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1. Introduction

Inequalities for convex functions, for example, the celebrated one is the Hermite-Hadamard
inequality, providing a new horizon in the field of mathematical analysis. Many authors have
been working on it continuously and several Hermite-Hadamard like integral inequalities have
been established for many kinds of functions related to convex functions. Recently, a lot of integral
inequalities of the Hermite-Hadamard type for harmonically convex functions via fractional integrals
have been published (see [1-5] and references therein). The Hermite-Hadamard inequality for convex
functions is stated in the following theorem.

Theorem 1. Let I be an interval of real numbers and f : I — R be a convex function on I. Then, forall a,b € I,
the following inequality holds:

(A4 = [ e L0 EI0)

Fejér gave a weighted version of the Hermite-Hadamard inequality stated as follows.
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Theorem 2. Let f : [a,b] — R be a convex function and g : [a,b] — R is non-negative, integrable and
symmetric to %b. Then, the following inequality holds

f(Hb)/ 9ax < [ (s < LSO oyan

It is well known as the Fejér—-Hadamard inequality. In the following, we give the definition of

harmonically convex functions.

Definition 1. Reference [3] Let I be an interval of non-zero real numbers. Then, a function f : I — R is said
to be a harmonically convex function if the inequality

(o tizps) SU®+A-f@) 0

holds for a,b € I and t € [0,1]. If the inequality in Equation (1) is reversed, then f is said to be
harmonically concave.

Itis interesting to see that a function f : (a,b) — R, (a > 0) is harmonically convex iff the function
foh: (3, ) — Ris convex, where h : (0,00) — (0, 00) is the hyperbola, i.e., h(t) = 1/t.

Definition 2. Reference [2] A function h : [a,b] C R\ {0} — R is said to be harmonically symmetric about

240 if
hix)=h| —m
) <;+ —i)

ST Y

holds for x € [a, b].

The following definition of the Riemann-Liouville fractional integral is the asset of
fractional calculus.

Definition 3. Reference [6] Let f € L{a, b]. Then, the two sided Riemann—Liouville fractional integral of f of

order v > 0 is defined as:
1 > _
IV, f(x) = W/a (x — 'L f(B)dt, x > a

and ) )
S0 = 5oy / (t—x)""Lf(t)dt, x < b.

In the following, we give the definition of a generalized fractional integral operator which will
help us to give a generalized Fejér-Hadamard inequality for harmonically convex functions and
related results.

Definition 4. Reference [7] Let u,v,k, 1,7, 6 be positive real numbers and «w € R. Then, the generalized
fractional integral operators containing a generalized Mittag—Leffler function for a real valued continuous
function f are defined as follows:

(2% £) @) = [[x= 0 S wlx = 0 f(o)t

and

b
(s £) ) = [t =0 TELS (e = ") f(t)at,
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where the function E;’S’;{ is a generalized Mittag—Leffler function defined as:
7/5 k d ki’l tn (2)
Bt n;)r ;m+v)(5) ’

and (7y)kn = ”}2;’;”)

7,1k
wvlwat

7.0,k

For 6 = | = 1, the integral operator € vl ot

reduces to an integral operator € containing

generalized Mittag—Leffler function Ev’i’l{ introduced by Srivastava and Tomovski in [8]. Along with

6 =1 = 1, in addition, if k = 1, then it reduces to an integral operator defined by Prabhaker in [9]

v,0,k

1oLt reduces to the

containing Mittag-Leffler function E}},. For w = 0, the integral operator ¢
Riemann-Liouville fractional integral operator.

In [7,8], properties of the generalized fractional integral operator eZ’i’fw .+ and the generalized

Mittag-Leffler function Egif(t) are studied in brief. In [7], it is proved that EZ‘VS;{(t) is absolutely
convergent fork <!+ pandt € R.

Since )
tﬂ
ETOK (4 T kn )
Fuss 1= B [T + )Gy
if we say that ), |%| =S, then
[EVO(H)] < .

vl

We use this property of generalized Mittag-Leffler function subsequently in our results.
In addition, we use the following definitions of special functions known as beta and Euler type
form of the hypergeometric functions (see [10]),

1
B, v) = m = /O 1 — 1)Vt pv >0,
2Fi(a,b;c;w) = 'B(bg_b) /01 tb71(1 _ t)cfbfl(l — wt)dt,

where 0 < b < cand |w| < 1.

In this paper, we give a generalized version of the Fejér-Hadamard inequality for harmonically
convex functions via a generalized fractional integral operator. We also obtain bounds of the
absolute differences of this generalized Fejér-Hadamard inequality for harmonically convex functions.
Being generalizations, we reproduce the results proved in [1-3,5].

2. Main Results

To obtain our main results, we need the following lemmas.
Lemma 1. Reference [11] For0 < a < band 0 < y < 1, we have

" — b"| < (b—a)".
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Lemma 2. Let f : [a,b] C R\ {0} — R,a < b, be integrable and a harmonically symmetric function with
respect to M’ . Then, for generalized fractional integrals, we have

(ot ro8) (3) = (ony 725) (5)
(e pres) ()4 (a2 os) ()

a

2 7

where g(t) = 1 forall t € [}, 1].

Proof. Since f is harmonically symmetric about 2” 5, we have f 1y = £(

generalized fractional integral operator

i v-1 1
<€ij:zk,w,;*f°g> (i) :/; (i B t) Eyl (w (61, - f) )f (1) dt, )

replacing t by 1 + % — x in Equation (3), we have

(ot poro) ()= (=3) st (o (x=1) ) (=5 )
1

This implies
1 1
(e r9) (B) = (52 £29) () @

By adding ( 1ok +fo g) (%) in both sides of Equation (4), we have
!wIE

2(67’5']( Hfog) (1) = ( T afo g) (1> + ( e fo g) ( ) ®)
y,l/,l,w,g a yvlw yvlw—

Equations (4) and (5) give the required result. [J
Theorem 3. Let f : I C (0,00) — R be a harmonically convex function. Let a,b € I,a < b, f € L[a, b] and

also let g : [a,b] — R be a non-negative, integrable and harmonically symmetric function about %. Then, the
following inequalities for generalized fractional integrals hold:

2ab 1.8k 1 0k 1
e [ een) )+ (heon) (5)] ©
0k 1 Sk 1
< (hperen) (5) = (i soo) (5)
v L' g vl
f( )+ f(b) 7,6,k 1 V0K 1
< il 0 -
- 2 ey,v,l,w’,%+g oh a + ey,v,l,w’,%ig oh b ’

where ' —w(b a) and h(t) = 1 forall t € H,ﬂ

Proof. Since f is a harmonically convex function, therefore, for t € [0, 1], we have

2f (55) <* (ai=ms) * (wvir=na) ®
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Multiplying both sides of Equation (7) by t”’lE;”f:;( (wth)g ( T (’llhi t)u) and then integrating with

respect to t over [0, 1], we have

2ab V=1 1Ok ab
(/H-b)/t EF“’I (wif)g tb+ (1—t)a at

v—1 "/51( u ﬂb ﬂb
/ B By (wt >f<ta+(1—t)b>g<tb+(l—t)a at @®
v1gTok( ab ab
+/ EE (@ )f(tb+(1—t)a>g(tb+(1—t)a>dt‘
By choosing x = tb+( D that is —2 L__ in Equation (8), we have
b

1
fa+(1-0p — I

o ()] (6 (2) B o) () e ()
) () ) 1)) (s o
G ) B ) (1)) (e ()

Since f is harmonically symmetric about 21%, therefore, after simplification, Equation (9) becomes

2 (F5) [ (-5) w0 (-5) )e ()
S B We
S I OREE

1 b wyl b x X

2ab 7,8k 1
2f (a + b) (eyvlw’ 1g0h) (b)
Sk Sk 1
< (g tson) (5) (500 s2o) (5)
Using Lemma 2 in the above 1nequa11ty, we have
2ab 7.0k 1 7,0k 1
) (G son) () (90 o) () 2
1 5 1
< 'yék L 7,0,k 2
—(uww“ﬁ°0(»+(%mm;“°h b)

To prove the second half of the inequality, again from harmonically convexity of f on [4,b] and

fort € [0,1], we have

This implies

i)~ (i) < f@+ 0 1)
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Multiplying both sides of Equation (12) by t"’lEZ'i';((th‘) < (Mﬁ) , then integrating with

respect to t over [0, 1], we have

/ FEL D (i) f (tb+ (alb— t)a) g (tb+ (alb— f)“> i

v—1 ')’5]( U ﬂb ﬂb 1
+/ R (ot )f<m+( —t)b>g<tb—|—(1—t)a at 13)
v—1p7.0k u ab
< [f(a) + f(b) / FE ] (wt )g<tb+(1—t)a>dt’
. _ th+(1-ta . . . 2ab
Setting x D and by using harmonically symmetry of f with respect to =7 in

Equation (13), after simplification, we have

7.0k 1 .0k 1
(ibansf528) () (5201 754) (5)
wv,lw a uv,l', g b (14)

<+ 560 (€% gon) (3).

Using Lemma 2 in Equation (14), we have

(o geteon) () + (- seo) (5) (15)
<Lt (st gon) (3)+ (2, psen) (3]

a

By joining Equations (11) and (15), we get Equation (6). [

Remark 1. In Theorem 3,

(i) ifweput w = 0 along with g(x) = 1 and v = 1, then we get [3] [Theorem 2.4].

(ii)  if we put w = 0 along with g(x) = 1, then we get [5] [Theorem 4].
(iii)  if we put w = 0 along with v = 1, then we get [1] [Theorem §].
Lemma 3. Let f : [ C (0,00) — R be a differentiable function on the interior of I and f' € L[a, b] where
a,b € Iand a < b. In addition, let g : I C (0,00) — R be an integrable and harmonically symmetric function
about M’ . Then, the following equality holds for generalized fractional integrals:

(9350 g,y o () o0 3)
(;jfwﬁ(fg m(; )+e;f§‘w zom(3))

:[ ( (1) Egsf( (}Z—s)”)@oh)(s)ds)(foh)’(t)dt

15 (./f (-1) Et (e (s-2)") (goh)(s)ds) (foh)’(t)dt] ,

where h(t) = 1 fort € [}, 1].
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Proof. To prove this lemma, we have

¢ (1 B S> v—-1 E;fif <w <c11 _ S)”) (goh)(s)ds> (f o ) (t)dt (16)

Similarly, )
A (//17 (- 3) E (e (- 3)) <goh><s>ds> (Fo ) (yar
"(/f (s-3) B (e(s-3)) <goh><s>ds> (foh)(t)f
+/; (-5) 1533?(60 (1)) gemirema |
([ (3) s (w(s-3) ) omern) s
s Uson (3)
This implies

f%% <ff; (S - %)H En (w (S - %)y) (goh)(s)ds> (f o h)!(t)dt
= —fB) | (gom) (§) +e™* | (fgom) (}).

wvlw,s wvlw,s

(17)

Upon subtracting Equation (17) from Equation (16) and, using Lemma 2, we get the result. O
Remark 2. In Lemma 3, if we take g(x) = 1 with w = 0, then it gives [5] (Lemma 3).

Theorem 4. Let f : I C (0,00) — R be a differentiable function on the interior of I and f' € Lla, b] where
a,b € Land a < b. If | f'| is a harmonically convex function on [a,b], g : [a,b] C (0,00) — R is a continuous
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and harmonically symmetric function with respect to %, then the following inequality for generalized fractional

integrals holds

f@)+f®) [ vok 1\ | ok 1

(13 ek o) () e ) gon (G
1ok c1Ok 1
- (e g (G) et <fgoh>(b))\
o a v+1
< LeleB0 0 @wlf @+ awire),
2(a+b)~2

where C1(v) = L3R (2, v +3;1 2 D - orbe v+ Ly +31 - §) + 2SR (2, +
1-v+3,g+g) and Cy(v) = mzF1(22u+31 8y LR+ 2v+ 31— 8) +
4((”;fl 2F2v+1Lv+2; b+a) — 7(V(+”;)r(bv)+2)2131(1/,1/+1;1/+3, Z+Z) with 0 < v < 1, h(t) = 1 for
allt € [},1].

Proof. By Lemma 3, we have
(252 (45 om () 2 o0 (1)
_ <e%5,k, ,f(fgo}ll) (%) +e;ﬁ,’;"w’}‘ fgoh )
(=) et (w (2-9)' )(goh)<s>ds)

(W =) B (@ (= 1)) omeas) | ony ol

(18)

Since g is harmonically symmetric with respect to %, therefore, g(%) =g ( t) for all
b

te [%, 11, and we have

+ :
v—1
=| (g =) B (0 (+=1)) teomieras)|
1,1 4
. fta g |(S_b)v 1EZ§5(( (s—%)”)g(sﬂds, te[%,%] (19)
S Sl DR @ = g()lds, te (5 1.
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Using Equation (19) in (18), we have

(52 (5o () -y eon (1)
<7M 1+(f80h)( )-l— Zéécw fgoh (;))

v lw,
(- 1) B (w (s 1)") gomie ds) (£ o ) (1)
ds> I(F o h)! (£)|dt.

(20)

) e 1) o

Using |gllc = sup |g(t)| and absolute convergence of Mittag—Leffer function, the
te(a,b
above inequality becomes

(PO LE) (e o (5) +es, o (3)) @
(e gom (3 )+ ot Ugon (3))
<l g oS [/ (/f”‘t (- ;)H ds> ((F o) (1)

b

Setting t = W in Equation (21), we have

(L) (emst | (gon) (3) +erth,, (5o ()

yvlwb

(3 G (1) 1 05 <z>)

IglloS(b—a)"** —u) ' ab
< v(ab)v-1 fo (ub+ (1—u) 2’f (ub+(1—u) ‘du

o () ]

Since |f’| is harmonically convex on [, ], it can be written as:

(22)

, ab
f <(ub+ (1—u)a

o )| sur@i+a-wirol o)
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Using Equation (23) in Equation (22), we have

(7 (g 5o (5) + s 6om )

- (e oo (G) et Ggon()

wvlw,l

v+1 % —u)V —yv
<le ”oo(ab()v 1 ! [/0 (u(ljJr(l)—u;la)z (ulf' (@) + 1 = u)lf'(b)]) du

* /11 (:lbv ¥ ((11 5));)2 (ulf'(@)] + (1 = w)[f'(B)]) du} :

Y2

which is

\(f ) (e”j‘”‘ Le(gom (1) w1 (soh) (%,))

0,k 6,k
—(ezv,wlegom( ) ey tson (1))
et 24
< lIgllcoS(b—a (1—u)V—u? d u’—(1—u)¥ d / (24)
S S fo uh+(1 nap ”+f1 (b 1 war i | | f'(a)]
(5 <—)< e+ [} 5= (0w 170)].
One can have, by using Lemma 1,
) 1w —(1-u)
fo Tm+ 1 u)a)* d”+f1 (?b+(§ wa)? . -
(1—u)"—u" 1—u)” 1 w—(1-u)Y
fO ub+ 1 u)a) fl (ub+(1 u)a)2 udu + f% (ub+(1—u)a)? udu
v d u’—(1—u)? d 1 w—(1—-u)¥ d (25)
fO ub+ 1Vu)ul)2u u+ f% (ub+(1 (11[)“))21’[ U+ f% (Ltb+(l—lt)u)2u u
uV— u
fO ub+1 u)a)zudu—'_zf1 (ub+(1— u)a)zudu'
On simplification, we get
1
2 (1—u)V—u¥ —u)’
/o Wbt (1 —wa2 ™ T, b+ l—u )2”d”
b 2 b2 a
a+b)2 b—
(Vil)(v)+2)2Fl(2 v+1; U+3b+a) C1< )
Similarly,
1
2 (1—u)¥— (1—u)
/0 (ub+(1—u) 5 (1 —u)du + ; b+ 1—u )z(l—u)du
b2 -
4(a+b)72 b—a 2(a+b)2 ) b—a\
W21—"1(2 v+1v+2; b+a> (1/+1)(1/+2)2F1 1/,1/+1,v+3,m = Cy(v).

Using Equations (26) and (27) in Equation (24), we get the result. O

Remark 3. In Theorem 4,

(i) if we put w = 0, then we get [2] (Theorem 6).
(ii)  if we take v = 1 along with w = 0, then we get [2] (Corollary 1(1)).
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(iii)  if we take g(x) = 1 along with w = 0, then we get [2] (Corollary 1(2)).
(iv)  ifwetakev =1, g(x) = 1along with w = 0, then we get [2] (Corollary 1(3)).

Theorem 5. Let f : I C (0,00) — R be a differentiable function on the interior of I and f' € Lla, b] where
a,b € landa < b. If|f'|9, q > 1is a harmonically convex function on [a,b], and g : [a,b] C (0,00) — R be
a continuous and harmonically symmetric function about zj"rlz], then the following inequality for generalized
fractional integrals holds

(F57) (s (5) ity 60 ()
- ( SRLE h)( )+egfff,w,31(fgoh) (i))‘

v+1 1 1
L s '°°<a b()v —%) [«:; ") (CWIF @]+ ) B)7)7

1

+(C6_%(1/) (Cr(w)|f'(a)]7 + CS(VW/(b)'qﬂ '

where C3(v) = % F (2 v+1v+3; b+a) Cy(v) = WZH (2'1/—1—1 +3 ﬂ) Cs(v) =
Co(v) — Calv), Co(v) = Lx2Ru (@ Lv +1:(1 - ) — EaFi (2 + Ly +2;(1— ) + G(v), Colv) =

%2F1(2;1}V+2}(1—5))—V_HzFl(Z v+ Lv+2;(1—4)) + Cs(v), Cs(v) = Co(v) — Cr(v) with 0 <
v<1,h(t)=1forallt € [},3].

Proof. By inequality Equation (22) of Theorem 4, we have

‘(f(”)ﬁf(b)) ( Ok e(go) (B) wel L (goh) (},))

wv,lw, g

- (e e (a)+e“k zon (1))

wvlLw,p H i, g (28)

v+1 1

lIgllooS(b—a) 7 _(1-u)'— b
= £ v(ab)V ‘11 [foz (ub+(1—u) u)2 ‘f/ ( uh+(a 7u)a)> |du
u’—(1— u
+f1 fl((ubJrl ua)‘du]

ub-&-(l u)a
Using power means, inequality Equation (28) becomes

‘(f(a);f(b)) ( Zilk% (goh)( )—i—ez:i:iw,%i(goh) (;))
(e cUseom () et Gsom (1))

yvlw

< llleS(b—a)*! u !
> Uiv [([0 uh+1u)a)du)

1

(1—u)"—u? b q 1

(fo (ub+(1— u)a)z f ((ub-l—a u)a)? )‘ du)

1 w—(1-u) 1_5
+ (U] wrraen) 1

X (fll (ubJr(ll ;)V f,( ub+( qb u)a)? )‘qdu)

2

(29)

=
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By using the harmonically convexity of |f'|7 in Equation (29), we have

fa)+f(b) 7,0,k 1ok 1
() (2 oo (2) gty o (1)
76k 'ycSk l
(yvlw1+(fg0h>( )+ wvlw,d ngh b))‘
1—
IglleoS (b—a)"*! (1-u 7
< = (ab)vul [(fo ub+Ll u)a)? du)

(fo uh;li;u( u|f'(a )|‘7+(1—u)|f’(b)|‘7))
W (lewy 5 \1-}
+ (] Gt

< (] el @l + =l 6) |

(30)

.

That is,

(252 (2 o0 () 0 3)
(4 etsom (3) +epst, eon ()
custeston ([ i)

X(./ozufgﬂu) u;:) udu|f'(a '”/ ub+?)v))(1_u)d”f()|q)>
)

! —(1—u)" 7/ u’ — (1 —u)” ,
" </% (ub+ (1 —u)a)? du) (fé (ub+ (1 — u)a)? udulf'(a)|?

(81)

1
q

(32)

*/; T ((11__ 5)):)2 (1- u)dulf’(b)lq)> ] .

Now, we evaluate the integrals of Equation (31) by using Lemma 1

1

2 (1—u)’ —u i (1—2u)" 1 1 (1—u)"
/0 (ub+ (1 - ”)ﬂ)2du = /0 (ub+ (1— u)a)zdu T2 / 41— %)a)zd”‘ (33)

Substituting # = 1 — w in Equation (33), we have

/o% (u(lj;é)_u;l:)zdu <2(a+b)? /ol w’ <1 —w(b_a)>_2dw
at+bh)=

b—
=2 V1 2F1<21/+11/—|—2b )Cg(l/)

Similarly,

2 (1—14) —uv % (1—21/!)“ _1 1 u(l
/0 (ub+ (1 —u)a)? = /0 (ub+ (1 —u)a)? udit = 1/0 (% 41— )a)zdu' (34)
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Substituting u = 1 — w in Equation (34), we have

(A%éélzilikum“5“+”>zénl‘wﬁw<1‘““?l9>4dw

_ @b L aba)
=g (Br Sy ) = Gl
2 (1—u) —u'(1—u)
/0 (ub+ (1—u)a)? (1 —u)du < G3(v) — Cu(v) = Cs(v). (35)
(1-u)’ 4 - (1—u)'—
fl 14174»17; fO Hd +f0 ﬁu;l)du (36)

< V+12F1 (ZLv+2,(1-9) - V+12Fl (2v+Lv+2,(1—4%)) +C(v) = Ce(v).

Tow —(1—u) ot w =1 —u) (1—u)’ —u’
/l (ub+(1—u)a)2udu_/o (ub+ (1 —u)a)? udu—l—/ (ub+ (1 —u) )zudu

2
b72
V42

a
5

IN

b72
o (210 +3(1-3)) - St (2v+1v+30- %)) +Cu(v) = Cr(v)

v+1)(v+2)

and

/11 (:‘;;((11_—5)):)2 (1—u)du < Cg(v) — Cy(v) = Cg(v). 37)

Using Equation (31), we get the result. [

Remark 4. The following remarks can be obtained by giving specific values to parameters in Theorem 5:

(i) Ifwe take w = 0, then we get [2] (Theorem 7).
(ii)  Ifwe take v = 1 along with w = 0, then we get [2] (Corollary 2(1)).
(iii)  If we take g(x) = 1 along with w = 0, then we get [2] (Corollary 2(2)).
(iv)  Ifwetakev =1, g(x) = 1 along with w = 0, then we get [2] (Corollary 2(3)).

Theorem 6. Let f : I C (0,00) — R be a differentiable function on the interior of I such that f' € Lla, b],
where a,b € Iand a < b. If |f'|7, ¢ > 1 is a harmonically convex function on [a,b], and g : [a,b] C
(0,00) — R be a continuous and harmonically symmetric function about 2’”’ . Then, the following inequality
for generalized fractional integrals holds

(F9550) (e, prtsom (3) ety om0 (5))
= (e som (3) e, tzen (3))

- )Vt 1 ani ! q % 1 "(a)9 / q %
sl WE)V —0) <C9p<v)(|f< ) 4;33!f(b)|) v chw) (3|f( ) +17 ) ) )

-2
where Cy(v) = 2,gﬁ*@il)21—"1(2;9,1/p +Lvp+2; Z+Z) and Cyo(v) = (VpH)zH(ZPI Lvp+23(1— 7))

with0 <v < 1,h(t) = Lforallt € [%,%]andg-kézl
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Proof. By inequality Equation (22) of Theorem 4, we have

(252 (5o () -y on (1)
S GARr T h>( Ve | (rgon (3 )

wvlw,} ‘uvlai

ngmsza aV“ (1—u)'—u¥ | g ab
= fO (ub+(1—u)a)? ‘f (ub+(1—u)a) |du

+f§ (ub+ (11 ;)1 2| f! ((ub—i—( ) |du}

By using Holder inequality and harmonically convexity of |f'|7, Equation (38) follows:

() (2 e (3) + iy o0 (5)
(g teen (§) + iy Usen (5))

<lslestos 0! [ ( [ (ES ;;))jpduf’

x ( [Falr@n+a- u>|f'<b>|q>du> %

= _j));;:,, du); ( /;(uf’(a)lq IO 1 |

2

After simplification, we have

(570 (i om (3) + iy on (3))
_ ( Zifwb (fgoh)< )+ mf (fgon) (2))‘
< lgleS—a™ { z (1= u)¥ — u¥)? du)%
ab . ub+ 1—u)a)2P
(!f’( |q+3|f’ ) |
+ (/; ((ub+(11__5) )2de> (f’ a)|9 4;3|f’ )|q)q] |

We evaluate the integrals by using Lemma 1

P (1 —u)Y —u)? o (1—2u)" N
/0 (ub+ (1 — u)a)zf”du = /0 (ub+ (1 - u)a)zl"du B E/o (4 4 (1— ﬂ)a)zpdu'

Putting u = 1 — w in Equation (40), we have

e — b —2p h— —2p
I it < 3 w7 (%) (1-w(t2)) "aw
= z-giﬁ%zﬁ (ZP, vp+Lvp+2; b+Z) = Co(v).

14 of 16

(38)

(39)

(40)

(41)
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Similarly,

1wV — (1—u) (2u —1)vP
d 42
/; (ub+(1—u 2%7 “JL (ub+ (1 —u)a)? ! “2)

and putting # = 1 — w on the right-hand side of inequality Equation (42), we have

fll =0-w ) gy < fo U2 dw

7 (ub+(1—u)a)?? (1-w)b+wa)??

(1—w)v?
= 3 fo néa_,'_ 1 W)b)Zpdw (43)

= 2(1/p+1)2F1(2p’ Lvp+2; 2(1 ) = Cio(v).
Using Equations (41) and (43) in Equation (39), we get the result. [

Remark 5. On giving particular values to parameter in Theorem 6, we have the following results:

(i)  Ifweput w =0, then we get [2] (Theorem 8).
(ii)  Ifweputv =1 along with w = 0, then we get [2] (Corollary 3(1)).
(iii)  If we put g(t) = 1 along with w = 0, then we get [2] (Corollary 3(2)).
(iv)  Ifweputv =1, g(t) = 1along with w = 0, then we get [2] (Corollary 3(3)).

3. Conclusions

We have obtained a generalized Fejér-Hadamard inequality for harmonically convex functions
via a generalized fractional integral operator. This inequality includes several inclusions—for
example, Fejér—Hadamard and Hermite-Hadamarad inequalities for harmonically convex functions
via Riemann-Liouville fractional integrals. Taking different specific values of parameters in the
generalized Mittag—Leffler function, one can obtain results for some known fractional integral
operators—for example, for fractional integral operators defined in [8,9]. In addition, we have
established some bounds of the difference of the generalized Fejér-Hadamard inequality, in particular
several bounds for particular values of parameters involved in the generalized Mittag-Leffler function.
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