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Abstract: In this paper, we study submanifolds in a Euclidean space with a generalized 1-type Gauss
map. The Gauss map, G, of a submanifold in the n-dimensional Euclidean space, En, is said to be
of generalized 1-type if, for the Laplace operator, ∆, on the submanifold, it satisfies ∆G = f G + gC,
where C is a constant vector and f and g are some functions. The notion of a generalized 1-type Gauss
map is a generalization of both a 1-type Gauss map and a pointwise 1-type Gauss map. With the
new definition, first of all, we classify conical surfaces with a generalized 1-type Gauss map in E3.
Second, we show that the Gauss map of any cylindrical surface in E3 is of the generalized 1-type.
Third, we prove that there are no tangent developable surfaces with generalized 1-type Gauss maps
in E3, except planes. Finally, we show that cylindrical hypersurfaces in En+2 always have generalized
1-type Gauss maps.
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1. Introduction

The notion of finite type submanifolds in a Euclidean space or a pseudo-Euclidean space was
introduced by Chen in the 1980s [1]. He also extended this notion to a general differential map, namely,
the Gauss map, on the submanifolds. The notions of finite type immersion and finite type Gauss map
are useful tools for investigating and characterizing many important submanifolds [1–12]. Moreover,
Chen et al. dealed with the finite type Gauss map as an immersion and with its relation to the topology
of some submanifolds [13,14].

The simplest type of finite type Gauss map is the 1-type. A submanifold, M, of a Euclidean space
or a pseudo-Euclidean space has a 1-type Gauss map if the Gauss map, G, of M satisfies

∆G = λ(G + C) (1)

for some λ ∈ R and has a constant vector, C, where ∆ denotes the Laplace operator defined on M.
Planes, circular cylinders and spheres in E3 are typical examples of surfaces with 1-type Gauss maps.

As a generalization of a 1-type Gauss map, the first and third authors introduced the notion
of a pointwise 1-type Gauss map of submanifolds in reference [15]. A submanifold is said to have
a pointwise 1-type Gauss map if the Laplacian of its Gauss map, G, takes the form

∆G = f (G + C) (2)

for a non-zero smooth function, f , and a constant vector, C. More precisely, a pointwise 1-type Gauss
map is said to be of the first kind if C = 0 in (2); otherwise, it is said to be of the second kind. A helicoid,
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a catenoid and a right cone in E3 are typical examples of surfaces with pointwise 1-type Gauss maps.
Many results of submanifolds with pointwise 1-type Gauss maps in ambient spaces were obtained
in references [6,16–27]. On the other hand, it is well-known that a circular cylinder in E3 has a usual
1-type Gauss map. However, we consider the following cylindrical surface parameterized by

x(s, t) =
( s

2
cos(ln s) +

s
2

sin(ln s),− s
2

cos(ln s) +
s
2

sin(ln s), t
)

.

Then, the Gauss map, G, of the surface is given by

G = (− sin(ln s), cos(ln s), 0).

We can easily show that the Gauss map, G, satisfies

∆G =
1
s2 (1 + cot(ln s)) G− 1

s2 csc(ln s)(0, 1, 0),

which yields a Gauss map, G, that is neither of usual 1-type, nor of pointwise 1-type.

In this reason, we have the following definition:

Definition 1. A submanifold, M, of a Euclidean space is said to have a generalized 1-type Gauss map if the
Gauss map, G, on M satisfies the equation

∆G = f G + gC (3)

for some smooth functions ( f , g) and has a constant vector, C.

If both f and g are constant in (3), then M has a 1-type Gauss map. If f = g in (3), then M has
a pointwise 1-type Gauss map. Hence, the notion of a generalized 1-type Gauss map is a generalization
of both a 1-type Gauss map and a pointwise 1-type Gauss map.

In [22], Dursun studied flat surfaces in E3 with a pointwise 1-type Gauss map and proved the
following proposition.

Proposition 1. Let M be a flat surface in E3. Then, M has a pointwise 1-type Gauss map of the second kind if
and only if M is an open part of one of the following surfaces:

(1) A plane in E3,
(2) A right circular cone in E3,
(3) A cylinder, up to a rigid motion, parameterized by

x(s, t) = γ(s) + tβ,

where γ = γ(s) is a unit speed planar base curve with curvature k = k(s) satisfying the ordinary
differential equation

(
dk
ds

)2 = k4(s){ak2(s) + 2bk(s)− 1}

for some real numbers, a and b( 6= 0), and the director vector β = (0, 0, 1).

In this paper, we study developable surfaces in E3: cylindrical surfaces, conical surfaces
and tangent developable surfaces. In Section 3, we completely classify developable surfaces with
generalized a 1-type Gauss map and give some examples. In the last section, we prove that cylindrical
hypersurfaces in En+2 always have generalized 1-type Gauss maps.

Throughout this paper, we assume that all objects are smooth and all surfaces are connected
unless mentioned.
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2. Preliminaries

Let x : M −→ Em be an isometric immersion from an n-dimensional Riemannian manifold, M,
into Em. Denote the Levi–Civita connections of M and Em by ∇ and ∇̃, respectively. Let X and Y be
vector fields tangent to M, and let ξ be a unit normal vector field of M. Then, the Gauss and Weingarten
formulas are given by

∇̃XY = ∇XY + h(X, Y), (4)

∇̃Xξ = −Aξ X + DXξ, (5)

respectively. Here, h is the second fundamental form; D is the normal connection defined on the
normal bundle; and Aξ is the shape operator (or the Weingarten operator) in the direction of ξ on M.
Note that the second fundamental form, h, and the shape operator, Aξ , are related by

〈h(X, Y), ξ〉 = 〈Aξ X, Y〉. (6)

The mean curvature vector field,
−→
H , is defined by

−→
H =

1
n

trh, (7)

where trh is the trace of h. The mean curvature, H, of M is given by H =

√
〈−→H ,
−→
H 〉.

Moreover, the Laplace operator, ∆, acting on a scalar valued function, φ, is given by

∆φ = −
n

∑
i=1

(∇̃ei∇̃ei φ− ∇̃∇ei ei φ), (8)

where {e1, ..., en} is an orthonormal local tangent frame on M. Or, locally, it is expressed as

∆φ = − 1
√

g

n

∑
i,j=1

∂

∂xi
(
√

ggij ∂φ

∂xj
), (9)

where (gij) and g denote the inverse matrix and the determinant of the matrix (gij), respectively,
with the coefficients gij of the Riemannian metric 〈·, ·〉 on M induced from that of Em.

3. Surfaces with Generalized 1-Type Gauss Maps

In this section, we completely classify developable surfaces inE3 with a generalized 1-type Gauss map.
A regular surface in E3 whose Gaussian curvature vanishes is called a developable surface, whose

surface is a cylindrical surface, a conical surface or a tangent developable surface [28].
For a hypersurface in a Euclidean space, the next lemma plays an important role in our paper [21].

Lemma 1. Let M be a hypersurface of En+2. Then, the Laplacian of the Gauss map, G, is given by

∆G = ||AG||2G + (n + 1)∇H, (10)

where ∇H is the gradient of the mean curvature, H; AG is the shape operator of M; and ||AG||2 = tr(A2
G).

Suppose that a developable surface in E3 has a generalized 1-type Gauss map, that is, the Gauss
map G of the surface satisfies the condition

∆G = f G + gC (11)
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for some smooth functions, f , g, and a constant vector, C. It follows from (10) that M has generalized
1-type Gauss map with C = 0, that is, M has a pointwise 1-type Gauss map of the first kind if and
only if M has a constant mean curvature, H. If f and g are equal to each other with C 6= 0, then M has
a pointwise 1-type Gauss map of the second kind and the results occur in [22]. Therefore, sometimes,
in the proof of this paper, we assume that f 6= g has non-zero functions and C 6= 0.

By combining (10) and (11) and taking the inner product with the orthonormal local frame e1, e2

and G, respectively, we have
2e1 (H) = gC1,

2e2 (H) = gC2,

||AG||2 = f + gC3,

(12)

where C = C1e1 + C2e2 + C3G with C1 = 〈C, e1〉, C2 = 〈C, e2〉 and C3 = 〈C, G〉.

3.1. Conical Surfaces

A conical surface, M, in E3 can be parametrized by

x(s, t) = α0 + tβ(s), s ∈ I, t > 0,

such that 〈β(s), β(s)〉 = 〈β′(s), β′(s)〉 = 1, where α0 is a constant vector. We take the orthonormal
tangent frame, {e1, e2}, on M such that e1 = 1

t
∂
∂s and e2 = ∂

∂t . The Gauss map of M is given by
G = e1 × e2. Through a direct calculation, we have

∇̃e1 e1 = −1
t

e2 −
κg(s)

t
G, ∇̃e1 e2 =

1
t

e1,

∇̃e2 e1 = ∇̃e2 e2 = 0, ∇̃e1 G =
κg

t
e1, ∇̃e2 G = 0,

(13)

where κg(s) = 〈β(s), β′(s) × β′′(s)〉 denotes the geodesic curvature of β in the unit sphere, S2(1).
We may assume that κg(s) 6= 0, s ∈ I; otherwise, the conical surface is an open part of a plane.
Furthermore, by reversing the orientation of the spherical curve, β, we may assume that the geodesic
curvature, κg, of β is positive. It follows from (13) that the mean curvature, H, and the trace, ||AG||2,
of the square of the shape operator are given by

H = −
κg(s)

2t
, ||AG||2 =

κ2
g(s)
t2 . (14)

Suppose that M has a generalized 1-type Gauss map, that is, the Gauss map, G, of the conical
surface satisfies (11). Then, since C1 = 〈C, β′〉, C2 = 〈C, β〉 and C3 = 〈C, β′ × β〉, the components
Ci(i = 1, 2, 3) of the constant vector, C, are functions of only s. Let us differentiate C1, C2 and C3 with
respect to e1. Then, from (13), we have the following:

C′1(s) + C2(s) + κg(s)C3(s) = 0, (15)

C′2(s)− C1(s) = 0, (16)

C′3(s)− κg(s)C1(s) = 0. (17)

With the help of (14), (12) can be written as

− 1
t2 κ′g(s) = gC1, (18)

κg(s)
t2 = gC2, (19)
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κ2
g(s)
t2 = f + gC3. (20)

By combining (18) and (19) and using (16), we have

g
(
κg(s)C2

)′
= 0.

Since g 6= 0, κg(s)C2 is a non-zero constant, say c, we obtain

C2 =
c

κg(s)
. (21)

Together with (19), this implies

g =
κ2

g(s)
ct2 , (22)

and hence, from (18), we get

C1 = −
cκ′g(s)
κ2

g(s)
. (23)

Thus, it follows from (15) that we have

C3 =
c
(

κg(s)κ′′g (s)− 2κ′g(s)
2 − κ2

g(s)
)

κ4
g(s)

. (24)

Note that the function f is determined by (20), (22) and (24).
Now, we have ϕ(s) = 1/κg(s) > 0. Then, (21) and (23) become, respectively,

C2 = cϕ (25)

and
C1 = cϕ′. (26)

Furthermore, it follows from (17) and (24) that

C3 = −c(ϕϕ′′ + ϕ2) (27)

and

C′3 = c
ϕ′

ϕ
. (28)

Thus, from (27) and (28) we see that the function ϕ must satisfy the following nonlinear differential
equation of order 3:

ϕ2 ϕ′′′ + ϕϕ′ϕ′′ + 2ϕ2 ϕ′ + ϕ′ = 0. (29)

In order to solve (29), first, we put p = dϕ/ds. Then the differential equation (29) becomes

p
(

ϕ2 p
d2 p
dϕ2 + ϕ2(

dp
dϕ

)2 + ϕp
dp
dϕ

+ 2ϕ2 + 1
)
= 0,

which can be rewritten as

ϕp
(

d
dϕ

(ϕp
dp
dϕ

) + 2ϕ +
1
ϕ

)
= 0. (30)

Since ϕ > 0, we divide into two cases, as follows.

Case 1. p = dϕ/ds = 0. The geodesic curvature, κg, is a nonzero constant, that is, the spherical
curve, β(s), is a small circle. Therefore, M is an open part of a right circular cone, and M has a pointwise
1-type Gauss map.
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Case 2. p = dϕ/ds 6= 0.

From (30), we obtain
d

dϕ
(ϕp

dp
dϕ

) + 2ϕ +
1
ϕ
= 0, (31)

which yields

ϕp
dp
dϕ

+ ϕ2 + ln ϕ =
a
2

(32)

for some constant, a. By integrating (32), we have

p2 = a ln ϕ + b− ϕ2 − (ln ϕ)2 (33)

for some constant, b. Recalling p = dϕ/ds, from (33), one gets

dϕ

ds
= ±

(
a ln ϕ + b− ϕ2 − (ln ϕ)2

) 1
2 , (34)

which is equivalent to
dϕ

(a ln ϕ + b− ϕ2 − (ln ϕ)2)
1
2
= ±ds. (35)

Hence, for an indefinite integral, F(t), of the function ψ(t) =
(
a ln t + b− t2− (ln t)2)−1/2,

we see that
F(ϕ) = ±s, (36)

where the signature is determined according to whether the derivative of ϕ is positive or not. Thus we get

κg(s) =
1

ϕ(s)
=

1
F−1(±s)

. (37)

Furthermore, it follows from (25)–(27) that C can be expressed as

C = c
(

ϕ′e1 + ϕe2 − (ϕϕ′′ + ϕ2)G
)

, (38)

or equivalently,

C = c

(
−

κ′g
κ2

g
e1 +

1
κg

e2 +
κg(s)κ′′g (s)− 2κ′g(s)

2 − κ2
g(s)

κ4
g(s)

G

)
. (39)

Conversely, for some constants, a and b, such that the function

ψ(t) =
(

a ln t + b− t2 − (ln t)2
)−1/2

(40)

is well-defined on some interval, J ⊂ (0, ∞), we take an indefinite integral, F(t), of the function ψ(t).
If we denote the image of the function, F, by I, then F : J → I is a strictly increasing function with
F′(t) = ψ(t). Let us consider the function ϕ = ϕ±, defined by ϕ±(s) = F−1(±s), which maps the
interval, ±I, onto J, respectively. Here −I means the interval {−s|s ∈ I}. Then, the function ϕ = ϕ±
is positive for the interval I± (say, I) and satisfies F(ϕ) = ±s.

For any unit speed spherical curve β(s) in the unit sphere S2(1) with the geodesic curvature
κg(s) = 1/ϕ(s), we consider a surface M in E3 to be parametrized by

x(s, t) = α0 + tβ(s), s ∈ I, t > 0, (41)
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where α0 is a constant vector. Given any non-zero constant, c, we put

f (s, t) =
1

t2 ϕ2(s)

(
ϕ(s)ϕ′′(s) + ϕ2(s) + 1

)
, g(s, t) =

1
ct2 ϕ2(s)

. (42)

For the orthonormal tangent frame, {e1, e2}, on M, such that e1 = 1
t

∂
∂s and e2 = ∂

∂t and the Gauss
map of M given by G = e1 × e2, we put

C = c{ϕ′(s)e1 + ϕ(s)e2 −
(

ϕ(s)ϕ′′(s) + ϕ2(s)
)

G}. (43)

Note that it follows from the definition of ϕ that the function ϕ satisfies (29). Hence, by using (13),
it is straightforward to show that

∇̃e1 C = ∇̃e2 C = 0, (44)

which implies that C is a constant vector. Furthermore, similar to the first part of this subsection,
the Gauss map, G, of the conical surface, M, satisfies

∆G = f G + gC,

where f , g and C are given in (42) and (43), respectively. This shows that M has a generalized 1-type
Gauss map.

Thus, we have the following theorem 1:

Theorem 1. A conical surface in E3 has a generalized 1-type Gauss map if and only if it is an open part of one
of the following surfaces:

(1) A plane,
(2) A right circular cone,
(3) A conical surface parameterized by

x(s, t) = α0 + tβ(s),

where α0 is a constant vector and β(s) is a unit speed spherical curve in the unit sphere S2(1)
with a positive geodesic curvature, κg, which for some indefinite integral F(t) of the function

ψ(t) =
(
a ln t + b− t2 − (ln t)2)−1/2 with a, b ∈ R, is given by

κg(s) =
1

F−1(±s)
.

3.2. Cylindrical Surfaces

In this subsection, we prove the following theorem:

Theorem 2. All cylindrical surfaces in E3 have a generalized 1-type Gauss map.

Proof. Let M be a cylindrical surface in E3 generated by a base curve, α(s), and a constant vector, β.
Then, M can be parametrized by

x(s, t) = α(s) + tβ,

such that 〈α′(s), α′(s)〉 = 1, 〈α′(s), β〉 = 0 and 〈β, β〉 = 1. Hence, the base curve, α(s), is a unit speed
plane curve. Let us denote the curvature function of α(s) by κ(s).
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Consider an orthonormal frame {e1, e2} on M such that e1 = ∂
∂t and e2 = ∂

∂s . Then, the Gauss
map, G, of M is given by G = e1 × e2. By direct calculation, we obtain

∇̃e1 e1 = ∇̃e1 e2 = ∇̃e2 e1 = 0, ∇̃e2 e2 = κ(s)G,

∇̃e1 G = 0, ∇̃e2 G = −κ(s)e2.
(45)

It follows from (45) that the mean curvature, H, and the trace ||AG||2 of the square of the shape
operator are given by

H =
κ(s)

2
, ||AG||2 = κ2(s), (46)

which are functions of only s.
First, suppose that M has a generalized 1-type Gauss map. Together with (46), the first equation

of (12) shows that C1 = 0. Hence, (12) can be rewritten as

κ2(s) = f + gC3,

κ′(s) = gC2.
(47)

Since C2 = 〈C, α′(s)〉 and C3 = 〈C, β× α′(s)〉, C2 and C3 are functions of only s. By differentiating
C2 and C3 with respect to e2, the component functions of C satisfy the following equations:

C′2(s)− κ(s)C3(s) = 0,

C′3(s) + κ(s)C2(s) = 0,
(48)

which yield C2
2(s) + C2

3(s) = c2 for some non-zero constant, c. We may put

C2(s) = c sin θ(s), C3(s) = c cos θ(s) (49)

with θ′(s) = κ(s). Therefore, the constant vector, C, becomes

C = c sin θ(s)e2 + c cos θ(s)G. (50)

By combining (47) and (49), one also gets

g =
κ′(s)

c sin θ(s)
, f = κ2(s)− κ′(s) cot θ(s). (51)

Conversely, for any cylindrical surface, we choose a curve, α(s), and a unit vector, β, such that
the cylindrical surface is parametrized by x(s, t) = α(s) + tβ with 〈α′(s), α′(s)〉 = 1, 〈α′(s), β〉 = 0.
Then, for a non-zero constant, c, and an indefinite integral, θ(s), of the curvature function, κ(s), of α,
we put

C = c sin θ(s)e2 + c cos θ(s)G, (52)

where e1 = ∂
∂t , e2 = ∂

∂s and G = e1 × e2. It follows from (45) that ∇̃e1 C = 0 and ∇̃e2 C = 0, which
shows that C is a constant vector. Furthermore, it is straightforward to show that the Gauss map, G,
of the cylindrical surface satisfies

∆G = f G + gC,

where f , g and C are given in (51) and (52), respectively. This shows that the cylindrical surface has
a generalized 1-type Gauss map.

Example 1. We consider the surface to be parameterized by

x(s, t) =
(
2 cos(

√
s) + 2

√
s sin(

√
s), 2 sin(

√
s)− 2

√
s cos(

√
s), t

)
.
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Then, the surface is cylindrical, generated by the plane curve with the curvature κ(s) = 1
2
√

s , and its Gauss map
G is given by

G =
(
sin(
√

s),− cos(
√

s), 0
)

.

From this, the Laplacian of G can be expressed as

∆G =

(
1

4s
√

s
cos(
√

s) +
1
4s

sin(
√

s),
1

4s
√

s
sin(
√

s)− 1
4s

cos(
√

s), 0
)

=
1
4s

(
1 +

cot(
√

s)√
s

)
G +

csc(
√

s)
4s
√

s
C,

where C = (0, 1, 0).

The plane curve and the cylindrical surface in Example 1 are shown in Figures 1 and 2, respectively.

Figure 1. The plane curve in Example 1.

Figure 2. The cylindrical surface in Example 1.

3.3. Tangent Developable Surfaces

In this subsection, we prove the following theorem:

Theorem 3. A tangent developable surface in E3 with a generalized 1-type Gauss map is an open part of a plane.

Proof. Let M be a tangent developable surface in E3. Then, M is locally parametrized by

x(s, t) = α(s) + tα′(s), s ∈ I, t 6= 0,
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where α(s) is a unit speed curve with non-zero curvature κ(s) in E3. Let us denote the unit tangent
vector, principal normal vector and binormal vector of α(s), by T, N and B, respectively. The natural
frames, {xs, xt} of x, are given by

xs = T + tκ(s)N, xt = α′(s) = T.

The parametrization x is regular whenever tκ(s) 6= 0. We take the orthonormal frame, {e1, e2},
on M such that

e1 =
∂

∂t
= T,

e2 =
1

tκ(s)

(
∂

∂s
− ∂

∂t

)
= N.

(53)

Then, the Gauss map, G, of M is given by G = e1× e2 = T×N = B. By direct calculation, we obtain

∇̃e1 e1 = ∇̃e1 e2 = 0, ∇̃e2 e1 =
1
t

e2,

∇̃e2 e2 = −1
t

e1 +
τ

tκ
G, ∇̃e1 G = 0, ∇̃e2 G =

τ

tκ
e2,

(54)

which yields

H =
τ

2tκ
, ||AG||2 =

( τ

tκ

)2
. (55)

Now, we suppose that the tangent developable surface, M, has a generalized 1-type Gauss map.
Since C1 = 〈C, T〉, C2 = 〈C, N〉 and C3 = 〈C, B〉, the components of C are functions of s only. Hence,
it follows from (54) that the components of C satisfy the following:

C′1 − κC2 = 0, (56)

C′2 + κC1 − τC3 = 0, (57)

C′3 + τC2 = 0. (58)

Due to (55), (12) can be rewritten as

− τ

t2κ
= gC1, (59)

1
t2κ

((τ

κ

)′
+

τ

tκ

)
= gC2, (60)

τ2

t2κ2 = f + gC3. (61)

By combining (59) and (14), one finds that

τC2 +

((τ

κ

)′
+

τ

tκ

)
C1 = 0, (62)

or equivalently, ((τ

κ

)′
C1 + τC2

)
tκ + τC1 = 0. (63)

Since the parameter t( 6= 0) is arbitrary, from (63), we have(τ

κ

)′
C1 + τC2 = 0,

τC1 = 0.
(64)
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Finally, we suppose that the torsion, τ(s), of the curve, α(s), does not vanish identically. Then,
since the set J = {s ∈ I|τ(s) 6= 0} is non-empty, (64) shows that C1 = 0 and C2 = 0. From this
and (57), we have C3 = 0. In the long run, one gets C = 0. It follows from (12) and (55) that the
mean curvature, H = τ(s)/ (2tκ(s)), is constant, which shows that τ must vanish identically. That is,
J = {s ∈ I|τ(s) 6= 0} is empty, which leads a contradiction. This yields that α(s) is a plane curve, and
hence, M is an open part of a plane. This completes the proof of Theorem 6.

Note that a plane is a kind of cylindrical surface and also a kind of circular right cone.
Thus, by summarizing all the results in this section, we established the following classification theorem
for developable surfaces with generalized 1-type Gauss maps:

Theorem 4. (Classification Theorem) A developable surface, M, in E3 has a generalized 1-type Gauss map if
and only if it is an open part of one of the following:

(1) A cylindrical surface,
(2) A circular right cone,
(3) A conical surface parameterized by

x(s, t) = α0 + tβ(s),

where α0 is a constant vector and β(s) is a unit speed spherical curve in the unit sphere,
S2(1), with a positive geodesic curvature, κg, which is, for some indefinite integral, F(t), of the

function ψ(t) =
(
a ln t + b− t2 − (ln t)2)−1/2 with a, b ∈ R, given by

κg(s) =
1

F−1(±s)
.

4. Cylindrical Hypersurfaces with Generalized 1-Type Gauss Maps

In this section, we study cylindrical hypersurfaces with generalized 1-type Gauss maps in En+2.
Suppose that a hypersurface, M, in En+2 has a generalized 1-type Gauss map, that is, the Gauss map,
G, of the hypersurface satisfies the condition

∆G = f G + gC (65)

for some non-zero smooth functions, f , g, and a non-zero constant vector, C. By combining (10) and
(65) and taking the scalar product with the orthonormal local frame, e1, e2, . . . , en+1 of M and the Gauss
map, G, respectively, we obtain

(n + 1)ei (H) = gCi, i = 1, 2, . . . , n + 1 (66)

and
||AG||2 = f + gCn+2, (67)

where, for i = 1, 2, . . . , n + 1, Ci = 〈C, ei〉 and Cn+2 = 〈C, G〉.
By extending Theorem 3.3, finally, we prove the following theorem:

Theorem 5. A cylindrical hypersurface, M, in En+2 has a generalized 1-type Gauss map.

Proof. Let M be a cylindrical hypersurface in the (n + 2)-dimensional Euclidean space, En+2. Then,
M can be parametrized by

x (s, t1, . . . , tn) = α(s) +
n

∑
i=1

tiβi
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such that 〈α′, α′〉 = 1, 〈α′, βi〉 = 0 and 〈βi, β j〉 = δij, i, j = 1, . . . , n. Then, the generator α is a plane
curve with the Frenet frame T, N and we have the orthonormal frame {e1, e2, . . . , en+1} on M, such that
ei =

∂
∂ti

, i = 1, . . . , n and en+1 = ∂
∂s = T. Hence, by rearranging βi, if necessary, we may assume that

the Gauss map, G, of M is given by G = e1 × · · · × en+1 = N. By direct calculation, we get

∇̃ei ej = ∇̃en+1 ej = ∇̃ei en+1 = 0, i, j = 1, . . . n,

∇̃ei G = 0, i = 1, . . . n, ∇̃en+1 en+1 = κG, ∇̃en+1 G = −κen+1,
(68)

where κ is the curvature function of the generator, α. (68) implies that

H =
κ

n + 1
, ||AG||2 = κ2, (69)

which are the functions of only s.
Now, suppose that M has a generalized 1-type Gauss map. That is, G satisfies (65). Then, C in

En+2 can be expressed as C = ∑n+1
j=1 Cjej + Cn+2G in the frame {e1, e2, . . . , en+1, G}. Together with (69),

(66) implies that Ci = 0 because ei(H) = 0, but g 6= 0 for i = 1, . . . , n. Hence, we have

C = Cn+1en+1 + Cn+2G = Cn+1T + Cn+2N. (70)

By differentiating (70) with respect to ei for i = 1, . . . , n, (68) shows that

ei(Cn+1) = ei(Cn+2) = 0, i = 1, . . . , n. (71)

Hence, Cn+1 and Cn+2 are functions of s only. By differentiating (70) with respect to en+1, (68)
also gives

en+1 (Cn+1)− κ(s)Cn+2 = 0,

en+1 (Cn+2) + κ(s)Cn+1 = 0
(72)

with C2
n+1(s) + C2

n+2(s) = d2 for some non-zero constant, d. Hence, we may put

Cn+1(s) = d sin θ(s), Cn+2(s) = d cos θ(s), (73)

where θ(s) is an indefinite integral of the curvature function κ(s). Therefore, the constant vector, C,
is given by

C = d sin θ(s)en+1 + d cos θ(s)G = d sin θ(s)T + d cos θ(s)N. (74)

Furthermore, it follows from (66), (67) and (69) that

f = κ2(s)− κ′(s) cot θ(s),

g =
κ′

d sin θ(s)
.

(75)

Conversely, for a cylindrical hypersurface, M, in En+2, we may choose a curve, α(s), and n unit
vectors β1, . . . , βn such that M is parametrized by

x (s, t1, . . . , tn) = α(s) +
n

∑
i=1

tiβi

such that 〈α′, α′〉 = 1, 〈α′, βi〉 = 0 and 〈βi, β j〉 = δij, i, j = 1, . . . , n. For a non-zero constant, d,
and an indefinite integral, θ(s), of the curvature function κ(s) of α, we put

C = d sin θ(s)en+1 + d cos θ(s)G, (76)
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where ei = ∂
∂ti

, en+1 = ∂
∂s and G = e1 × e2 × · · · × en+1 for i = 1, . . . , n. It follows from (68) that

∇̃e1 C = 0 and ∇̃e2 C = 0, and hence, C is a constant vector. Furthermore, it is straightforward to show
that the Gauss map of M satisfies

∆G = f G + gC,

where f , g and C are given in (75) and (76), respectively. This shows that the cylindrical hypersurface
has a generalized 1-type Gauss map.

5. Conclusions

To find the best possible estimate of the total mean curvature of a compact submanifold of
Euclidean space, Chen introduced the study of finite type submanifolds. Specifically, minimal
submanifolds are characterized in a natural way. In our example, a cylindrical surface has neither
a usual 1-type, nor a pointwise 1-type Gauss map. In this reason, we defined a new definiton,
the generalized 1-type Gauss map. After that, we characterized developable surfaces with a generalized
1-type Gauss map in E3.
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