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Abstract: This paper considers resource allocation among producers (agents) in the case where the
Principal knows nothing about their cost functions while the agents have Markovian awareness
about his/her strategies. We use a dynamic setup of the stochastic inverse Stackelberg game as the
model. We suggest an algorithm for solving this game based on Q-learning. The associated Bellman
equations contain functions of one variable for the Principal and also for the agents. The new results
are illustrated by numerical examples.
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1. Introduction

Stackelberg games date back to the monograph [1]. The original setup includes two players,
Leader (Principal) and Follower (Agent). The Leader makes the first move by choosing his/her
strategy and informing the Follower of it. After that, the Follower seeks for an optimal response by
maximizing his/her payoff function. There are Stackelberg games, in which the Leader has a constant
strategy, and inverse Stackelberg games, in which the Leader’s strategy is a function of the Follower’s
actions (feedback control mechanism). Stackelberg games with several Leaders and/or Followers
are considered later. Inverse Stackelberg games in the static and dynamic setups are discussed in the
surveys [2,3].

Inverse Stackelberg games provide a mathematical formalization for the incentive problem.
The Principal designs a feedback control mechanism stimulating the agents to choose actions that
are most beneficial for him/her. In this paper, we suggest a method for solving such problems in the
dynamic setup under incomplete information about the agents’ behavior.

Below the problem is stated so that the associated Bellman equations contain functions of one
variable for the Principal and also for the agents. In addition, the agents become independent players
as soon as they receive the information from the Principal. The latter chooses his/her behavior
based on the response of the players. The agents make their decisions by predicting the Principal’s
behavior. An elementary implementation of this principle is the Markov principle, i.e., at a time
t the Principal uses the agents’ response at the time (t − 1) to design his/her behavior. In turn,
the agents observe the behavioral history of the Principal in order to predict his/her choice at the time
(t + 1). The equilibrium calculation method for the Stackelberg game relies on online learning (more
specifically, the Q-learning procedure) and recursive statistical estimation. The Q-learning procedure
is mostlyused for solving the statistical dynamic programming problem, with the calculation of the
Q-function. As a rule, the Q-function depends on two variables, the phase and control variables; so,
the Q-function is defined on the Cartesian product of finite sets. The method has slow convergence,
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and the rate of convergence essentially depends on the number of elements in the definitional domain
of the arguments. Therefore, the Stackelberg game in one of the two setups considered below is
stated so that the resulting Q-function depends on a single argument. In the other setup, the slow
Q-learning procedure is replaced by a faster one-dimensional maximization algorithm for a concave
function of one variable. In both setups, the agents involve recursive statistics. Thus, in comparison
to the standard Q-learning procedure, the suggested algorithms are expected to guarantee a faster
convergence to the equilibrium of this game.

The main contribution of this paper is as follows:

1. We have developed fast converging algorithms to calculate the solution of the dynamic inverse
Stackelberg game without sufficient information about the agents.

2. The suggested algorithms can be considered as numerical methods for solving the corresponding
static inverse Stackelberg game without sufficient information about the payoff functions of
the agents.

3. This game-theoretic model has been applied for optimal resource allocation among producers in
the case of insufficient information about their cost functions.

The remainder of this paper is organized accordingly. In Section 2, we provide a survey of the
existing publications on this subject. In Section 3, we discuss the static incentive problem as an inverse
Stackelberg game and also describe its dynamic extension in two setups. In Section 4, we present the
results of calculations using numerical examples for both setups of the game. Finally, in Section 5,
we give some concluding remarks and outline for future research.

2. Related Work

Resource allocation mechanisms in the static setup are studied in contract theory [4] and also
in control of organizational systems [5]. Here, the main concern of the investigators is to design
strategy-proof mechanisms [6,7]. More specifically, by assumption, the Principal does not know the
exact characteristics of the agents and the latter can use this fact for strategic manipulation (information
distortion for their own benefit), see [8]. A possible way to eliminate manipulation was described in
the book [5]; the author suggested a strategy-proof direct resource allocation mechanism. Such an
approach relies on the hypothesis that the optimal control is obtained by solving the static inverse
Stackelberg game in which the Principal knows the goals of all agents. The paper [9] considered
the discrete-time incentive model with Markovian dynamics and discounted payoff function on the
infinite planning horizon. As demonstrated here, the approximate Stackelberg solution can be found by
solving an optimal control problem with the difference between the controller’s income and executor’s
cost as the optimality criterion.

Static and dynamic inverse Stackelberg games were surveyed in [2,3,10]. Also, note [11–15] among
the earlier publications. The paper [16] considered a game-theoretic setup of incentive problems.
Linear-quadratic inverse Stackelberg games were studied in [17,18]. Applications of these models
were described in [19–22]. The authors [23] provided a survey of hierarchical games with application
to marketing.

In particular importance, previous research suggested no common methods for solving inverse
Stackelberg games. Meanwhile, the paper [24] proved the theorem on the ε-optimal guaranteeing
strategy in the static inverse Stackelberg game, which reduces the maximin problem with bound
variables to nonlinear programming problems with independent variables; as a result, calculations
were considerably simplified. In [25,26], this approach was extended to dynamic inverse Stackelberg
games. The corresponding theorem actually reduces constrained maximin calculation over complex
functional spaces to the calculation of multiple maximins over finite-dimensional spaces.

The authors [27] analyzed a dynamic modification of the proportional resource allocation
mechanism. Their suggested approach to the game-theoretic modeling of resource allocation in
the hierarchical Principal-agent system possesses the following features.
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(1) Resource dynamics are explicitly described as the phase variable depending on the Principal’s
control. The control function can be non-differentiable; in this case, the dynamic equation is
interpreted in terms of the Lebesgue-Stieltjes integral.

(2) The Principal’s control has smooth variations, which is formalized using the Lipschitz property
of the control function. This assumption seems natural for the majority of real organizational and
economic systems.

(3) The Principal allocates resources among the agents proportionally to their actions,
which stimulates the latter to choose more intensive plans.

(4) This hypothesis is used to develop a genetic algorithm for calculating the Principal’s optimal
strategy with a non-uniform partition of the time interval.

Evolutionary modeling and genetic algorithms were described in the monographs [28,29].
The paper [30] presented a hybrid learning procedure for artificial neural networks. The authors [31]
proposed a genetic algorithm for solving the Germeier game with one Follower and the control function
that satisfies the Lipschitz condition. Genetic algorithms for solving Stackelberg games were also
considered in [32,33].

This paper is focused on the case in which the Principal has insufficient information about the goals
of all agents while the latter does not know the Principal’s strategy for the whole duration of the game,
merely its history (without loss of generality, the awareness structure will be considered Markovian).
The problem statement involves statistical estimation and reinforcement learning, including the
Q-learning [34,35]. Reinforcement learning was used for calculating Stackelberg equilibria in [36,37].
Particularly, as noted in [36], this algorithm has instability in the case of several Followers, especially
if the latter calculates the Nash equilibrium for solving their problems. In this paper, we suggest a
Stackelberg game-based model, for which there exists a stable algorithm.

3. Model

3.1. Static Setup and Dynamic Generalization

Consider a single Principal and M agents controlled by him/her. The static incentive model as an
inverse Stackelberg game has the form

ψ(x)−
M
∑

i=1
φi(x, γ)→ max

φi(x, γ)− fi(x)→ max, i = 1, . . . , M

Here ψ(x) denotes the Principal’s income, a concave increasing function such that ψ(0) = 0; fi(x)
is the cost of agent i, a convex increasing function such that fi(0) = 0; φi(x, γ) gives the incentive of
agent i, i.e., the compensation of his/her cost by the Principal; i = 1, . . . , M; finally, γ indicates the
Principal’s control strategy. Then the optimal incentive mechanism has the form [5]

φ∗i (x, γ) =

{
fi(x∗i , x−i) if xi = x∗i ,

0 otherwise (i = 1, . . . , M),

where x∗ ∈ Argmax
x

[
ψ(x)−

M
∑

i=1
fi(x)

]
.

However, this solution may be impossible to calculate directly due to insufficient information
about the cost functions fi(x) that is available to the Principal. So, we will suggest a computational
scheme based on solving a dynamic stochastic inverse Stackelberg game.

Assume the Principal stimulates the activity of all agents by allocating resources among them.
Their activity is described by a vector sequence xM(t) = (xi(t))

M
i=1, t = 0, 1, . . . At each time

t, the Principal chooses a control strategy γ(t), and each agent i obtains a corresponding part
φi(xi(t− 1), γ(t)), i = 1, . . . , M, of the resource. This resource allocation mechanism is selected
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because the Principal does not know the cost of all agents; while choosing a local control strategy
γ(t), he/she may rely just on the available history xM(0), . . . , xM(t− 1). This paper considers the
case of Markovian processes: at each time t, the available information about the preceding value
x(t− 1) is used only. The Principal cannot inform the agents about his/her control strategies for the
whole duration of the game and the agents cannot calculate these strategies. Therefore, the agents
(like the Principal) should be guided by the available information at the time t, i.e., by the sequence
γ(1), . . . , γ(t). Below we consider the two setups of the dynamic inverse Stackelberg game as a
resource allocation model.

3.2. Dynamic Setup 1

The first model consists in the following. The set of admissible influences on agents (the set of
all Principal’s scenarios) is finite. The agents suppose that γ(1), . . . , γ(t) is a segment of a Markov
sequence defined in the stochastic basis Bγ =

〈
Ωγ, [Fγ(t)]t≥0, Fγ(∞), Gγ

〉
, Fγ(t) = σ(γ(1), . . . , γ(t)),

i.e., the minimal sigma-subalgebra supplemented with the events of zero probability. The agents solve

their problems with the discounted payoff functions EGγ
y

∞
∑

t=1
βt[φi(xi(t− 1), γ(t))− fi(xi(t))], where

0 < β < 1 and EGγ
y
(.) denotes the conditional expectation operator with the probability measure

induced by the sequence γ given γ(0) = y.
Consider the problem of agent i:

EQγ
y

∞

∑
t=1

βt[φi(xi(t− 1), γ(t))− fi(xi(t))]→ max

This problem is solved by dynamic programming; the associated Bellman functions satisfy
the equations

Vi(x, y) = max
z

φi(x, y)− fi(z) + β

∞∫
−∞

Vi(z, u)qγ(du/y)

. (1)

In addition, xi(0) = x, γ(0) = y. The measure qγ(du/y) in the integrand expression is the
transition core of the Markov sequence γ. Write the Bellman function in the form Vi(x, y) = φi(x, y) +
Wi(y). As a result, we obtain the following Fredholm integral equation of the second kind in the
unknown function Wi(y):

Wi(y) = β

∞∫
−∞

Wi(u)qγ(du/y) + max
z

− fi(z) + β

∞∫
−∞

φ(z, u)qγ(du/y)

. (2)

So, the existence of a unique solution for the Bellman equation is equivalent to the
existence of a unique solution for the Fredholm integral equation of the second kind [38].
Consider the space B(−∞, ∞) of all bounded functions with the norm sup

x
| f (x)| and also the

operator G f =
∞∫
−∞

f (u)qγ(du/y) over this space. Obviously, ‖G‖ ≤ 1. If the function

φi(y) = max
z

[
− fi(z) + β

∞∫
−∞

φi(z, u)qγ(du/y)

]
is bounded above, then Equation (2) has a unique

solution. For the function φi(y) to be bounded, a sufficient condition is that the functions
φi(z, u) − fi(z) are bounded above for all u. Moreover, if the functions fi(x) are convex and
φi(z, u) are convex in the variable z for any u, then there exists a unique solution of the problem

z∗i (y) = argmax
z

[
− fi(z) + β

∞∫
−∞

φ(z, u)qγ(du/y)

]
.
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The optimal activity of the agents satisfies the equality

x∗i (t) = z∗i (γ(t)). (3)

What is of fundamental importance, the optimal behavior of all agents in this model depends on
the Principal’s local control strategy γ(t) only—-in no way on the preceding values of the sequence.
Therefore, the Principal’s problem is to calculate

max
γ(t)

[
ψ

(
M

∑
i=1

z∗i (γ(t))

)
−

M

∑
i=1

φ(xi(t− 1), γ(t))

]
. (4)

The Principal does not know the relationship (3), while the agents do not know the transition
core of the Markov sequence γ. In our case, this core is defined by the transition probability matrix
because a Markov chain has a finite set of admissible states. As mentioned earlier, the Principal and
agents can observe the response of each other. So, the Principal learns by observing the response of
agents to his/her actions while the agents learn by observing the Principal’s response to their actions.
The problem becomes much easier in comparison with the general Q-learning procedure for solving
the dynamic inverse Stackelberg games that wereconsidered in [36]: for the agents, it is required
to approximate the transition probability matrix; for the Principal, to maximize the function of one
variable. Statistical estimation of a transition probability matrix and maximization of a function of
one variable are not so computationally intensive as calculation of the Q-functions for the Principal
and agents. Let Γ =

{
γ1, . . . , γr} and denote by P the transition probability matrix. The maximum

likelihood estimate Pt of this matrix is designed as follows. Consider a matrix sequence G such that
Gt(i, j) = Gt−1(i, j) + I{γt−1=γi ,γt=γj}, where I{S} means the indicator of a set S. The initial value is

G0 = 0. The maximum likelihood estimate Pt has the form Pt(i, j) = Gt(i,j)
∑
k

Gt(i,k)
I{∑

k
Gt(i,k) 6=0}. Let γ(t) = γj.

Then max
z

[
− fi(z) + β

∞∫
−∞

φi(z, u)qγ(du/y)

]
can be written as the approximate problem

max
z

[
− fi(z) + β∑

k
Pt(j, k)φi

(
z, γk

)]
. (5)

If the function Fi
t (z) = − fi(z)+ β∑

k
Pt(j, k)φi

(
z, γk

)
is concave and bounded above, then problem (5)

has the unique solution x∗i (t) = argmaxFi
t (z). Then the Principal observes R

(
γj), i.e., the response of

agents to the control strategy γj: R
(
γj) = ψ

(
M
∑

i=1
x∗i (t)

)
−

M
∑

i=1
φi
(
xi(t− 1), γj). After that, the Principal

modifies the Q-function using the reinforcement learning algorithm

Qt+1

(
γj
)
= Qt

(
γj
)
+ ht

(
R
(

γj
)
−Qt

(
γj
))

, (6)

and chooses the next control strategy for the agents based on the probability distribution
Pl

t+1 =
{

pl
t+1
(
γ1), . . . , pl

t+1(γ
r)
}

. The probabilities can be calculated by the Boltzmann scheme, which
is used in annealing [36]. This is a random search algorithm for maximization (minimization) of
generally non-differentiable functions f (x). The idea consists in comparing the current solution xt

with a randomly chosen one yt in a small neighborhood of the former. Transition to the randomly
chosen solution occurs if f (yt) > f (xt) ( f (yt) < f (xt)). If this condition fails, then transition to a next



Mathematics 2018, 6, 131 6 of 10

random value yt is performed with the probability pt = exp
(
− f (xt)− f (yt)

Tt

) (
pt = exp

(
f (xt)− f (yt)

Tt

))
.

Therefore, it is natural to choose the next value γ with the probability

pl
t+1

(
γj
)
= exp

(
Ql

t+1

(
γj
)

/Tt+1

)
/∑

k
exp

(
Ql

t+1

(
γk
)

/Tt+1

)
. (7)

In formula (7) and also above, the parameter T—“temperature”—adjusts the degree of
randomness for control strategies. This parameter is decreasing from a given maximal value to a given
minimal value, e.g., Tt+1 = δTt, 0 < δ < 1. The initial condition is Ql

0 ≡ 0. The values ht regulating

the amplitude of variations are supposed to satisfy the standard conditions
∞
∑

t=1
ht = ∞,

∞
∑

t=1
h2

t < ∞.

They guarantee the almost sure convergence to the optimal function Q that is close to R if each element
of the set Γ appears an infinite number of times in the course of learning.

Thus, the suggested algorithm consists of the following iterative operations:

1. calculation of the maximum likelihood estimate for the transition probability matrix;
2. calculation of the next value of the Q-function.

Once again, we underline an important advantage of the suggested algorithm: the Q-function
depends on a single argument only. The first operation is to calculate the maximum likelihood estimate
instead of a next value of the Q-function, which guarantees faster convergence of the algorithm against
its counterparts in which the Q-function depends on two arguments and a next value of Q is calculated
at the first and second stages. Also, note that the maximum likelihood estimates are consistent and
asymptotically efficient, i.e., they all use available information and obeys the normal distribution
in asymptotics.

3.3. Dynamic Setup 2

In the second model of this game, the agents assume that the Principal makes “no sudden moves”
in control choice (see Postulate 2 from [27]). So, they describe the Principal’s behavior by

γ(t) = γ(t− 1)(1 + εt). (8)

The sequence εt consists of independent identically distributed random elements with the mass

concentrated near the origin. For the second model, max
z

[
− fi(z) + β

∞∫
−∞

φi(z, u)qγ(du/y)

]
can be

written as max
z

[− fi(z) + βEεφ(z, y(1 + ε))]. Consider the second term and apply the Taylor expansion

up to the second order inclusive, following the standard approach of stochastic calculus (e.g., the Ito
formula). As a result, we obtain the optimization problem

max
z

[
− fi(z) + β

(
φi(z, y) +

∂φi(z, y)
∂y

yEεε +
1
2

∂2φi(z, y)
∂y2 y2Eεε

2
)]

, (9)

provided that the second derivative exists. If for all y the goal functions of the agents are concave
and bounded, then there exist unique solutions z∗i (y) for the agents’ problems (9). The sample means

at = 1
t

t
∑

i=1

∆γ(i)
γi−1

, bt = 1
t

t
∑

i=1

(
∆γ(i)
γi−1

)2
for the moments of distribution of γ are consistent estimates

for the moments in the right-hand side of Formula (9). Therefore, the agents solve the problems

max
z

[
− fi(z) + β

(
φi(z, γ(t)) + ∂φi(z,γ(t))

∂y γ(t)at +
1
2

∂2φi(z,γ(t))
∂y2 γ(t)2bt

)]
, while the Principal can use any

maximization method of a concave function of one variable without derivatives. If the function R(x) is
concave and bounded above, then the consistent sample moments and the convergent one-dimensional
search procedure guarantee that this algorithm converges to the equilibrium of the Stackelberg game
in probability.

Thus, the learning procedure for the second model consists of the following iterative operations:
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1. calculation of the estimates for the first and second moments of distribution;
2. calculation of the next approximation γ.

In comparison with the classical Q-learning [34,35], this approach does not calculate the Q-function
and is based on estimating the first and second moments of distribution and one-dimensional
maximization of a function of one variable, which forms an obvious advantage. In comparison
with the previous algorithm (see Section 3.2), it does not need the preliminary analysis of the problem
to find the Principal’s behavioral scenarios (the set Γ).

4. Examples and Numerical Calculations

Consider an example in which ψ(x) =
√

x, φi(x, y) = xy, and fi(x) = µix2. For the first model,

problem (5) takes the form: max
z

[
−µiz2 + βz∑

k
Pt(j, k)γk

]
, with the solution x∗i (t) =

1
2µi

β∑
k

Pt(j, k)γk.

The response is R
(
γj) = √ M

∑
i=1

x∗i (t)− γj
M
∑

i=1
x∗i (t− 1).

For the second model, problem (9) takes the form max
z

[
−µiz2 + βz(γ(t) + at)

]
, with the solution

x∗i (γ(t)) =
β(γ(t)+at)

2µi
, where at =

1
t

t
∑

i=1

∆γ(i)
γ(i−1) . The response R(γ(t)) is the same as above.

For this problem, the Stackelberg equilibrium satisfies the equalities x∗i = βγ
2µi

, γ∗ =

 1

2

√
2β

M
∑

i=1

1
µi


2/3

.

Choose the following numerical parameters for trial calculations:
Then the equilibrium values are

γ∗ = 0.4524029361, x∗1 = 0.2035813212, x∗2 = 0.1017906606.

Consider two examples as follows.
In the first example, the set Γ = {0.4, 0.45, 0.5} contains a value close to the equilibrium in

position 2. Our calculations were performed in Maple. The algorithm yielded the following results.
The calculated values of the Q-function are Q = vector(0.02789054257, 0.4073228841, 0.09271767315).
The maximal value of the Q-function is 0.4073228841 (position 2), which corresponds to the
value γ = 0.45 from the set Γ. The calculated transition probability matrix has the form
P = matrix([0, 3/4, 1/4], [1/91, 87/91, 3/91], [3/4, 1/4, 0]). The maximal element of this matrix,
which is close to 1, stands at the junction of column 2 and row 2. In other words, the most probable
prefix of the chain is 0.45, 0.45, . . . , which also corresponds to the value γ = 0.45 from the set Γ.
The calculated values x1 = 0.2029945055, x2 = 0.1014972528 are close to the equilibrium.

In the second example, the set Γ = {0.2, 0.4, 0.6} has no values close to the equilibrium.
The calculated values of the Q-function are Q = vector(0.1254077349, 0.4028884358, 0.05489325521).
The maximal value of the Q-function is 0.4028884358 (position 2), which corresponds to the
value γ = 0.4 from the set Γ. The calculated transition probability matrix has the form
P = matrix([1/5, 3/5, 1/5], [1/90, 43/45, 1/30], [3/4, 1/4, 0]). The maximal element of this matrix,
which is close to 1, also stands at the junction of column 2 and row 2. The calculated values
x1 = 0.1820000000, x2 = 0.09100000000 slightly vary from the equilibrium.

The second model. The results yielded by the algorithm for the second model are presented in
Tables 1 and 2.
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Table 1. The results yielded by the algorithm.

M 2
β 0.9

µ1 1
µ2 2

Table 2. The results of numerical calculations.

γ x1 x2 R

0.35 0.1837500000 0.09187500000 0.2625000000
0.36 0.1778142858 0.08890714290 0.4172257999
0.37 0.1788773809 0.08943869045 0.4193054183
0.38 0.1816893340 0.09084466700 0.4200877844
0.39 0.1852001900 0.09260009500 0.4207793681
0.40 0.1890599915 0.09452999575 0.4214115632
0.41 0.1931187782 0.09655938910 0.4219456888
0.42 0.1973015878 0.09865079390 0.4223502262
0.43 0.2015667888 0.1007833944 0.4226042619
0.44 0.2058894150 0.1029447075 0.4226943805
0.45 0.2102535881 0.1051267940 0.4226120220

0.445 0.2070930676 0.1035465338 0.4170062493
0.4475 0.2078141892 0.1039070946 0.4193088334

0.45 0.2085934568 0.1042967284 0.4190913001
0.44875 0.2075715326 0.1037857663 0.4175845248

0.449375 0.2075256146 0.1037628073 0.4180160874

This table has the same notations as before. The obtained results indicate that fast convergence
and additional comments are unnecessary.

The second algorithm seems to be preferable if the admissible set Γ has no values close to
the equilibrium. In our example, the second algorithm demonstrated a faster convergence to the
equilibrium than the first. However, for the set Γ containing a value close to the equilibrium, the first
algorithm yielded more accurate results. At the same time, the second algorithm had a higher accuracy
rate for the set Γ without such values.

5. Conclusions and Future Work

Proportional allocation is the most natural mechanism to distribute resources, which has been
approved by the practical control of organizational systems. For this mechanism, the problem of
strategy-proofness (protection against manipulation) comes at the forefront because the agents are
interested in overrating their real resource demands unknown to the Principal. The static proportional
resource allocation mechanism was studied in control of organizational systems (see [5]); a modification
of this mechanism that guarantees strategy-proofness was also designed there.

In this paper, we have suggested a dynamic proportional resource allocation mechanism based
on learning. We have constructed two stochastic models (setups) of the dynamic inverse Stackelberg
game, each guaranteeing the existence of stationary equilibrium. The first model involved the ideology
of a finite set of the Principal’s behavioral scenarios while the second relied on the natural limits of
all Principal’s actions. Both models have been illustrated using numerical examples. Each model is
associated with an algorithm to find equilibrium in the inverse Stackelberg game.

The experimental results allow us to formulate the following hypothesis. The developed
algorithms for solving the dynamic stochastic inverse Stackelberg game can be also used for solving the
corresponding static inverse Stackelberg game with insufficient information about the cost functions
of all agents. This hypothesis still needs deeper analysis, which will be the subject of futureresearch.
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