ξ) = g(x, ξ), x ∈ ∂Ω, (44)

where g is a given tempered distribution. The solution of Equation (42) is

u(ξ) =
∫

Ω Re
2k4

kudx−
∫

∂Ω

(
Re

2k
∂u
∂η − u ∂(Re

2k)
∂η

)
dSx

−
k−1
∑

i=1

∫
∂Ω

(
Re

2i
∂(4iu)

∂η − (4iu) ∂Re
2i

∂η

)
dSx, k ∈ N.

(45)
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The sphere ∂Ω is the locus of point x for which the ratio of distances r = |x− ξ| and r∗ = |x− ξ∗|
from certain points is constant. Here we can choose any point ξ ∈ Ω, then ξ∗ is the point obtained
from ξ by reflection with respect to the sphere ∂Ω.

That is, ξ∗ = a2

|ξ|2 ξ, such that Re
2k(x, ξ) =

Γ( n−2k
2 )r2k−n

22kπ
n
2 Γ(k)

and Re
2k(x, ξ∗) =

Γ( n−2k
2 )r∗2k−n

22kπ
n
2 Γ(k)

are the Green’s

functions of the Laplace operator with poles ξ and ξ∗ respectively. Thus, for x ∈ ∂Ω,

Re
2k(x, ξ∗) =

(
a
|ξ|

)2k−n
Re

2k(x, ξ).

Define the function

Gk(x, ξ) = Re
2k(x, ξ)−

(
|ξ|
a

)2k−n
Re

2k(x, ξ∗), (46)

we have that Gk(x, ξ) is the Green’s function of Laplace operator and Gk(x, ξ) = 0 for x ∈ ∂Ω.
By substituting Equations (42)–(44) and (46) into Equation (45), the solution becomes

u(ξ) =
∫

Ω

[
Re

2k(x, ξ)−
(
|ξ|
a

)2k−n
Re

2k(x, ξ∗)

]
f (x)dx

+
∫

∂Ω
g(x, ξ)

∂

[
Re

2k(x, ξ)−
(
|ξ|
a

)2k−n
Re

2k(x, ξ∗)

]
∂η

dSx.

In the special case when k = 1, it is the potential on the sphere ∂Ω of the problem (42) with the
Dirichlet boundary condition (44).

3.3. Remark

In general, suppose that we consider equation Lu = f where L is any linear partial differential
operator. The solution to this problem can be found provided that L can be written in terms of two
linear operators M and N (i.e., L = MN). Moreover, the solution to the equation Mu = f as well as the
Green’s identity of the operator N are required.

4. Conclusions

This paper focuses on finding the Green’s identity together with the solution of the BVP for the
operator ⊕k which can be formulated in terms of the biharmonic and diamond operators. We first
consider the solution for the case where k = 1 by employing the solution of the diamond operator and
the Green’s identity of the biharmonic operator. The solution for k > 2 is subsequently derived using
the solution for the case k = 1 as well as the Green’s identity for the operator ⊕k. The solution for all
k consists of the boundary terms satisfying Equations (16) and (22).
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