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Abstract: A cyclic map with a contractive type of condition called p-cyclic orbital M-Kcontraction is
introduced in a partial metric space. Sufficient conditions for the existence and uniqueness of fixed
points and the best proximity points for these maps in complete partial metric spaces are obtained.
Furthermore, a necessary and sufficient condition for the completeness of partial metric spaces is
given. The results are illustrated with an example.

Keywords: contraction; p-cyclic mappings; best proximity point; partial metric space

MSC: 47H10; 54H25

1. Introduction and Preliminaries

An important field of application of fixed point theory exist nowadays in the investigation of
the stability of complex continuous-time and discrete-time dynamic systems [1–3]. Meir–Keeler
self-mappings have received important attention in the context of fixed point theory perhaps due to
the associated relaxing in the required conditions for the existence of fixed points compared with the
usual contractive mappings [4–6]. A connection between p-cyclic contractive, p-cyclic Kannan and
p-cyclic Meir–Keeler contractions was obtained in [7]. The notion of orbital contractions introduced
in [8] weakens the contraction condition in a different way by assuming that the contractive condition
is not satisfied for all pairs (x, y) ∈ X × X. On the other hand, an extension of Banach’s fixed point
theorem is obtained in [9] by considering a cyclical contractive condition. Some generalizations of
cyclic maps that involve Meir–Keeler maps were given in [5,10–12]. Another kind of generalization of
the Banach contraction principle is by altering the underlying space. Such kinds of generalizations are
also obtained in partial metric spaces. To understand partial metric spaces, one may refer to [13–15].
For generalizations of the Banach contraction theorem, in which the underlying space is a partial metric
space, one may refer to [16–20]. In this article, we give the conditions for the existence of a unique
fixed point and a best proximity point of p-cyclic orbital Meir–Keeler maps in partial metric spaces.

A partial metric space is a generalization of a metric space, as is well seen from the following definition:

Definition 1 ([13]). A partial metric space is a pair (X, ρ), where ρ : X× X → R+ such that:

(1) 0 ≤ ρ(x, x) ≤ ρ(x, y) (non-negativity and small self-distances)
(2) If ρ(x, x) = ρ(x, y) = ρ(y, y) then x = y (indistancy implies equality)
(3) ρ(x, y) = ρ(y, x) (symmetry)
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(4) ρ(x, z) ≤ ρ(x, y) + ρ(y, z)− ρ(y, y) (triangularity).

A metric space can be defined to be a partial metric space in which each self-distance is zero.
It is easy to see that if (X, ρ) is a partial metric space and if ρ(x, y) = 0, then x = y.
Since for any x, y, z ∈ X, ρ(x, z) ≤ ρ(x, y) + ρ(y, z)− ρ(y, y) ≤ ρ(x, y) + ρ(y, z), we have

ρ(x, z) ≤ ρ(x, y) + ρ(y, z). From the triangle inequality, it follows that ρ(x, ·) and ρ(·, ·) are continuous
functions, i.e., limn→∞ ρ(x, zn) = ρ(x, z), provided that limn→∞ ρ(z, zn) = 0 and limn→∞ ρ(xn, zn) = ρ(x, z),
provided that limn→∞ ρ(x, xn) = 0 and limn→∞ ρ(z, zn) = 0.

Example 1. For an example of a partial metric space, let us consider I to be the collection of all nonempty, closed
and bounded intervals in R. That is, I = {[a, b] : a ≤ b}. For [a, b], [c, d] ∈ I, let:

ρ([a, b], [c, d]) = max{b, d} −min{a, c},

then it can be shown that ρ is a partial metric over I, and the self-distance of [a, b] is the length b-a. This is
related to the real line as follows:

|a− b| = ρ([a, a], [b, b]), and so, by mapping each a ∈ R to [a, a], we embed the usual metric structure of
R into that of the partial metric structure of intervals.

Following [15], we will recall some basic facts and definitions about partial metric spaces.
Each partial metric ρ on X induces a T0 topology τρ on X, which has the base of the family of

open balls {Bρ(x, ε) : x ∈ X, ε > 0}, where Bρ(x, ε) = {y ∈ X : ρ(x, y) < ε + ρ(x, x)} for all x ∈ X
and ε > 0.

If ρ is a partial metric on X, then the function ρs : X× X → [0, ∞) given by:

ρs(x, y) = 2ρ(x, y)− ρ(x, x)− ρ(y, y),

is a metric on X.

Definition 2. Let (X, ρ) be a partial metric space.

1. A sequence {xn} in (X, ρ) converges to a point x ∈ X if and only if limn,m→∞ ρ(xn, xm) =

limn→∞ ρ(xn, x) = ρ(x, x);
2. A sequence {xn} in (X, ρ) is called a Cauchy sequence if there exists a finite limit limn,m→∞ ρ(xn, xm);
3. (X, ρ) is called a complete partial metric space if every Cauchy sequence {xn} converges, with respect to

τρ, to a point x ∈ X, such that ρ(x, x) = limn,m→∞ ρ(xn, xm).

Lemma 1 ([18]). A sequence {xn}∞
n=1 is a Cauchy sequence in a partial metric space (X, ρ) if and only if

{xn}∞
n=1 is a Cauchy sequence in the metric space (X, ρs). A partial metric space (X, ρ) is complete if and only

if the metric space (X, ρs) is complete. Moreover,

lim
n→∞

ρs(x, xn) = 0 if and only if ρ(x, x) = lim
n→∞

ρ(x, xn) = lim
n,m→∞

ρ(xn, xm).

Below, we obtain a new partial metric from the existing metric and partial metric.

Example 2. Let X = [0, ∞), and let ρ : X × X → [0, ∞) be given by ρ(x, y) = max{x, y} for all x, y ∈ X.
Then, it is easy to see that (X, ρ) is a complete partial metric space.

Example 3 ([19]). Let (X, d) and (X, ρ) be a metric space and a partial metric space, respectively. Functions ρi:X×
X→ [0,+∞), for i = 1, 2, 3, are defined by:

1. ρ1(x, y) = d(x, y) + ρ(x, y)
2. ρ2(x, y) = d(x, y) + max{ω(x), ω(y)}



Mathematics 2018, 6, 116 3 of 11

3. ρ3(x, y) = d(x, y) + a

for all x, y ∈ X introduce partial metrics on X, where ω : X → [0,+∞) is an arbitrary function and a ≥ 0.

Now, we recall the notion of L-functions introduced by Lim in [21], which is useful to prove the
main result.

Definition 3 ([21]). A function φ : [0, ∞)→ [0, ∞) is called an L-function if φ(0) = 0; φ(s) > 0 for every
s > 0 and for every s > 0, there exists u > s such that φ(t) ≤ s for t ∈ [s, u].

Note that every L-function satisfies the condition φ(s) ≤ s for every s ≥ 0. Suzuki generalized
Lim’s results in [22]. The following result of Lim is used in the proof of the main result.

Lemma 2 ([22]). Let Y be a nonempty set, and let f , g : Y → [0, ∞). Then, the following are equivalent:

1. For each ε > 0, there exists a δ > 0, such that f (x) < ε + δ⇒ g(x) < ε.
2. There exists an L-function φ (which may be chosen to be a non-decreasing and continuous) such that

f (x) > 0⇒ g(x) < φ( f (x)), x ∈ Y and f (x) = 0⇒ g(x) = 0, x ∈ Y.

2. Main Result

For the investigation of the best proximity points, the notion of the uniform convexity of a Banach
space plays a crucial role. In [23], Suzuki et al. introduced the notion of the metric space, which
satisfies property UC. In a similar way, we generalize this notion in the partial metric space.

Definition 4. Let (X, ρ) be a partial metric space and A and B be subsets. The pair (A, B) is said to satisfy the
property UC if the following holds: If {xn}, {zn} are sequences in A and {yn} is a sequence in B, such that
limn→∞ ρ(xn, yn) = dist(A, B) and for any ε > 0, there is n ∈ N, so that ρ(zm, yn) < dist(A, B) + ε for all
n ≥ N, then for any ε > 0, there is N1 ∈ N, so that ρ(xn, zm) < ε for m, n ≥ N1.

Now, let us recall the notion of cyclic maps.

Definition 5. Let X be a nonempty set and A1, A2, ..., Ap be nonempty subsets of X. A map T : ∪p
i=1 Ai →

∪p
i=1 Ai is called a p-cyclic map if T(Ai) ⊆ Ai+1, for all i = 1, 2, ..., p, where we use the convention Ap+1 = A1.

Definition 6. Let (X, ρ) be a partial metric space and A1, A2, ..., Ap be nonempty subsets of X. A point x ∈ Ai
is said to be a best proximity point of T in Ai, if ρ(x, Tx) = dist(Ai, Ai+1), 1 ≤ i ≤ p.

We introduce the notion of p-cyclic orbital M-Kcontraction as follows:

Definition 7. Let (X, ρ) be a partial metric space, A1, A2, . . . ,
Ap be nonempty subsets of X and T : ∪p

i=1 Ai → ∪
p
i=1 Ai be a p-cyclic map. The map T is called a p-cyclic

orbital M-K contraction if for some x ∈ Ai, for each ε > 0, there exists δ > 0, such that the following condition:

ρ(Tpn+k−1x, Tky) < Dk + ε + δ⇒ ρ(Tpn+kx, Tk+1y) < Dk+1 + ε, (1)

holds for all n ∈ N∪ {0} and for all y ∈ Ai, where Dk ≥ 0, for k = 1, 2, ..., p.

Theorem 1. Let (X, ρ) be a complete partial metric space. Let A1, A2, ..., Ap be nonempty and closed subsets
of X. Let T : ∪p

i=1 Ai → ∪
p
i=1 Ai be a p-cyclic orbital M-K contraction map with constants Dk equal to zero or

Dk = dist(Ai+k−1, Ai+k), k = 1, 2, . . . , p.

1. If Dk = 0 for all k = 1, 2, . . . p, then ∩p
i=1 Ai is nonempty, and T has a unique fixed point ξ ∈ ∩p

i=1 Ai.
For any x ∈ ∪p

i=1 Ai, satisfying (1) with Dk = 0, limn→∞ Tnx = ξ holds.
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2. If Dk = dist(Ai+k−1, Ai+k) for all k = 1, 2, . . . , p and (X, ρ) is a partial metric space with property UC,
then for every x ∈ Ai satisfying (1), the sequence {Tpnx} converges to a unique point z ∈ Ai, which is the
best proximity point, as well as the unique periodic point of T in Ai. Furthermore, Tkz is a best proximity
point of T in Ai+k, which is also a unique periodic point of T in Ai+k, for each k = 1, 2, ..., (p− 1).

3. Auxiliary Results

Without loss of generality, let us assume that x ∈ A1. The proof of the following lemma follows
the technique used in [11].

Lemma 3. Let (X, ρ) be a partial metric space. Let A1, A2, ..., Ap be nonempty subsets of X. Let T:∪p
i=1Ai →

∪p
i=1Ai be a p-cyclic orbital M-K contraction map with constants Dk equal to zero or Dk = dist(Ak, A1+k). Then, there

exists an L-function φ such that for an x ∈ A1 satisfying (1), the following holds: if ρ(Tpn+k−1x, Tky) > Dk, then:

ρ(Tpn+kx, Tk+1y)− Dk+1 < φ(ρ(Tpn+k−1x, Tky)− Dk) (2)

and if ρ(Tpn+k−1x, Tky) = Dk, then ρ(Tpn+kx, Tk+1y) = Dk+1, (3)

for each k = 1, 2, ..., p, for all n ∈ N and for all y ∈ A1.

Proof. Let x ∈ A1 satisfy (1). For each k = 0, 1, 2, ..., p− 1, define the following sets: Ck = {Tpn+k−1x :
n ∈ N} and Bk = {Tky : y ∈ A1}. Let fk, gk : Ck × Bk → [0, ∞) be defined as follows: fk(ak, bk) =

ρ(Tpn+k−1x, Tky)− Dk and gk(ak, bk) = ρ(Tpn+kx, Tk+1y)− Dk+1. Since T is a p-cyclic orbital M-K
contraction map, each fk and gk satisfies the condition (1) of Lemma 2, and hence, (2) and (3) hold.

Remark 1. From Lemma 3, it follows that for a p-cyclic orbital M-K contraction map T, the sequence
{ρ(Tpn+k−1x, Tky)− Dk}∞

n=1, k = 1, 2, ..., p is non-increasing.

Lemma 4. Let (X, ρ) be a partial metric space. Let A1, A2, ..., Ap be nonempty subsets of X. Let T : ∪p
i=1 Ai →

∪p
i=1 Ai be a p-cyclic orbital M-K contraction map with constants Dk equal to zero or Dk = dist(Ak, A1+k).

Then, for any x ∈ A1 satisfying (1), for all y ∈ A1 and for each k ∈ {0, 1, 2, ..., p − 1}, the sequence
{ρ(Tpn+kx, Tpn+k+1y)}∞

n=1 converges to Dk+1.

Proof. Let sn = ρ(Tpn+kx, Tpn+k+1y)− Dk+1. Then, sn ≥ 0 for all n ∈ N. By Remark 1, sn+1 ≤ sn

for all n ∈ N. If sn = 0 for some n, then the lemma follows. Suppose sn > 0 for every n ∈ N. Then,
by Lemma 3, there exists an L-function φ satisfying (2) and (3). Since sn+1 ≤ sn, {sn} converges to an
r ≥ 0. Suppose r > 0. Then, for this r > 0, by (1), there exists a δ > 0, such that r ≤ sn < r + δ and such
that sn+1 < φ(sn) ≤ r. That is, sn+1 < r, which is a contradiction. Hence, r = 0. Thus, the following
holds ρ(Tpn+kx, Tpn+k+1y)→ Dk+1, when n→ ∞.

Corollary 1. Let (X, ρ) be a partial metric space. Let A1, A2, ..., Ap be nonempty subsets of X. Let T:∪p
i=1 Ai →

∪p
i=1 Ai be a p-cyclic orbital M-K contraction map with constants Dk equal to zero. Then, for any x ∈ A1,

satisfying (1), the following holds:

ρ(Tpn+kx, Tk+1y) ≤ ρ(Tpn+k−1x, Tky) (4)

for all n ∈ N, for all y ∈ A1 and for each k = 0, 1, 2, . . . , p− 1.

Corollary 2. Let (X, ρ) be a partial metric space. Let A1, A2, ..., Ap be nonempty subsets of X. Let T:∪p
i=1 Ai →

∪p
i=1 Ai be a p-cyclic orbital Meir–Keeler contraction map with constants Dk, equal to zero for k = 0, 1, 2, . . . , p− 1;

the following holds:
lim

n→∞
ρ(Tpn+kx, Tpn+k+1y) = 0. (5)
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Lemma 5. Let (X, ρ) be a complete partial metric space with property UC and A1, A2, ..., Ap be non-empty
and closed subsets of X. Let T : ∪p

i=1 Ai → ∪
p
i=1 Ai be a p-cyclic orbital M-K contraction map with constants

Dk = dist(Ak, Ak+1). Let x ∈ A1 satisfy (1). Suppose that for each k = 0, 1, 2, ..., p − 1, the sequence
{Tpn+kx} converges to zk ∈ A1+k. Then:

(a) dist(A1, A2) = dist(A2, A3) = · · · = dist(Ap−1, Ap) = dist(Ap, A1);
(b) zk is a best proximity point of T in A1+k and zk = Tkz0, for i = 1, 2, ..., p;
(c) zk is a periodic point of T with period p in A1+k.

Proof. From Lemma 4, it follows that lim
n→∞

d(Tpn+k−1x, Tpn+ky) = Dk = dist(Ak, A1+k).

(a) For any k ∈ {0, 1, 2, . . . , p− 1}, using the continuity of the function ρ(x, ·) and Corollary 1, we get:

dist(Ak+1, Ak+2) ≤ ρ(zk, Tzk) = lim
n→∞

ρ(Tpn+kx, Tzk) ≤ lim
n→∞

ρ(Tpn+k−1x, zk)

= lim
n→∞

ρ(Tpn+k−1x, Tpn+kx) = dist(Ak, Ak+1).

Thus:
dist(A1, A2) ≤ dist(A2, A3) ≤ · · · ≤ dist(Ap+1, A2) = dist(A1, A2).

(b) For each k = 0, 1, 2, ..., p− 1, we get:

dist(A1+k, A2+k) ≤ ρ(zk, Tzk) = lim
n→∞

ρ(Tpn+kx, Tzk) ≤ lim
n→∞

ρ(Tpn+k−1x, zk)

= lim
n→∞

ρ(Tpn+k−1x, Tpn+kx) = dist(Ak, A1+k) = dist(A1+k, Ak+2).

Hence, ρ(zk, Tzk) = dist(A1+k, Ak+2). Consider:

ρ(z1, T2z0) = lim
n→∞

ρ(Tpn+1x, T2z0) ≤ lim
n→∞

ρ(Tpnx, Tz0) ≤ lim
n→∞

ρ(Tpn−1x, z0)

= lim ρ(Tpn−1x, Tpnx) = dist(Ap, A1) = dist(A2, A3).

It is obvious that ρ(Tz0, T2z0) = dist(A2, A3), and using the property UC of the underlying space,
it follows that z1 = Tz0. Hence, z1 = Tz0. Similarly, we can prove that if x ∈ A1 and Tpnx → z0, then
Tkz0 = zk, for k = 1, 2, ..., p− 1.

(c) Since Tp(n−1)+k −→ zk,

ρ(zk, Tp+1zk) = lim
n→∞

ρ(Tpn+kx, Tp+1zk) ≤ lim
n→∞

ρ(Tp(n−1)+kx, Tz
k ) = ρ(zk, Tzk) = dist(Ak, Ak+1).

Now, ρ(zk, Tzk) = dist(Ak, Ak+1) and ρ(zk, Tp+1zk) = dist(Ak, Ak+1). Since the underlying space
satisfies property UC, Tzk = Tp+1zk. Now:

ρ(Tpzk, Tzk) = ρ(Tpzk, Tp+1zk) ≤ ρ(zk, Tzk) = dist(Ak, Ak+1).

By a similar argument as above, zk = Tpzk.

4. Proof of the Main Result

Proof. (i) Let x ∈ A1 satisfy (1). Let us prove that lim
m,n→∞

ρ(Tpmx, Tpnx) = 0. Let ε > 0 be given.

Then, there exists a δ > 0 satisfying (1). Without loss of generality, let δ < ε/2. Since by Corollary 2
limn→∞ ρ(Tpn+kx, Tpn+k+1x) = 0 there is an n0 ∈ N, such that for each k ∈ {0, 1, 2, . . . , p− 1}, it holds:

ρ(Tpn+kx, Tpn+k+1x) <
δ

p
, for all n ≥ n0. (6)
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Fix n ≥ n0. Let m ∈ N be such that m ≥ n. We will prove that the inequality ρ(Tpnx, Tpmx) < ε

holds for every m ≥ n.
Since for all m ≥ n, we have ρ(Tpmx, Tpnx) ≤ ρ(Tpmx, Tpm+1x) + ρ(Tpm+1x, Tpnx), from the

inequality ρ(Tpmx, Tpm+1x) < δ
p < ε

4 , it is enough if we prove that for all m ≥ n:

ρ(Tpnx, Tpm+1x) <
3ε

4
. (7)

Let us prove (7) by induction. From (6), it follows that (7) holds for m = n. Assume that
Inequality (7) holds for some m > n. We prove that (7) holds for m + 1. Let ε0 = ρ(Tpnx, Tpm+1x).
Then, by our assumption ε0 = ρ(Tpnx, Tpm+1x) < 3ε

4 . If ε0 = 0, then Tpnx = Tpm+1x.
Therefore, Tp(m+1)+1x = Tpm+p+1x = Tpn+px. Now:

ρ(Tpnx, Tp(m+1)+1x) = ρ(Tpnx, Tpn+px)

≤ ρ(Tpnx, Tpn+1x) + ρ(Tpn+1x, Tpn+2x) + ... + ρ(Tpn+p−1x, Tpn+px)

< δ < ε/2.

Now, if ε0 > 0, since ε0 = ρ(Tpnx, Tpm+1x) < 3ε
4 = ε/4 + ε/2, we have by (1) that the inequality

holds ρ(Tpn+1x, Tpm+2x) < ε/4. Using this and (6), we get:

ρ(Tpnx, Tp(m+1)+1x) ≤ ρ(Tpnx, Tpn+1x) + ρ(Tpn+1x, Tpm+2x) + ρ(Tpm+2x, Tpm+3x) +

... + ρ(Tpm+px, Tpm+p+1x) <
δ

p
+

ε

4
+ (p− 1)

δ

p
=

3ε

4
.

Thus, (7) holds for m + 1 in this case, as well. Hence, {Tpnx} is a Cauchy sequence in X, and since
X is a complete partial metric space, there exists a z ∈ A1 such that:

0 = lim
m,n→∞

ρ(Tpnx, Tpmx) = lim
n→∞

ρ(z, Tpnx) = ρ(z, z).

This implies ρ(z, z) = 0. Now, from the inequalities:

0 ≤ lim
n→∞

ρ(Tpn+p−1x, z) ≤ lim
n→∞

ρ(Tpn+p−1x, Tpn+px) + ρ(Tpn+px, z) = 0

and the assumption that {Tpn+p−1x} ⊆ Ap, it follows that {Tpn+p−1x}∞
n=1 also converges to z.

From the continuity of the function ρ(x, ·) and Corollary 1, we get:

ρ(z, Tz) = lim
n→∞

ρ(Tpn+px, Tz) ≤ lim
n→∞

ρ(Tpn+p−1x, z) = 0.

Hence, ρ(z, Tz) = 0, i.e., z = Tz. To prove the uniqueness of z, let us suppose that there is ξ ∈ Ai,
ξ 6= z, such that ρ(ξ, Tξ) = 0. From ξ = Tξ, it follows that ξ = Tnξ for all n ∈ N, and therefore,
ξ ∈ ∩p

i=1 Ai. Using Lemma 2, we get ρ(z, ξ) = limn→∞ ρ(Tpnx, Tpn+1ξ) = 0.
(ii) Let ε > 0 be given. Let φ be the L-function as given in Lemma 3. Then, for this ε > 0, there is

δ1 > 0, such that:
φ(ε + δ1) ≤ ε (8)

Since T is a p-cyclic orbital M-K contraction map, there exists an x ∈ A1 and a δ2 > 0 satisfying (1).
Let us put δ = min{δ1, δ2}. Without loss of generality, let δ < ε. By Lemma 4, we have that
limn→∞ ρ(Tpn+1x, Tpn+2x) = dist(A2, A3) and limn→∞ ρ(Tp(n+1)+1x, Tpn+2x) = dist(A2, A3). From the
assumption that X is a partial metric space with property UC, we get limn→∞ ρ(Tp(n+1)+1x, Tpn+1x) = 0.
Therefore, it is possible to choose an n1 ∈ N such that:

ρ(Tpn+1x, Tp(n+1)+1x) < δ/2, for all n ≥ n1 (9)
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and by Lemma 4:
ρ(Tpnx, Tpn+1x) < dist(A1, A2) + 2ε for all n ≥ n1. (10)

Fix n ≥ n1. We show that:

ρ(Tpmx, Tpn+1x) < dist(A1, A2) + ε + δ, ∀ m, n ≥ n1 (11)

by the method of induction. It is obvious that Condition (11) is true for m = n. Assume that the
condition (11) is true for an m > n. To prove this condition for m + 1, consider:

ρ(Tp(m+1)x, Tpn+1x) ≤ ρ(Tpn+1x, Tp(n+1)+1x) + ρ(Tp(n+1)+1x, Tp(m+1)x). (12)

Now, from Lemma 3, we get:

ρ(Tp(n+1)+1x, Tp(m+1)x)− D1 < φ(ρ(Tp(n+1)x, Tp(m+1)−1x)− Dp)

≤ ρ(Tp(n+1)x, Tp(m+1)−1x)− Dp)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
< φ(ρ(Tpn+1x, Tpmx)− D1) ≤ φ(ε + δ) < ε.

Using (9) in (12), we obtain ρ(Tp(m+1)x, Tpn+1x) < δ
2 + dist(A1, A2) + ε. Hence, (11) holds for

(m + 1) in place of m. From (11) and (10) and the assumption that the pair (A1, A2) satisfies the
property UC, it follows that there exists n2 ∈ N, so that ρ(Tpnx, Tpmx) < ε holds for all m > n ≥ n2.
Hence, {Tpnx} is a Cauchy sequence and converges to a z ∈ A1. By Lemma 5, z is a best proximity
point of T in A1, and z is a periodic point of T in A1. To prove that z ∈ A1 is the unique periodic point
of T in A1, we proceed as follows. Let y ∈ A1 satisfy (1) such that y 6= x. Then, by what we have proven
now, there exists a η ∈ A1, such that by Lemma 5, η is a best proximity point of T in A1; η is a periodic
point of T in A1; and by a similar argument as in Lemma 5, Tp+1η = Tη. If ρ(z, Tη) = dist(A1, A2),
then since ρ(η, Tη) = dist(A1, A2), since the underlying space satisfies property UC, we have z = η.
Hence, suppose ρ(z, Tη)− dist(A1, A2) > 0. Then:

ρ(Tz, T2η)− dist(A1, A2) < φ(ρ(z, Tη)− dist(A1, A2)) ≤ ρ(z, Tη)− dist(A1, A2)

= ρ(Tpz, Tp+1η)− dist(A1, A2) ≤ ρ(Tz, T2η)− dist(A1, A2),

which is a contradiction.

5. Examples

We start with a lemma, which is useful in checking whether a partial metric space is complete.

Lemma 6. Let (X, d) be a complete metric space and (X, ρ) be a partial metric space. Let ω : X → [0,+∞)

and ρ(x, y) = d(x, y) +max{ω(x), ω(y)}. The partial metric space (X, ρ) is complete if and only if ω satisfies
the condition: if lim supd(xn ,x)→0 ω(xn) < ∞, then limn→∞ ω(xn) = ω(x).

Proof. (X, ρ) is complete if and only if (X, ρs) is complete ([19]). By the definition of the partial metric
ρ, we get that:

ρs(x, y) = 2ρ(x, y)− ρ(x, x)− ρ(y, y)
= 2d(x, y) + 2 max{ω(x), ω(y)} −ω(x)−ω(y)
= 2d(x, y) + |ω(x)−ω(y)| .

(13)

Sufficiency: Let {xn}∞
n=1 be a Cauchy sequence in (X, ρ), and ω satisfies the condition in the

lemma. From [19], it follows that {xn}∞
n=1 is a Cauchy sequence in (X, ρs). That is, for every ε > 0,

there exists N ∈ N, such that the inequality ρs(xn, xm) < ε holds for every n, m ≥ N. Thus, from (13),
we get 2d(xn, xm) + |ω(xn)−ω(xm)| < ε, and therefore, the inequality d(xn, xm) < ε holds for every
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n, m ≥ N. Consequently, {xn}∞
n=1 is a Cauchy sequence in (X, d), hence converging to x. From the

assumption that {xn}∞
n=1 is a Cauchy sequence in (X, ρ), it follows that the limit:

lim
n,m→∞

ρ(xn, xm) = lim
n,m→∞

(d(xn, xm) + max{ω(xn), ω(xm)}) = lim
n,m→∞

max{ω(xn), ω(xm)}

exists and is finite.
There are two cases: (I) lim sup

n→∞
ω(xn) ≤ ω(x) and (II) lim sup

n→∞
ω(xn) ≥ ω(x).

(I) Let us assume that lim supn→∞ ω(xn) ≤ ω(x). Then, limn→∞ max{ω(x), ω(xn)} = ω(x).
Consequently, we get:

ρ(x, x) = ω(x) = lim
n→∞

ρ(xn, x) = lim
n→∞

(d(xn, x) + max{ω(x), ω(xn)}) = ω(x).

(II) Let us assume that lim supn→∞ ω(xn) ≥ ω(x). From the assumption of the Lemma, it follows
that lim

n→∞
max{ω(x), ω(xn)} = ω(x). Consequently, we get:

ρ(x, x) = ω(x) = lim
n→∞

ρ(xn, x) = lim
n→∞

(d(xn, x) + max{ω(x), ω(xn)}) = ω(x).

Thus, {xn}∞
n=1 is a convergent sequence in (X, ρ) in both cases. To prove the necessity condition,

let (X, ρ) be a complete partial metric space. We will prove that ω satisfies the conditions of the Lemma.
Let us suppose the contrary, i.e., there exists a sequence {xn}∞

n=1 that is convergent to some point x ∈ X
with respect to the metric d, lim supn→∞ ω(xn) ≤ M1 < ∞, and there is ε0 > 0, so that the inequality
|ω(xn)−ω(x)| ≥ ε for every n ≥ N0, for some N0 ∈ N. From the convergence of the sequence {xn}∞

n=1
in (X, d), it follows that there is M > 0, such that d(xn, xm) ≤ M. By the inequality ρ(xn, xm) =

d(xn, xm) + max{ω(xn), ω(xm)} ≤ M + M1, it follows that {xn}∞
n=1 is a Cauchy sequence in (X, ρ).

Now, {xn}∞
n=1 is a Cauchy sequence in (X, ρs) ([19]), and therefore, it is convergent. Let us denote

its limit by z. From (13), it follows that limn→∞ ρs(xn, z) = limn→∞ (d(xn, z) + |ω(xn)−ω(z)|) = 0.
Consequently, limn→∞ d(xn, z) = 0, and thus, z = x. Therefore, limn→∞ |ω(xn)−ω(z)| = 0, which is
a contradiction.

Example 4. Let us consider the metric space ([0,+∞), d), endowed with the metric d(x, y) = |x− y|. Let us

consider the function ω(x) =

{
1
x , x > 0
1, x = 0.

Then, ([0,+∞), ρ) is a complete partial metric space, where

ρ(x, y) = |x− y|+ max {ω(x), ω(y)}.

Let limn→∞ |xn − x| = 0. Then, lim supn→∞ ω(xn) < ∞ if and only if x 6= 0. By the
continuity of ω at any different point from zero, it follows that limn→∞ ω(xn) = ω(x), provided
that limn→∞ xn = x 6= 0. Let {xn}∞

n=1 be a Cauchy sequence in ([0,+∞), ρ). Thus, the limit
limn,m→∞ (|xn − xm|+ max {ω(xn), ω(xm)}) exists and is finite. This limit is finite if and only if
limn→∞ xn = x 6= 0. Consequently, {xn}∞

n=1 is a Cauchy sequence in ([0,+∞), ρ) if and only if
limn→∞ |xn− x| = 0 for some x 6= 0 and limn→∞ ρ(xn, x) = ω(x) = ρ(x, x). Consequently, ([0,+∞), ρ)

is a complete partial metric space.

Example 5. Let us consider the metric space ([0,+∞), d), endowed with the metric d(x, y) = |x− y|. Let us

consider the function ω(x) =

{
1, x 6= 1
a, x = 1.

Then, ([0,+∞), ρ) is a complete partial metric space with

ρ(x, y) = |x− y|+ max {ω(x), ω(y)} if and only if a = 1.

Let limn→∞ |xn − x| = 0. Then, lim supn→∞ ω(xn) < ∞ and limn→∞ ω(xn) = ω(x), provided
that x 6= 1 or a = 1. Let {xn}∞

n=1 be a sequence, such that xn 6= 1, which is convergent
to one with respect to the metric d. Then, it is a Cauchy sequence in ([0,+∞), ρ), because the
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limit limn,m→∞ (|xn − xm|+ max {ω(xn), ω(xm)}) = a exists and is finite. From a = ρ(1, 1) and
ρ(xn, 1) = (|xn − 1| + max{ω(xn), ω(1)} = max{1, a}, it follows that {xn}∞

n=1 is convergent in
([0,+∞), ρ) if and only if a = 1.

Corollary 3. Let (X, d) be a complete metric space and ω : X → [0,+∞) be a continuous function with respect
to metric d, and let us consider the partial metric space (X, ρ), where ρ(x, y) = d(x, y) + max{ω(x), ω(y)}.
Then, if A ⊂ X is closed in (X, d), then it is closed in (X, ρ).

Corollary 4. Let (X, d) be a complete metric space, a > 0, and let us consider the partial metric space (X, ρ),
where ρ(x, y) = d(x, y) + a. The partial metric space (X, ρ) is complete.

Lemma 7. Let (X, d) be a complete metric space and ω : X → [0,+∞) be a continuous function with respect
to the metric d. Let us consider the partial metric space (X, ρ), where ρ(x, y) = d(x, y) + max{ω(x), ω(y)}.
The partial metric space (X, ρ) is:

(a) a Hausdorff space with respect to the topology; τρ

(b) a normal topological space with respect to the topology.

Proof. (a) Let x, y ∈ (X, ρ). Let us put a = ρ(x, y) = d(x, y) + max{ω(x), ω(y)}. Let us consider
the open balls B a

2
(x) =

{
u ∈ (X, d) : ρ(x, u) < a

2
}

and B a
2
(y) =

{
u ∈ (X, d) : ρ(y, u) < a

2
}

in (X, d).
Then, Ba/2(x) ∩ Ba/2(y) = ∅. Indeed, let us suppose the contrary, i.e., there exists u ∈ Ba/2(x) ∩
Ba/2(y). Then, from the inequality:

ρ(x, y) = d(x, y) + max{ω(x), ω(y)}
≤ d(x, u) + d(u, y) + max{ω(x), ω(u)}+ max{ω(u), ω(y)}
= ρ(x, u) + ρ(u, y) < a/2 + a/2 = a

we get a contradiction.
(b) From (a), it follows that (X, ρ) is a T1 space. Let U, V ⊂ (X, ρ) be closed sets. Let u ∈ U be

arbitrarily chosen. Let us put:

au = inf{ρ(u, v) : v ∈ V} = inf{d(u, v) + max{ω(u), ω(v)} : v ∈ V}.

The function fu(v) = inf{d(u, v) + max{ω(u), ω(v)} : v ∈ V} : V → [0,+∞) is a continuous
function with respect to the metric d, and thus, au = inf{ fu(v) : v ∈ V} exists. Let us denote Bau/2(u) =
{x ∈ (X, d) : ρ(x, u) < a/2}. In a similar fashion, let us denote Bav/2(v) = {x ∈ (X, d) : ρ(x, v) <

av/2} for every v ∈ V, where av = inf{ρ(u, v) : u ∈ U}. The sets
⋃

u∈U
Bau/2(u) and

⋃
v∈V

Bav/2(v) are

open sets and U ⊂ ⋃
u∈U

Bau/2(u), V ⊂ ⋃
v∈V

Bav/2(v). Then,
( ⋃

u∈U
Bau/2(u)

)⋂( ⋃
v∈V

Bav/2(v)
)

= ∅.

Indeed, let us suppose the contrary. That is, there exists x ∈
( ⋃

u∈U
Bau/2(u)

)⋂( ⋃
v∈V

Bav/2(v)
)

.

Then, there are u ∈ U and v ∈ V, such that x ∈ Bau/2(u) and x ∈ Bav/2(v). Then, from the inequality:

ρ(u, v) = d(u, v) + max{ω(u), ω(v)}
≤ d(u, x) + d(x, v) + max{ω(u), ω(x)}+ max{ω(x), ω(v)}
= ρ(u, x) + ρ(x, v) < au/2 + av/2
≤ max{au/2 + au/2, av/2 + av/2} = max{au, av}

we get a contradiction.

Example 6. Let us consider the Banach space (R2, ‖ · ‖2), where R2 = {x = (u, v) : u, v ∈ R} and ‖x‖2 =

‖(u, v)‖2 =
√

u2 + v2. Let us endow R2 with the partial metric ρ(x, y) = ‖x − y‖2 + max{‖x‖2
2, ‖y‖2

2}.
From Example 3, ρ(x, y) is a partial metric. From Lemma 6, it follows that (R2, ρ) is a complete partial metric
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space. We consider the sets A1, A2, A3, A4 defined by A1 = {(u, v) ∈ R : u ≥ 0, v ≥ 0}, A2 = {(u, v) ∈ R :
u ≤ 0, v ≥ 0}, A3 = {(u, v) ∈ R : u ≤ 0, v ≤ 0}, A4 = {(u, v) ∈ R : u ≥ 0, v ≤ 0}. From Corollary 3,
it follows that A1, A2, A3, A4 are closed sets in (R2, ρ). Let us define a cyclic map T : ∪p

i=1 Ai → ∪
p
i=1 Ai+1 by:

T(u, v) =
(

−|v|
1+2‖(u,v)‖2

, |u|
1+2‖(u,v)‖2

)
, for (u, v) ∈ A1;

T(u, v) =
(

−|v|
1+2‖(u,v)‖2

, −|u|
1+2‖(u,v)‖2

)
, for (u, v) ∈ A2;

T(u, v) =
(

|v|
1+2‖(u,v)‖2

, −|u|
1+2‖(u,v)‖2

)
,for (u, v) ∈ A3; and

T(u, v) =
(

|v|
1+2‖(u,v)‖2

, |u|
1+2‖(u,v)‖2

)
, for (u, v) ∈ A4.

Let x = (0, 0). Let us choose an arbitrary y0 = (u0, v0) ∈ Ai. Let us denote Tky0 = yk = (uk, vk).

Then, ρ(Tk(u0, v0), T4n+k−1x) = ρ((uk, vk), (0, 0)) = ‖(uk, vk)‖2 + ‖(uk, vk)‖2
2 =

√
u2

k + v2
k + u2

k + v2
k. Now:

R4 = ρ(Tk+1y0, T4n+kx) = ρ(Tk+1(u0, v0), T4n+kx)
= ρ(T(uk, vk), (0, 0))

=

√
u2

k+v2
k

(1+2‖(uk ,vk)‖2)
+

u2
k+v2

k
(1+2‖(uk ,vk)‖2)2

≤
√

u2
k+v2

k+u2
k+v2

k
(1+2‖(uk ,vk)‖2)

=
‖(uk ,vk)‖2+‖(uk ,vk)‖2

2
(1+2‖(uk ,vk)‖2)

=
‖yk‖2+‖yk‖2

2
(1+2‖yk‖2)

.

(14)

Now, ρ(x, y) = ‖yk‖2 + ‖yk‖2
2.

By solving the equation ‖yk‖2
2 + ‖yk‖2 + ρ(x, y) = 0, we get

‖yk‖2 =

√
1 + 4ρ(x, yk)− 1

2
.

Hence:

ρ(Tk+1y0, T4n+kx) ≤ ρ(x, yk)√
1 + 4ρ(x, yk)

.

The function t√
1+4t

is a continuous function in the interval [0,+∞). From ε√
1+4ε

< ε, we get the

condition that there exists δ(ε) > 0 such that the inequality ρ(Tk+1y0, T4n+kx) ≤ ρ(x,yk)√
1+4ρ(x,yk)

< ε holds

whenever the inequality holds ρ(Tky0, T4n+k−1x) = ρ(yk, x) < ε + δ(ε). Consequently, T is a 4-cyclic
orbital Meir–Keeler contraction, and x is the unique fixed point.

6. Conclusions

In this paper, the contraction condition of the p-cyclic orbital M-K contraction map was not
imposed on all pairs of points of the partial metric space. Even if the contraction condition holds for
just one point in the space, it is possible to obtain a unique fixed point/unique best proximity point,
which is the limit of the sequence of iterates of that point. So far, the best proximity points have not
been obtained for contraction maps defined on a partial metric space. In this paper, the notion of the
partial metric space with property UC was introduced, and the best proximity point for p-cyclic orbital
M-K contraction was obtained.

Author Contributions: The listed authors contributed equally to the presented research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. De la Sen, M. Quadratic stability and stabilization of switched dynamic systems with uncommensurate
internal point delays. Appl. Math. Comput. 2007, 185, 508–526. [CrossRef]

http://dx.doi.org/10.1016/j.amc.2006.07.048


Mathematics 2018, 6, 116 11 of 11

2. De la Sen, M. About robust stability of dynamic systems with time delays through fixed point theory.
Fixed Point Theory Appl. 2008, 2008, 480187. [CrossRef]

3. De la Sen, M. Total stability properties based on fixed point theory for a class of hybrid dynamic systems.
Fixed Point Theory Appl. 2009, 2009, 826438. [CrossRef]

4. Chen, C.M.; Chang, T.H. Fixed point theorems for a weaker Meir–Keeler type-set contraction in metric spaces.
Fixed Point Theory Appl. 2009, 2009, 129124. [CrossRef]

5. Karpagam, S.; Agrawal, S. Best proximity point theorems for p-cyclic Meir-Keeler contractions. Fixed Point
Theory Appl. 2009, 2009, 197308. [CrossRef]

6. Meir, A.; Keeler, E. A theorem on contractive mappings. J. Math. Anal. Appl. 1969, 28, 326–329. [CrossRef]
7. De la Sen, M. Linking contractive self-mappings and cyclic Meir-Keeler contractions with Kannan self-mappings.

Fixed Point Theory Appl. 2010, 2010, 572057. [CrossRef]
8. Karpagam, S.; Agrawal, S. Best proximity point theorems for cyclic orbital Meir-Keeler contraction maps.

Nonlinear Anal. 2011, 74, 1040–1046. [CrossRef]
9. Kirk, W.A.; Srinivasan, P.S.; Veeramani, P. Fixed points for mappings satisfying cyclical contractive conditions.

Fixed Point Theory 2003, 4, 79–89.
10. Karpagam, S.; Zlatanov, B. Best proximity points of p-cyclic orbital Meir-Keeler contraction maps. Nonlinear Anal.

Model. Control 2016, 21, 790–806. [CrossRef]
11. Karpagam, S.; Zlatanov, B. A note on best proximity points for p-summing cyclic orbital Meir-Keeler

contractions. Int. J. Pure Appl. Math. 2016, 107, 225–243. [CrossRef]
12. Zlatanov, B. Best proximity points for p-summing cyclic orbital Meir–Keeler contractions. Nonlinear Anal.

Model. Control 2015, 20, 528–544. [CrossRef]
13. Bukatin, M.; Kopperman, R.; Mathews, S.; Pajoohesh, H. Partial metric spaces. Am. Math. Mon. 2009, 116, 708–718.

[CrossRef]
14. Matthews, S. Partial Metric Topology; Research Report 212; Department of Computer Science, University of

Warwick: Coventry, UK, 1992.
15. Matthews, S. Partial metric topology. Ann. N. Y. Acad. Sci. 1994, 728, 183–197. [CrossRef]
16. Agarwal, R.P.; Alghamdi, M.A.; Shahzad, N. Fixed point theory for cyclic generalized contraction in partial

metric spaces. Fixed Point Theory Appl. 2012, 2012, 40. [CrossRef]
17. Choudhury, B.S.; Bandyopadhyay, C. Coupled Meir-Keeler type contraction in metric spaces with an

application to partial metric spaces. Vietnam J. Math. 2016, 4, 623–636. [CrossRef]
18. Karapinar, E. Generalizations of Caristi-Kirks’ theorem on partial metric spaces. Fixed Point Theory Appl.

2011, 2011, 4. [CrossRef]
19. Karapinar, E.; Shobkolaei, N.; Sedghi, S.; Vaezpour, S. A common fixed point theorem for cyclic operators on

partial metric spaces. Filomat 2012, 26, 407–414. [CrossRef]
20. Valero, O. On banach fixed point theorems for partial metric spaces. Appl. Gen. Topol. 2005, 6, 229–240.

[CrossRef]
21. Lim, T.C. On characterizations of Meir-Keeler contractive maps. Nonlinear Anal. 2001, 46, 113–120. [CrossRef]
22. Suzuki, T. Some notes on Meir-Keeler contractions and L-functions. Bull. Kyushu Inst. Technol. Pure

Appl. Math. 2006, 53, 1–13.
23. Suzuki, T.; Kikkawa, M.; Vetro, C. The existence of best proximity points in metric spaces with the property UC.

Nonlinear Anal. 2009, 71, 2918–2926. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1155/2008/480187
http://dx.doi.org/10.1155/2009/826438
http://dx.doi.org/10.1155/2009/129124
http://dx.doi.org/10.1155/2009/197308
http://dx.doi.org/10.1016/0022-247X(69)90031-6
http://dx.doi.org/10.1155/2010/572057
http://dx.doi.org/10.1016/j.na.2010.07.026
http://dx.doi.org/10.15388/NA.2016.6.4
http://dx.doi.org/10.12732/ijpam.v107i1.17
http://dx.doi.org/10.15388/NA.2015.4.5
http://dx.doi.org/10.4169/193009709X460831
http://dx.doi.org/10.1111/j.1749-6632.1994.tb44144.x
http://dx.doi.org/10.1186/1687-1812-2012-40
http://dx.doi.org/10.1007/s10013-016-0186-y
http://dx.doi.org/10.1186/1687-1812-2011-4
http://dx.doi.org/10.2298/FIL1202407K
http://dx.doi.org/10.4995/agt.2005.1957
http://dx.doi.org/10.1016/S0362-546X(99)00448-4
http://dx.doi.org/10.1016/j.na.2009.01.173
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction and Preliminaries
	Main Result
	Auxiliary Results
	Proof of the Main Result
	Examples
	Conclusions
	References

