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Abstract: Pythagorean fuzzy sets (PFSs), an extension of intuitionistic fuzzy sets (IFSs), inherit the
duality property of IFSs and have a more powerful ability than IFSs to model the obscurity in practical
decision-making problems. In this research study, we compute the energy and Laplacian energy of
Pythagorean fuzzy graphs (PFGs) and Pythagorean fuzzy digraphs (PFDGs). Moreover, we derive the
lower and upper bounds for the energy and Laplacian energy of PFGs. Finally, we present numerical
examples, including the design of a satellite communication system and the evaluation of the schemes
of reservoir operation to illustrate the applications of our proposed concepts in decision making.

Keywords: Pythagorean fuzzy graphs (PFGs); energy; Laplacian energy; satellite communication
system; schemes of reservoir operation

1. Introduction

Yager recently [1,2] introduced the concept of the Pythagorean fuzzy set (PFS) as a generalization
of the intuitionistic fuzzy set (IFS) [3], to manage the complex impreciseness and uncertainty in
practical decision-making problems. The prominent characteristic of the Pythagorean fuzzy model is
to relax the condition that the sum of its membership degree and non-membership degree is no greater
than one with the square sum of its membership degree and non-membership degree no greater than
one. After the inception of PFS by Yager [2], Zhang and Xu [4] presented the mathematical form of the
PFS and introduced the concept of the Pythagorean fuzzy number (PFN). Meanwhile, they presented a
series of basic operational laws of PFNs and proposed the Pythagorean fuzzy aggregation operators.
PFS, a novel class of the non-standard fuzzy set, has a wide range of applications in different fields,
such as medical diagnosis [5], Internet stock investment [6], the service quality of domestic airlines [4]
and the governor selection of the Asian Infrastructure Investment Bank [7].

Graph representations are generally used for dealing with structural information, in different
domains such as operations research, networks, systems analysis, pattern recognition, economics
and image interpretation. Gutman [8] introduced the notion of the energy of a graph in chemistry,
because of its relevance to the total π-electron energy of certain molecules and found upper and
lower bounds for the energy of graphs [9]. In chemistry, the energy of a given molecular graph is
interesting because of its relation to the total π-electron energy of the molecule represented by that
graph. A graph with all isolated vertices Kc

n has zero energy, while the complete graph Kn with n
vertices has energy 2(n− 1). Later, Gutman and Zhou [10] defined the Laplacian energy of a graph as
the sum of the absolute values of the differences of the average vertex degree of G to the Laplacian
eigenvalues of G. When there is obscureness in the description of the objects, or in their relations, or
in both, the fuzzy graph model is put forward naturally. The concept of fuzzy graphs was initiated
by Kaufmann [11], based on Zadeh’s fuzzy relations [12]. Rosenfeld [13] discussed the concept of the
fuzzy graph and developed its structure. The energy of a fuzzy graph was investigated in [14] by
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Anjali and Mathew. The Laplacian energy of a fuzzy graph was defined by Sharbaf and Fayazi [15].
Parvathi and Karunambigai [16] generalized the concept of a fuzzy graph to an intuitionistic fuzzy
graph (IFG). Later, IFGs were discussed by Akram and Davvaz [17]. Praba et al. [18] defined the energy
of IFGs as an extension of [14]. Basha and Kartheek [19] generalized the concept of the Laplacian
energy of a fuzzy graph to the Laplacian energy of an IFG. Akram et al. [20–26] put forward many new
concepts concerning the extended structures of fuzzy graphs and provided their pertinent applications
in decision-making. Recently, Naz et al. [27] proposed the concept of Pythagorean fuzzy graphs
(PFGs), a generalization of the notion of Akram and Davvaz IFGs [17], along with its applications
in decision-making. The Pythagorean fuzzy model is more flexible and practical than fuzzy and
intuitionistic fuzzy models. Therefore, in this research study, we introduce certain novel concepts,
including the energy and Laplacian energy of PFGs, as well as the energy and Laplacian energy of
Pythagorean fuzzy digraphs (PFDGs). We illustrate these concepts with examples. We investigate
some of their interesting properties. In particular, we solve decision-making problems concerning the
design of a satellite communication system and the evaluation of the schemes of reservoir operation to
illustrate the applicability and effectiveness of our proposed notions.

The paper is structured as follows: Section 2 proposes the concept of the energy of a PFG and
investigates its properties. Section 3 puts forward the Laplacian energy of a PFG based on its Laplacian
eigenvalues. Section 4 generalizes the concepts of energy and Laplacian energy to PFDGs. Section 5
is reserved for demonstrating the use of the proposed concepts of energy and Laplacian energy in
decision-making, and finally, we draw conclusions in Section 6.

Throughout this paper, Z represents a crisp universe of generic elements, G stands for the crisp
graph, G is the PFG and D is the PFDG.

Definition 1 ([2,28]). Let Z be a fixed set. A PFS P in Z is expressed as the following mathematical symbol:

P = {〈z, µP (z), νP (z)〉 | z ∈ Z},

characterized by a membership function µP and a non-membership function νP , where:

µP : Z → [0, 1], z ∈ Z → µP (z) ∈ [0, 1]

νP : Z → [0, 1], z ∈ Z → νP (z) ∈ [0, 1]

such that 0 ≤ µ2
P (z) + ν2

P (z) ≤ 1 for all z ∈ Z. Moreover, for all z ∈ Z, πP (z) =
√

1− µ2
P (z)− ν2

P (z) is
called a Pythagorean fuzzy index or degree of hesitancy of z in P .

For computational convenience, β = (µβ, νβ) is called a PFN [4], where µβ, νβ ∈ [0, 1], µ2
β + ν2

β ≤ 1 and

πβ =
√

1− µ2
β − ν2

β.

The key difference between the intuitionistic fuzzy number (IFN) [29] and PFN is their different
constraint conditions, that is the constraint conditions of IFN and PFN are µα + να ≤ 1 and µ2

β + ν2
β ≤ 1,

respectively. Since for any point (r, s)(r, s ∈ [0, 1]), if r + s ≤ 1, then r2 + s2 ≤ 1, so the space of PFS’s
membership degree is greater than the space of IFS’s membership degree, as shown in Figure 1.

For more definitions and terminologies, the readers are referred to [30–41].
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Figure 1. Comparison of spaces of the IFNs and the Pythagorean fuzzy numbers (PFNs).

2. Energy of Pythagorean Fuzzy Graphs

In this section, we define the energy of a graph under Pythagorean fuzzy circumstances and
investigate its properties.

Definition 2 ([27]). A PFG on a non-empty set Z is a pair G = (P ,Q), where P is a PFS on Z and Q is a
Pythagorean fuzzy relation on Z such that:

µQ(yz) ≤ min{µP (y), µP (z)}, νQ(yz) ≥ max{νP (y), νP (z)}

and 0 ≤ µ2
Q(yz) + ν2

Q(yz) ≤ 1 for all y, z ∈ Z. We call P and Q the Pythagorean fuzzy vertex set and the
Pythagorean fuzzy edge set of G, respectively. Here, Q is a symmetric Pythagorean fuzzy relation on P . If Q is
not symmetric on P , then D = (P ,

−→
Q ) is called PFDG.

Example 1. Consider a graph G = (V, E), where V = {z1, z2, z3, z4, z5, z6} is the vertex set and E =
{z1z2, z1z3, z1z4, z1z5, z1z6, z2z3, z3z4, z4z5, z5z6} is the edge set of G. Let G = (P ,Q) be a PFG on V, as
shown in Figure 2, defined by:

P =
〈( z1

0.8
,

z2
0.7

,
z3
0.5

,
z4
0.8

,
z5
0.7

,
z6
0.4

)
,
( z1

0.5
,

z2
0.4

,
z3
0.6

,
z4
0.3

,
z5
0.4

,
z6
0.3

)〉
,

Q =
〈( z1z2

0.3
,

z1z3
0.4

,
z1z4
0.7

,
z1z5
0.4

,
z1z6
0.3

,
z2z3
0.4

,
z3z4
0.5

,
z4z5
0.6

,
z5z6
0.4

)
,( z1z2

0.8
,

z1z3
0.7

,
z1z4
0.6

,
z1z5
0.5

,
z1z6
0.6

,
z2z3
0.9

,
z3z4
0.7

,
z4z5
0.6

,
z5z6
0.9

)〉
.

b

b

bb

z1(0.8, 0.5)

(0.6, 0.6)

b

b

(0.3, 0.8)

(0
.4
, 0
.9
)

(0.5
, 0.7

)

(0.4, 0.9)

(0.
3, 0

.6)

(0.4, 0.7)

(0
.7
,0
.6
)

(0
.4
, 0
.5
)

z2(0.7, 0.4)

z6(0.4, 0.3)

z4
(0
.8
, 0
.3
)

z5
(0
.7,
0.4

)

z 3
(0
.5
, 0
.6
)

Figure 2. Pythagorean fuzzy graph.
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Definition 3. The adjacency matrix A(G) = (A(µQ(zizj)), A(νQ(zizj))) of a PFG G = (P ,Q) is defined as
a square matrix A(G) = [aij], aij = (µQ(zizj), νQ(zizj)), where µQ(zizj) and νQ(zizj) represent the strength
of relationship and strength of non-relationship between zi and zj, respectively.

Definition 4. The spectrum of adjacency matrix of a PFG A(G) is defined as (S, T), where S and T are the
sets of eigenvalues of A(µQ(zizj)) and A(νQ(zizj)), respectively.

Definition 5. The energy of a PFG G = (P ,Q) is defined as:

E(G) =
(
E(µQ(zizj)), E(νQ(zizj))

)
=

 n

∑
i=1

λi∈S

|λi|,
n

∑
i=1

ζi∈T

|ζi|

 .

Example 2. The adjacency matrix of a PFG given in Figure 2 is:

A(G) =



(0, 0) (0.3, 0.8) (0.4, 0.7) (0.7, 0.6) (0.4, 0.5) (0.3, 0.6)
(0.3, 0.8) (0, 0) (0.4, 0.9) (0, 0) (0, 0) (0, 0)
(0.4, 0.7) (0.4, 0.9) (0, 0) (0.5, 0.7) (0, 0) (0, 0)
(0.7, 0.6) (0, 0) (0.5, 0.7) (0, 0) (0.6, 0.6) (0, 0)
(0.4, 0.5) (0, 0) (0, 0) (0.6, 0.6) (0, 0) (0.4, 0.9)
(0.3, 0.6) (0, 0) (0, 0) (0, 0) (0.4, 0.9) (0, 0)


.

The spectrum and the energy of a PFG G, given in Figure 2, are as follows:

Spec(µQ(zizj)) = {−0.9522,−0.5665,−0.3997, 0.0031, 0.4017, 1.5137},
Spec(νQ(zizj)) = {−1.3553,−0.9082,−0.8959, 0.0534, 0.9017, 2.2044}.

Therefore,

Spec(G) = {(−0.9522,−1.3553), (−0.5665,−0.9082), (−0.3997,−0.8959), (0.0031, 0.0534),

(0.4017, 0.9017), (1.5137, 2.2044)}.

Now, E(µQ(zizj)) = 3.8369 and E(νQ(zizj)) = 6.3190.
Therefore, E(G) = (3.8369, 6.3190).

Theorem 1. Let G = (P ,Q) be a PFG and A(G) be its adjacency matrix. If λ1 ≥ λ2 ≥ . . . ≥ λn and
ζ1 ≥ ζ2 ≥ . . . ≥ ζn are the eigenvalues of A(µQ(zizj)) and A(νQ(zizj)), respectively, then:

(i)
n
∑

i=1
λi∈S

λi = 0 and
n
∑

i=1
ζi∈T

ζi = 0.

(ii)
n
∑

i=1
λi∈S

λ2
i = 2 ∑

1≤i<j≤n
(µQ(zizj))

2 and
n
∑

i=1
ζi∈T

ζ2
i = 2 ∑

1≤i<j≤n
(νQ(zizj))

2.

Proof. (i) Since A(G) is a symmetric matrix with zero trace, its eigenvalues are real with the sum
equal to zero.

(ii) By the trace properties of a matrix, we have:

tr((A(µQ(zizj)))
2) =

n

∑
i=1

λi∈S

λ2
i



Mathematics 2018, 6, 136 5 of 27

where:

tr((A(µQ(zizj)))
2) =

(
0 + (µQ(z1z2))

2 + . . . + (µQ(z1zn))
2
)

+
(
(µQ(z2z1))

2 + 0 + . . . + (µQ(z2zn))
2
)

...

+
(
(µQ(znz1))

2 + (µQ(znz2))
2 + . . . + 0

)
= 2 ∑

1≤i<j≤n
(µQ(zizj))

2.

Hence:
n

∑
i=1

λi∈S

λ2
i = 2 ∑

1≤i<j≤n
(µQ(zizj))

2.

Analogously, we can show that
n
∑

i=1
ζi∈T

ζ2
i = 2 ∑

1≤i<j≤n
(νQ(zizj))

2.

Example 3. Consider a PFG G = (P ,Q) on V = {z1, z2, z3, z4, z5, z6}, as shown in Figure 2. Then:

6

∑
i=1

λi∈S

λi = 0,
6

∑
i=1

ζi∈T

ζi = 0.

6

∑
i=1

λi∈S

λ2
i = 3.8400 = 2(1.92) = 2 ∑

1≤i<j≤6
(µQ(zizj))

2,

6

∑
i=1

ζi∈T

ζ2
i = 9.1400 = 2(4.57) = 2 ∑

1≤i<j≤6
(νQ(zizj))

2.

We now find upper and lower bounds of the energy of a PFG G, in terms of the number of vertices
and the sum of squares of membership and non-membership values of edges.

Theorem 2. Let G = (P ,Q) be a PFG on n vertices and A(G) = (A(µQ(zizj)), A(νQ(zizj))) be the
adjacency matrix of G. Then:

(i)
√

2 ∑
1≤i<j≤n

(µQ(zizj))2 + n(n− 1)|det(A(µQ(zizj)))|
2
n ≤ E(µQ(zizj)) ≤

√
2n ∑

1≤i<j≤n
(µQ(zizj))2;

(ii)
√

2 ∑
1≤i<j≤n

(νQ(zizj))2 + n(n− 1)|det(A(νQ(zizj)))|
2
n ≤ E(νQ(zizj)) ≤

√
2n ∑

1≤i<j≤n
(νQ(zizj))2.

Proof. (i) Upper bound:
Applying the Cauchy–Schwarz inequality to the vectors (1, 1, . . . , 1) and (|λ1|, |λ2|, . . . , |λn|) with

n entries, we get:
n

∑
i=1
|λi| ≤

√
n

√
n

∑
i=1
|λi|2 (1)

(
n

∑
i=1

λi

)2

=
n

∑
i=1
|λi|2 + 2 ∑

1≤i<j≤n
λiλj (2)
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By comparing the coefficients of λn−2 in the characteristic polynomial:

n

∏
i=1

(λ− λi) = |A(G)− λI|,

we have:

∑
1≤i<j≤n

λiλj = − ∑
1≤i<j≤n

(µQ(zizj))
2. (3)

Substituting (3) in (2), we obtain:

n

∑
i=1
|λi|2 = 2 ∑

1≤i<j≤n
(µQ(zizj))

2. (4)

Substituting (4) in (1), we obtain:

n

∑
i=1
|λi| ≤

√
n
√

2 ∑
1≤i<j≤n

(µQ(zizj))2 =
√

2n ∑
1≤i<j≤n

(µQ(zizj))2.

Therefore,

E(µQ(zizj)) ≤
√

2n ∑
1≤i<j≤n

(µQ(zizj))2

Lower bound:

(E(µQ(zizj)))
2 =

(
n

∑
i=1
|λi|
)2

=
n

∑
i=1
|λi|2 + 2 ∑

1≤i<j≤n
|λiλj|

= 2 ∑
1≤i<j≤n

(µQ(zizj))
2 +

2n(n− 1)
2

AM{|λiλj|}

Since AM{|λiλj|} ≥ GM{|λiλj|}, 1 ≤ i < j ≤ n,
so,

E(µQ(zizj)) ≥
√

2 ∑
1≤i<j≤n

(µQ(zizj))2 + n(n− 1)GM{|λiλj|}

also since:

GM{|λiλj|} =
(

∏
1≤i<j≤n

|λiλj|
) 2

n(n−1)

=

(
n

∏
i=1
|λi|n−1

) 2
n(n−1)

=

(
n

∏
i=1
|λi|
) 2

n

= |det(A(µQ(zizj)))|
2
n

so,

E(µQ(zizj)) ≥
√

2 ∑
1≤i<j≤n

(µQ(zizj))2 + n(n− 1)|det(A(µQ(zizj)))|
2
n .

Thus,
√

2 ∑
1≤i<j≤n

(µQ(zizj))2 + n(n− 1)|det(A(µQ(zizj)))|
2
n ≤ E(µQ(zizj)) ≤√

2n ∑
1≤i<j≤n

(µQ(zizj))2.
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Analogously, we can show that√
2 ∑

1≤i<j≤n
(νQ(zizj))2 + n(n− 1)|det(A(νQ(zizj)))|

2
n ≤ E(νQ(zizj)) ≤

√
2n ∑

1≤i<j≤n
(νQ(zizj))2.

The following result gives us the upper bound of the energy of a PFG, with the conditions
n ≤ 2 ∑

1≤i<j≤n
(µQ(zizj))

2 and n ≤ 2 ∑
1≤i<j≤n

(νQ(zizj))
2.

Theorem 3. Let G = (P ,Q) be a PFG on n vertices and A(G) = (A(µQ(zizj)), A(νQ(zizj))) be the
adjacency matrix of G. If n ≤ 2 ∑

1≤i<j≤n
(µQ(zizj))

2 and n ≤ 2 ∑
1≤i<j≤n

(νQ(zizj))
2, then:

(i) E(µQ(zizj)) ≤
2 ∑

1≤i<j≤n
(µQ(zizj))

2

n +

√√√√√(n− 1)

2 ∑
1≤i<j≤n

(µQ(zizj))2 −
( 2 ∑

1≤i<j≤n
(µQ(zizj))2

n

)2;

(ii) E(νQ(zizj)) ≤
2 ∑

1≤i<j≤n
(νQ(zizj))

2

n +

√√√√√(n− 1)

2 ∑
1≤i<j≤n

(νQ(zizj))2 −
( 2 ∑

1≤i<j≤n
(νQ(zizj))2

n

)2.

Proof. If A = [aij]n×n is a symmetric matrix with zero trace, then λmax ≥
2 ∑

1≤i<j≤n
aij

n , where, λmax is

the maximum eigenvalue of A. If A(G) is the adjacency matrix of a PFG G, then λ1 ≥
2 ∑

1≤i<j≤n
µQ(zizj)

n ,
where λ1 ≥ λ2 ≥ . . . ≥ λn. Moreover, since:

n

∑
i=1

λ2
i = 2 ∑

1≤i<j≤n
(µQ(zizj))

2

n

∑
i=2

λ2
i = 2 ∑

1≤i<j≤n
(µQ(zizj))

2 − λ2
1 (5)

Applying the Cauchy–Schwarz inequality to the vectors (1, 1, . . . , 1) and (|λ1|, |λ2|, . . . , |λn|) with
n− 1 entries, we get:

E(µQ(zizj))− λ1 =
n

∑
i=2
|λi| ≤

√
(n− 1)

n

∑
i=2
|λi|2. (6)

Substituting (5) in (6), we must have:

E(µQ(zizj))− λ1 ≤

√√√√(n− 1)

(
2 ∑

1≤i<j≤n
(µQ(zizj))2 − λ2

1

)

E(µQ(zizj)) ≤ λ1 +

√√√√(n− 1)

(
2 ∑

1≤i<j≤n
(µQ(zizj))2 − λ2

1

)
. (7)

Now, since the function:

F(z) = z +

√√√√(n− 1)

(
2 ∑

1≤i<j≤n
(µQ(zizj))2 − z2

)
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decreases on the interval:
√√√√2 ∑

1≤i<j≤n
(µQ(zizj))2

n
,
√

2 ∑
1≤i<j≤n

(µQ(zizj))2

 ,

also n ≤ 2 ∑
1≤i<j≤n

(µQ(zizj))
2, 1 ≤

2 ∑
1≤i<j≤n

(µQ(zizj))
2

n . Therefore,

√√√√2 ∑
1≤i<j≤n

(µQ(zizj))2

n
≤

2 ∑
1≤i<j≤n

(µQ(zizj))
2

n
≤

2 ∑
1≤i<j≤n

µQ(zizj)

n
≤ λ1 ≤

√
2 ∑

1≤i<j≤n
(µQ(zizj))2.

Therefore, Equation (7) implies:

E(µQ(zizj)) ≤
2 ∑

1≤i<j≤n
(µQ(zizj))

2

n
+

√√√√√√√(n− 1)

2 ∑
1≤i<j≤n

(µQ(zizj))2 −

2 ∑
1≤i<j≤n

(µQ(zizj))2

n


2
.

Analogously, we can show that:

E(νQ(zizj)) ≤
2 ∑

1≤i<j≤n
(νQ(zizj))

2

n
+

√√√√√√√(n− 1)

2 ∑
1≤i<j≤n

(νQ(zizj))2 −

2 ∑
1≤i<j≤n

(νQ(zizj))2

n


2
.

Theorem 4. Let G = (P ,Q) be a PFG on n vertices. Then, E(G) ≤ n
2 (1 +

√
n).

Proof. Suppose that G = (P ,Q) is a PFG with n vertices. If n ≤ 2 ∑
1≤i<j≤n

(µQ(zizj))
2 = 2y, then

by routine calculus, it is easy to show that f (y) = 2y
n +

√
(n− 1)(2y− ( 2y

n )2) is maximized when

y = n2+n
√

n
4 . Substituting this value of y in place of y = ∑

1≤i<j≤n
(µQ(zizj))

2 in Theorem 3, we must

have E(µQ(zizj)) ≤ n
2 (1 +

√
n). Similarly, it is easy to show that E(νQ(zizj)) ≤ n

2 (1 +
√

n). Hence,
E(G) ≤ n

2 (1 +
√

n).

3. Laplacian Energy of Pythagorean Fuzzy Graphs

This section defines and investigates the Laplacian energy of a PFG and provides its properties
in detail.

Definition 6. Let G = (P ,Q) be a PFG on n vertices. The degree matrix, D(G) =

(D(µQ(zizj)), D(νQ(zizj))) = [dij], of G is a n× n diagonal matrix defined as:

dij =

{
dG(zi) if i = j,
0 otherwise

Definition 7. The Laplacian matrix of a PFG G = (P ,Q) is defined as L(G) =

(L(µQ(zizj)), L(νQ(zizj))) = D(G) − A(G), where A(G) is an adjacency matrix and D(G) is a
degree matrix of a PFG G.
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Example 4. Consider a graph G = (V, E), where V = {z1, z2, z3, z4, z5, z6, z7, z8} and E = {z1z2, z2z3,
z3z4, z1z4, z2z4, z2z8, z4z6, z1z8, z4z5, z5z6, z6z7, z7z8, z5z8, z6z8}. Let G = (P ,Q) be a PFG on V, as shown
in Figure 3.
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b
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, 0.
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0.9
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(0
.6
, 0
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(0.4, 0.7)

z
6
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,0
.6
)

(0.4, 0.8)

Figure 3. Pythagorean fuzzy graph.

The adjacency matrix, degree matrix and Laplacian matrix of the PFG shown in Figure 3 are as follows:

A(G) =



(0, 0) (0.4, 0.7) (0, 0) (0.6, 0.7) (0, 0) (0, 0) (0, 0) (0.5, 0.7)
(0.4, 0.7) (0, 0) (0.4, 0.6) (0.5, 0.6) (0, 0) (0, 0) (0, 0) (0.3, 0.7)
(0, 0) (0.4, 0.6) (0, 0) (0.6, 0.8) (0, 0) (0, 0) (0, 0) (0, 0)

(0.6, 0.7) (0.5, 0.6) (0.6, 0.8) (0, 0) (0.4, 0.7) (0.6, 0.8) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0.4, 0.7) (0, 0) (0.4, 0.9) (0, 0) (0.3, 0.6)
(0, 0) (0, 0) (0, 0) (0.6, 0.8) (0.4, 0.9) (0, 0) (0.4, 0.8) (0.3, 0.9)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0.4, 0.8) (0, 0) (0.2, 0.6)

(0.5, 0.7) (0.3, 0.7) (0, 0) (0, 0) (0.3, 0.6) (0.3, 0.9) (0.2, 0.6) (0, 0)


.

D(G) =



(1.5, 2.1) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0) (1.6, 2.6) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (1.0, 1.4) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (2.7, 3.6) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (1.1, 2.2) (0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (1.7, 3.4) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0.6, 1.4) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (1.6, 3.5)


.

L(G) =



(1.5, 2.1) (−0.4,−0.7) (0, 0) (−0.6,−0.7) (0, 0) (0, 0) (0, 0) (−0.5,−0.7)
(−0.4,−0.7) (1.6, 2.6) (−0.4,−0.6) (−0.5,−0.6) (0, 0) (0, 0) (0, 0) (−0.3,−0.7)

(0, 0) (−0.4,−0.6) (1.0, 1.4) (−0.6,−0.8) (0, 0) (0, 0) (0, 0) (0, 0)
(−0.6,−0.7) (−0.5,−0.6) (−0.6,−0.8) (2.7, 3.6) (−0.4,−0.7) (−0.6,−0.8) (0, 0) (0, 0)

(0, 0) (0, 0) (0, 0) (−0.4,−0.7) (1.1, 2.2) (−0.4,−0.9) (0, 0) (−0.3,−0.6)
(0, 0) (0, 0) (0, 0) (−0.6,−0.8) (−0.4,−0.9) (1.7, 3.4) (−0.4,−0.8) (−0.3,−0.9)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (−0.4,−0.8) (0.6, 1.4) (−0.2,−0.6)

(−0.5,−0.7) (−0.3,−0.7) (0, 0) (0, 0) (−0.3,−0.6) (−0.3,−0.9) (−0.2,−0.6) (1.6, 3.5)


.

Definition 8. The spectrum of Laplacian matrix of a PFG L(G) is defined as (SL, TL), where SL and TL are the
sets of Laplacian eigenvalues of L(µQ(zizj)) and L(νQ(zizj)), respectively.
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Theorem 5. Let G = (P ,Q) be a PFG, and let L(G) be the Laplacian matrix of G. If ϑ1 ≥ ϑ2 ≥ . . . ≥ ϑn

and ϕ1 ≥ ϕ2 ≥ . . . ≥ ϕn are the eigenvalues of L(µQ(zizj)) and L(νQ(zizj)), respectively, then:

(i)
n
∑

i=1
ϑi∈SL

ϑi = 2 ∑
1≤i<j≤n

µQ(zizj),
n
∑

i=1
ϕi∈TL

ϕi = 2 ∑
1≤i<j≤n

νQ(zizj).

(ii)
n
∑

i=1
ϑi∈SL

ϑ2
i = 2 ∑

1≤i<j≤n
(µQ(zizj))

2 +
n
∑

i=1
d2

µQ(zizj)
(zi),

n
∑

i=1
ϕi∈TL

ϕ2
i = 2 ∑

1≤i<j≤n
(νQ(zizj))

2 +

n
∑

i=1
d2

νQ(zizj)
(zi).

Proof. (i) Since L(G) is a symmetric matrix with non-negative Laplacian eigenvalues, such that:

n

∑
i=1

ϑi∈SL

ϑi = tr(L(G)) =
n

∑
i=1

dµQ(zizj)
(zi) = 2 ∑

1≤i<j≤n
µQ(zizj).

Therefore,
n
∑

i=1
ϑi∈SL

ϑi = 2 ∑
1≤i<j≤n

µQ(zizj).

Similarly, it is easy to show that,
n
∑

i=1
ϕi∈TL

ϕi = 2 ∑
1≤i<j≤n

νQ(zizj).

(ii) By the definition of Laplacian matrix, we have:

L(µQ(zizj)) =


dµQ(zizj)

(z1) −µQ(z1z2) . . . −µQ(z1zn)

−µQ(z2z1) dµQ(zizj)
(z2) . . . −µQ(z2zn)

...
...

. . .
...

−µQ(znz1) −µQ(znz2) . . . dµQ(zizj)
(zn)

 .

By the trace properties of a matrix, we have:

tr((L(µQ(zizj)))
2) =

n

∑
i=1

ϑi∈SL

ϑ2
i

where:

tr((L(µQ(zizj)))
2) = (d2

µQ(zizj)
(z1) + µ2

Q(z1z2) + . . . + µ2
Q(z1zn))

+(µ2
Q(z2z1) + d2

µQ(zizj)
(z2) + . . . + µ2

Q(z2zn))

+ . . . + (µ2
Q(znz1) + µ2

Q(znz2) + . . . + d2
µQ(zizj)

(zn))

= 2 ∑
1≤i<j≤n

(µQ(zizj))
2 +

n

∑
i=1

d2
µQ(zizj)

(zi).

Therefore,
n

∑
i=1

ϑi∈SL

ϑ2
i = 2 ∑

1≤i<j≤n
(µQ(zizj))

2 +
n

∑
i=1

d2
µQ(zizj)

(zi).

Analogously, we can show that
n
∑

i=1
ϕi∈TL

ϕ2
i = 2 ∑

1≤i<j≤n
(νQ(zizj))

2 +
n
∑

i=1
d2

νQ(zizj)
(zi).
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Definition 9. The Laplacian energy of a PFG G = (P ,Q) is defined as:

LE(G) =
(

LE(µQ(zizj)), LE(νQ(zizj))
)
=

(
n

∑
i=1
|$i|,

n

∑
i=1
|ξi|
)

where:

$i = ϑi −
2 ∑

1≤i<j≤n
µQ(zizj)

n
,

ξi = ϕi −
2 ∑

1≤i<j≤n
νQ(zizj)

n
.

Theorem 6. Let G = (P ,Q) be a PFG, and let L(G) be the Laplacian matrix of G. If ϑ1 ≥ ϑ2 ≥ . . . ≥ ϑn

and ϕ1 ≥ ϕ2 ≥ . . . ≥ ϕn are the eigenvalues of L(µQ(zizj)) and L(νQ(zizj)), respectively, and $i =

ϑi −
2 ∑

1≤i<j≤n
µQ(zizj)

n , ξi = ϕi −
2 ∑

1≤i<j≤n
νQ(zizj)

n , then:

n

∑
i=1

$i = 0,
n

∑
i=1

ξi = 0,

n

∑
i=1

$2
i = 2Mµ,

n

∑
i=1

ξ2
i = 2Mν,

where:

Mµ = ∑
1≤i<j≤n

(µQ(zizj))
2 +

1
2

n

∑
i=1

dµQ(zizj)
(zi)−

2 ∑
1≤i<j≤n

µQ(zizj)

n


2

,

Mν = ∑
1≤i<j≤n

(νQ(zizj))
2 +

1
2

n

∑
i=1

dνQ(zizj)
(zi)−

2 ∑
1≤i<j≤n

νQ(zizj)

n


2

,

Example 5. The Laplacian spectrum and the Laplacian energy of a PFG G, given in Figure 3, are as follows:

Laplacian Spec(µQ(zizj)) = {0.0000, 0.4877, 0.8810, 1.1086, 1.9047, 1.9763, 2.0436, 3.3981},
Laplacian Spec(νQ(zizj)) = {0.0000, 0.9099, 1.6080, 1.8014, 3.1573, 3.8148, 3.8634, 5.0453}.

Therefore, Laplacian Spec(G) = {(0, 0), (0.4877, 0.9099), (0.8810, 1.6080), (1.1086, 1.8014), (1.9047, 3.1573),
(1.9763, 3.8148), (2.0436, 3.8634), (3.3981, 5.0453)}. Now,

LE(µQ(zizj)) = 6.8454, LE(νQ(zizj)) = 11.5615.

Therefore, LE(G) = (6.8454, 11.5615).
Furthermore, we have:

8

∑
i=1

$i = 0,
8

∑
i=1

ξi = 0.

8

∑
i=1

$2
i = 8.0952 = 2(4.05) = 2Mµ,

8

∑
i=1

ξ2
i = 20.5555 = 2(10.28) = 2Mν.
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Theorem 7. Let G = (P ,Q) be a PFG on n vertices, and let L(G) = (L(µQ(zizj)), L(νQ(zizj))) be the
Laplacian matrix of G. Then,

(i) LE(µQ(zizj)) ≤

√√√√2n ∑
1≤i<j≤n

(µQ(zizj))2 + n
n
∑

i=1

(
dµQ(zizj)

(zi)−
2 ∑

1≤i<j≤n
µQ(zizj)

n

)2

;

(ii) LE(νQ(zizj)) ≤

√√√√2n ∑
1≤i<j≤n

(νQ(zizj))2 + n
n
∑

i=1

(
dνQ(zizj)

(zi)−
2 ∑

1≤i<j≤n
νQ(zizj)

n

)2

.

Proof. Applying the Cauchy–Schwarz inequality to the n numbers 1, 1, . . . , 1 and |$1|, |$2|, . . . , |$n|,
we have:

n

∑
i=1
|$i| ≤

√
n

√
n

∑
i=1
|$i|2

LE(µQ(zizj)) ≤
√

n
√

2Mµ =
√

2nMµ.

Since Mµ = ∑
1≤i<j≤n

(µQ(zizj))
2 + 1

2

n
∑

i=1

(
dµQ(zizj)

(zi)−
2 ∑

1≤i<j≤n
µQ(zizj)

n

)2

,

therefore LE(µQ(zizj)) ≤

√√√√2n ∑
1≤i<j≤n

(µQ(zizj))2 + n
n
∑

i=1

(
dµQ(zizj)

(zi)−
2 ∑

1≤i<j≤n
µQ(zizj)

n

)2

.

Analogously, it is easy to show that

LE(νQ(zizj)) ≤

√√√√2n ∑
1≤i<j≤n

(νQ(zizj))2 + n
n
∑

i=1

(
dνQ(zizj)

(zi)−
2 ∑

1≤i<j≤n
νQ(zizj)

n

)2

.

Theorem 8. Let G = (P ,Q) be a PFG on n vertices, and let L(G) = (L(µQ(zizj)), L(νQ(zizj))) be the
Laplacian matrix of G. Then:

(i) LE(µQ(zizj)) ≥ 2

√√√√ ∑
1≤i<j≤n

(µQ(zizj))2 + 1
2

n
∑

i=1

(
dµQ(zizj)

(zi)−
2 ∑

1≤i<j≤n
µQ(zizj)

n

)2

;

(ii) LE(νQ(zizj)) ≥ 2

√√√√ ∑
1≤i<j≤n

(νQ(zizj))2 + 1
2

n
∑

i=1

(
dνQ(zizj)

(zi)−
2 ∑

1≤i<j≤n
νQ(zizj)

n

)2

.

Proof. (
n

∑
i=1
|$i|
)2

=
n

∑
i=1
|$i|2 + 2 ∑

1≤i<j≤n
|$i$i| ≥ 4Mµ

LE(µQ(zizj)) ≥ 2
√

Mµ

Since Mµ = ∑
1≤i<j≤n

(µQ(zizj))
2 + 1

2

n
∑

i=1

(
dµQ(zizj)

(zi)−
2 ∑

1≤i<j≤n
µQ(zizj)

n

)2

,

therefore LE(µQ(zizj)) ≥ 2

√√√√ ∑
1≤i<j≤n

(µQ(zizj))2 + 1
2

n
∑

i=1

(
dµQ(zizj)

(zi)−
2 ∑

1≤i<j≤n
µQ(zizj)

n

)2

.

Similarly, it is easy to show that

LE(νQ(zizj)) ≥ 2

√√√√ ∑
1≤i<j≤n

(νQ(zizj))2 + 1
2

n
∑

i=1

(
dνQ(zizj)

(zi)−
2 ∑

1≤i<j≤n
νQ(zizj)

n

)2

.
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Theorem 9. Let G = (P ,Q) be a PFG on n vertices, and let L(G) = (L(µQ(zizj)), L(νQ(zizj))) be the
Laplacian matrix of G.

Then:

(i) LE(µQ(zizj)) ≤ |$1|+

√√√√√(n− 1)

2 ∑
1≤i<j≤n

(µQ(zizj))2 +
n
∑

i=1

(
dµQ(zizj)(zi)−

2 ∑
1≤i<j≤n

µQ(zizj)

n

)2

− $2
1

;

(ii) LE(νQ(zizj)) ≤ |ξ1|+

√√√√√(n− 1)

2 ∑
1≤i<j≤n

(νQ(zizj))2 +
n
∑

i=1

(
dνQ(zizj)(zi)−

2 ∑
1≤i<j≤n

νQ(zizj)

n

)2

− ξ2
1

.

Proof. Using the Cauchy–Schwarz inequality, we get:

n

∑
i=1
|$i| ≤

√
n

n

∑
i=1
|$i|2

n

∑
i=2
|$i| ≤

√
(n− 1)

n

∑
i=2
|$i|2

LE(µQ(zizj))− |$1| ≤
√
(n− 1)(2Mµ − $2

1)

LE(µQ(zizj)) ≤ |$1|+
√
(n− 1)(2Mµ − $2

1)

Since Mµ = ∑
1≤i<j≤n

(µQ(zizj))
2 + 1

2

n
∑

i=1

(
dµQ(zizj)

(zi)−
2 ∑

1≤i<j≤n
µQ(zizj)

n

)2

. Therefore:

LE(µQ(zizj)) ≤ |$1|+

√√√√√√√(n− 1)

2 ∑
1≤i<j≤n

(µQ(zizj))2 +
n

∑
i=1

dµQ(zizj)(zi)−
2 ∑

1≤i<j≤n
µQ(zizj)

n


2

− $2
1

. (8)

Similarly, we can show that LE(νQ(zizj)) ≤ |ξ1|

+

√√√√√(n− 1)

2 ∑
1≤i<j≤n

(νQ(zizj))2 +
n
∑

i=1

(
dνQ(zizj)

(zi)−
2 ∑

1≤i<j≤n
νQ(zizj)

n

)2

− ξ2
1

.

Theorem 10. If the PFG G = (P ,Q) is regular, then:

(i) LE(µQ(zizj)) ≤ |$1|+

√√√√(n− 1)

(
2 ∑

1≤i<j≤n
(µQ(zizj))2 − $2

1

)
;

(ii) LE(νQ(zizj)) ≤ |ξ1|+

√√√√(n− 1)

(
2 ∑

1≤i<j≤n
(νQ(zizj))2 − ξ2

1

)
.

Proof. Let G be a regular PFG, then:

dµQ(zizj)
(zi) =

2 ∑
1≤i<j≤n

µQ(zizj)

n
(9)
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Substituting (9) in (8), we get

LE(µQ(zizj)) ≤ |$1|+

√√√√(n− 1)

(
2 ∑

1≤i<j≤n
(µQ(zizj))2 − $2

1

)
.

Similarly, it is easy to show that LE(νQ(zizj)) ≤ |ξ1|+

√√√√(n− 1)

(
2 ∑

1≤i<j≤n
(νQ(zizj))2 − ξ2

1

)
.

4. Energy and Laplacian Energy of Pythagorean Fuzzy Digraphs

This section generalizes the concept of energy to PFDGs. The eigenvalues of a PFDG may be
complex numbers, as its adjacency matrix is not necessarily symmetric.

Definition 10. The spectrum of the adjacency matrix of a PFDG A(D) is defined as (S , T ), where S and T
are the sets of eigenvalues of A(µ−→Q (zizj)) and A(ν−→Q (zizj)), respectively.

Definition 11. Let D = (P ,
−→Q ) be a PFDG on n vertices. The energy of D is defined as:

E(D) =
(

E(µ−→Q (zizj)), E(ν−→Q (zizj))
)
=

 n

∑
i=1
ti∈S

|Re(ti)|,
n

∑
i=1

wi∈T

|Re(wi)|


where Re(ti) and Re(wi) represent the real part of eigenvalues ti and wi, respectively.

Theorem 11. Let D = (P ,
−→Q ) be a PFDG and A(D) be its adjacency matrix. If t1 ≥ t2 ≥ . . . ≥ tn and

w1 ≥ w2 ≥ . . . ≥ wn are the eigenvalues of A(µ−→Q (zizj)) and A(ν−→Q (zizj)), respectively, then:

n

∑
i=1
ti∈S

Re(ti) = 0 and
n

∑
i=1

wi∈T

Re(wi) = 0. (10)

Example 6. Consider a digraph D = (V,
−→
E ), where V = {z1, z2, z3, z4, z5, z6} and

−→
E = {z1z4, z1z5,

z2z4, z2z6, z3z5, z3z6, , z4z6}. Let D = (P ,
−→Q ) be a PFDG on V, as shown in Figure 4.
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Figure 4. Pythagorean fuzzy digraph.
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The adjacency matrix of a PFDG given in Figure 4 is:

A(D) =



(0, 0) (0, 0) (0, 0) (0.3, 0.7) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0.5, 0.8) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (0.2, 0.7) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0.4, 0.6)

(0.2, 0.9) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0) (0.3, 0.9) (0.6, 0.8) (0, 0) (0, 0) (0, 0)


.

The spectrum and the energy of a PFDG D given in Figure 4 are:

Spec(µ−→Q (zizj)) = {0.4237,−0.2281 + 0.3107i,−0.2281− 0.3107i, 0.0162 + 0.2133i, 0.0162− 0.2133i, 0},
Spec(ν−→Q (zizj)) = {0.8881,−0.5478 + 0.5900i,−0.5478− 0.5900i, 0.1037 + 0.5975i, 0.1037− 0.5975i, 0}.

Therefore,

Spec(D) = {(0.4237, 0.8881), (−0.2281 + 0.3107i,−0.5478 + 0.5900i), (−0.2281− 0.3107i,−0.5478− 0.5900i),

(0.0162 + 0.2133i, 0.1037 + 0.5975i), (0.0162− 0.2133i, 0.1037− 0.5975i), (0, 0)}.

Now, E(µ−→Q (zizj)) = 0.9123 and E(ν−→Q (zizj)) = 2.1910.
Therefore, E(D) = (0.9123, 2.1910).
Furthermore,

6

∑
i=1
ti∈S

Re(ti) = 0 and
6

∑
i=1

wi∈T

Re(wi) = 0. (11)

We now discuss the Laplacian energy of Pythagorean fuzzy digraphs.

Definition 12. Let D = (P ,
−→Q ) be a PFDG on n vertices. The degree matrix, D(D) =

(D(µ−→Q (zizj)), D(ν−→Q (zizj))) = [dij], of D is a n× n diagonal matrix defined as:

dij =

{
dout
D (zi) if i = j,

0 otherwise

Definition 13. The Laplacian matrix of a PFDG D = (P ,
−→Q ) is defined as L(D) =

(L(µ−→Q (zizj)), L(ν−→Q (zizj))) = Dout(D)− A(D), where A(D) is an adjacency matrix and Dout(D) is an
out-degree matrix of a PFDG D.

Definition 14. The spectrum of the Laplacian matrix of a PFDG L(D) is defined as (SL, TL), where SL and
TL are the sets of Laplacian eigenvalues of L(µ−→Q (zizj)) and L(ν−→Q (zizj)), respectively.

Theorem 12. LetD = (P ,
−→Q ) be a PFDG, and let L(D) be the Laplacian matrix ofD. If g1 ≥ g2 ≥ . . . ≥ gn

and h1 ≥ h2 ≥ . . . ≥ hn are the eigenvalues of L(µ−→Q (zizj)) and L(ν−→Q (zizj)), respectively, then:

n

∑
i=1

gi∈SL

Re(gi) = ∑
1≤i<j≤n

µ−→Q (zizj),
n

∑
i=1

hi∈TL

Re(hi) = ∑
1≤i<j≤n

ν−→Q (zizj).

Definition 15. The Laplacian energy of a PFDG D = (P ,
−→Q ) is defined as:

LE(D) =
(

LE(µ−→Q (zizj)), LE(ν−→Q (zizj))
)
=

(
n

∑
i=1
|ri|,

n

∑
i=1
|si|
)
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where:

ri = Re(gi)−
∑

1≤i<j≤n
µ−→Q (zizj)

n
,

si = Re(hi)−
∑

1≤i<j≤n
ν−→Q (zizj)

n
.

Theorem 13. Let D = (P ,
−→Q ) be a PFDG, and let L(D) be the Laplacian matrix of D. If g1 ≥ g2 ≥

. . . ≥ gn and h1 ≥ h2 ≥ . . . ≥ hn are the eigenvalues of L(µ−→Q (zizj)) and L(ν−→Q (zizj)), respectively, and

ri = Re(gi)−
∑

1≤i<j≤n
µ−→Q (zizj)

n , si = Re(hi)−
∑

1≤i<j≤n
ν−→Q (zizj)

n , then
n
∑

i=1
ri = 0,

n
∑

i=1
si = 0.

Example 7. Consider a PFDG D = (P ,
−→
Q ) on V = {z1, z2, z3, z4, z5, z6}, as shown in Figure 5.
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b

Figure 5. Pythagorean fuzzy digraph.

The adjacency matrix, out-degree matrix and Laplacian matrix of the PFDG shown in Figure 5 are
as follows:

A(D) =



(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0.3, 0.6)
(0.4, 0.7) (0, 0) (0.3, 0.8) (0, 0) (0, 0) (0, 0)
(0, 0) (0.5, 0.7) (0, 0) (0, 0) (0.4, 0.7) (0, 0)
(0, 0) (0, 0) (0.3, 0.6) (0, 0) (0.3, 0.8) (0, 0)
(0, 0) (0, 0) (0, 0) (0.6, 0.5) (0, 0) (0.7, 0.5)

(0.6, 0.8) (0.6, 0.7) (0, 0) (0, 0) (0, 0) (0, 0)


.

Dout(D) =



(0.3, 0.6) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0) (0.7, 1.5) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0.9, 1.4) (0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0.6, 1.4) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (1.3, 1.0) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (1.2, 1.5)


.

L(D) =



(0.3, 0.6) (0, 0) (0, 0) (0, 0) (0, 0) (−0.3,−0.6)
(−0.4,−0.7) (0.7, 1.5) (−0.3,−0.8) (0, 0) (0, 0) (0, 0)

(0, 0) (−0.5,−0.7) (0.9, 1.4) (0, 0) (−0.4,−0.7) (0, 0)
(0, 0) (0, 0) (−0.3,−0.6) (0.6, 1.4) (−0.3,−0.8) (0, 0)
(0, 0) (0, 0) (0, 0) (−0.6,−0.5) (1.3, 1.0) (−0.7,−0.5)

(−0.6,−0.8) (−0.6,−0.7) (0, 0) (0, 0) (0, 0) (1.2, 1.5)


.
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The Laplacian spectrum and the Laplacian energy of a PFDG D, given in Figure 5, are as follows:

Laplacian Spec(µ−→Q (zizj)) = {0, 0.2757, 0.6371, 1.2317 + 0.3555i, 1.2317− 0.3555i, 1.6237},
Laplacian Spec(ν−→Q (zizj)) = {0, 0.4036, 2.1629, 1.8081 + 0.3173i, 1.8081− 0.3173i, 1.2174}.

Therefore, Laplacian Spec(D) = {(0, 0), (0.2757, 0.4036), (0.6371, 2.1629), (1.2317 + 0.3555i, 1.8081 +
0.3173i), (1.2317− 0.3555i, 1.8081− 0.3173i), (1.6237, 1.2174)}.

Now,

LE(µ−→Q (zizj)) = 3.1744, LE(ν−→Q (zizj)) = 4.1582.

Therefore, LE(D) = (3.1744, 4.1582).
Furthermore, we have:

6

∑
i=1

ri = 0,
6

∑
i=1

si = 0.

5. Applications of the Energy of PFGs in Decision-Making

In this section, we use two practical examples of the satellite communication system design
and the evaluation of the schemes of reservoir operation to illustrate our proposed concepts of the
Pythagorean fuzzy graph theory in decision-making.

5.1. Designing of a Satellite Communication System

Communication is closely related to social development. In particular, satellite communication [42]
has wide coverage area for communication, without geographical restrictions, and is less susceptible
to the impact of land disasters. There is a unique advantage of satellite communication in many
application areas, such as remote areas, islands, mountains, voyage aircraft and oceangoing vessels.
Therefore, satellite communication not only effectively supplements the lack of other means of
communication, but also has an irreplaceable role as the primary method of communication in mass
media, especially the military. In modern warfare, it is very important to quantify the quality of the
communication service. Suppose that a communication joint department in China plans to design
a satellite communication system. Thus, a new test methodology for the synthetic communication
system needs to be investigated, in order to provide evidence for building satellite Earth stations in the
future. According to the expeditions, there are four possible testing venues zi (i = 1, 2, 3, 4) to choose
from (Xichang z1, Chengdu z2, Nanjing z3 and Lhasa z4). However, due to resources, funds, and other
factors, only the most suitable of these would be selected. A decision-making group composed of six
experts ek (k = 1, 2, . . . , 6) provides the judgments with six individual Pythagorean fuzzy preference
relations (PFPRs) [27] Rk = (r(k)ij )4×4 (k = 1, 2, . . . , 6) as follows:

R1 =


(0.5, 0.5) (0.6, 0.5) (0.3, 0.6) (0.7, 0.5)

(0.5, 0.6) (0.5, 0.5) (0.7, 0.6) (0.8, 0.5)

(0.6, 0.3) (0.6, 0.7) (0.5, 0.5) (0.4, 0.8)

(0.5, 0.7) (0.5, 0.8) (0.8, 0.4) (0.5, 0.5)

 , R2 =


(0.5, 0.5) (0.7, 0.5) (0.3, 0.8) (0.4, 0.5)

(0.5, 0.7) (0.5, 0.5) (0.6, 0.4) (0.6, 0.7)

(0.8, 0.3) (0.4, 0.6) (0.5, 0.5) (0.3, 0.9)

(0.5, 0.4) (0.7, 0.6) (0.9, 0.3) (0.5, 0.5)

 ,

R3 =


(0.5, 0.5) (0.4, 0.7) (0.8, 0.2) (0.6, 0.5)

(0.7, 0.4) (0.5, 0.5) (0.7, 0.5) (0.4, 0.7)

(0.2, 0.8) (0.5, 0.7) (0.5, 0.5) (0.3, 0.5)

(0.5, 0.6) (0.7, 0.4) (0.5, 0.3) (0.5, 0.5)

 , R4 =


(0.5, 0.5) (0.3, 0.5) (0.7, 0.4) (0.6, 0.7)

(0.5, 0.3) (0.5, 0.5) (0.2, 0.9) (0.4, 0.5)

(0.4, 0.7) (0.9, 0.2) (0.5, 0.5) (0.4, 0.8)

(0.7, 0.6) (0.5, 0.4) (0.8, 0.4) (0.5, 0.5)

 ,

R5 =


(0.5, 0.5) (0.4, 0.6) (0.9, 0.2) (0.6, 0.6)

(0.6, 0.4) (0.5, 0.5) (0.7, 0.6) (0.5, 0.7)

(0.2, 0.9) (0.6, 0.7) (0.5, 0.5) (0.3, 0.4)

(0.6, 0.6) (0.7, 0.5) (0.4, 0.3) (0.5, 0.5)

 , R6 =


(0.5, 0.5) (0.4, 0.8) (0.9, 0.3) (0.6, 0.2)

(0.8, 0.4) (0.5, 0.5) (0.5, 0.7) (0.4, 0.3)

(0.3, 0.9) (0.7, 0.5) (0.5, 0.5) (0.6, 0.5)

(0.2, 0.6) (0.3, 0.4) (0.5, 0.6) (0.5, 0.5)

 .
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The PFDGs Dk corresponding to PFPRs given in matrices Rk (k = 1, 2, . . . , 6) are shown in
Figure 6.
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Figure 6. Pythagorean fuzzy digraphs.

The energy of each PFDG is calculated as:

E(D1) = (3.5008, 3.5008), E(D2) = (3.3021, 3.3021), E(D3) = (3.0706, 3.0706),

E(D4) = (3.1675, 3.1675), E(D5) = (3.1860, 3.1860), E(D6) = (3.0656, 3.0656).

Then, the weight of each expert can be calculated as:

wk = ((wµ)k, (wν)k) =

 E((Dµ)k)
s
∑

l=1
E((Dµ)l)

,
E((Dν)k)

s
∑

l=1
E((Dν)l)

 , k = 1, 2, . . . , s,

w1 = (0.1815, 0.1815), w2 = (0.1712, 0.1712), w3 = (0.1592, 0.1592),

w4 = (0.1642, 0.1642), w5 = (0.1651, 0.1651), w6 = (0.1589, 0.1589).

Therefore, the weight vector of six experts ek (k = 1, 2, . . . , 6) is:

w = ((0.1815, 0.1815), (0.1712, 0.1712), (0.1592, 0.1592), (0.1642, 0.1642), (0.1651, 0.1651), (0.1589, 0.1589))T .
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Compute the averaged Pythagorean fuzzy element (PFE) p(k)i of the testing venue zi over all
the other testing venues for the experts ek(k = 1, 2, . . . , 6) by the Pythagorean fuzzy averaging
(PFA) operator:

p(k)i = PFA(p(k)i1 , p(k)i2 , . . . , p(k)in ) =


√√√√√1−

 n

∏
j=1

(
1− µ2

ij

)1/n

,

 n

∏
j=1

νij

1/n
 , i = 1, 2, 3, . . . , n,

The aggregation results are listed in Table 1:

Table 1. The aggregation results of the experts ek (k = 1, 2, . . . , 6).

Experts The Overall Results of the Experts

e1

p(1)1 (0.5595, 0.5233)

p(1)2 (0.6581, 0.5477)

p(1)3 (0.5360, 0.5384)

p(1)4 (0.6130, 0.5785)

e2

p(2)1 (0.5145, 0.5623)

p(2)2 (0.5542, 0.5595)

p(2)3 (0.5709, 0.5335)

p(2)4 (0.7189, 0.4356)

e3

p(3)1 (0.6187, 0.4325)

p(3)2 (0.6031, 0.5144)

p(3)3 (0.4034, 0.6117)

p(3)4 (0.5647, 0.4356)

e4

p(4)1 (0.5595, 0.5144)

p(4)2 (0.4235, 0.5097)

p(4)3 (0.6610, 0.4865)

p(4)4 (0.6581, 0.4681)

e5

p(5)1 (0.6884, 0.4356)

p(5)2 (0.5877, 0.5384)

p(5)3 (0.4419, 0.5958)

p(5)4 (0.5715, 0.4606)

e6

p(6)1 (0.6884, 0.3936)

p(6)2 (0.5982, 0.4527)

p(6)3 (0.5595, 0.5791)

p(6)4 (0.4034, 0.5180)

Compute a collective PFE pi (i = 1, 2, 3, 4) of the testing venue zi over all the other testing venues
using the Pythagorean fuzzy weighted averaging (PFWA) operator [2].

pi = PFWA(p(1)i , p(2)i , . . . , p(s)i ) =

(√
1−

s

∏
k=1

(
1− (µ2

k)
)wk ,

s

∏
k=1

(νk)
wk

)
.

That is, p1 = (0.6110, 0.4752), p2 = (0.5803, 0.5203), p3 = (0.5415, 0.5550), p4 = (0.6061, 0.4814).
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Compute the score functions s(pi) = µ2
i − ν2

i [4] of pi(i = 1, 2, 3, 4), and rank all the testing venues
zi(i = 1, 2, 3, 4) according to the values of s(pi)(i = 1, 2, 3, 4).

s(p1) = 0.1475, s(p2) = 0.0660, s(p3) = −0.0148, s(p4) = 0.1356.

Then, z1 � z4 � z2 � z3.
Thus, the best testing venue is z1.
Now, the Laplacian matrices of the PFDGs L(Dk) = RL

k (k = 1, 2, . . . , 6) shown in Figure 6 are:

RL
1 =


(1.6, 1.6) (−0.6,−0.5) (−0.3,−0.6) (−0.7,−0.5)

(−0.5,−0.6) (2.0, 1.7) (−0.7,−0.6) (−0.8,−0.5)

(−0.6,−0.3) (−0.6,−0.7) (1.6, 1.8) (−0.4,−0.8)

(−0.5,−0.7) (−0.5,−0.8) (−0.8,−0.4) (1.8, 1.9)

 ,

RL
2 =


(1.4, 1.8) (−0.7,−0.5) (−0.3,−0.8) (−0.4,−0.5)

(−0.5,−0.7) (1.7, 1.8) (−0.6,−0.4) (−0.6,−0.7)

(−0.8,−0.3) (−0.4,−0.6) (1.5, 1.8) (−0.3,−0.9)

(−0.5,−0.4) (−0.7,−0.6) (−0.9,−0.3) (2.1, 1.3)

 ,

RL
3 =


(1.8, 1.4) (−0.4,−0.7) (−0.8,−0.2) (−0.6,−0.5)

(−0.7,−0.4) (1.8, 1.6) (−0.7,−0.5) (−0.4,−0.7)

(−0.2,−0.8) (−0.5,−0.7) (1.0, 2.0) (−0.3,−0.5)

(−0.5,−0.6) (−0.7,−0.4) (−0.5,−0.3) (1.7, 1.3)

 ,

RL
4 =


(1.6, 1.6) (−0.3,−0.5) (−0.7,−0.4) (−0.6,−0.7)

(−0.5,−0.3) (1.1, 1.7) (−0.2,−0.9) (−0.4,−0.5)

(−0.4,−0.7) (−0.9,−0.2) (1.7, 1.7) (−0.4,−0.8)

(−0.7,−0.6) (−0.5,−0.4) (−0.8,−0.4) (2.0, 1.4)

 ,

RL
5 =


(1.9, 1.4) (−0.4,−0.6) (−0.9,−0.2) (−0.6,−0.6)

(−0.6,−0.4) (1.8, 1.7) (−0.7,−0.6) (−0.5,−0.7)

(−0.2,−0.9) (−0.6,−0.7) (1.1, 2.0) (−0.3,−0.4)

(−0.6,−0.6) (−0.7,−0.5) (−0.4,−0.3) (1.7, 1.4)

 ,

RL
6 =


(1.9, 1.3) (−0.4,−0.8) (−0.9,−0.3) (−0.6,−0.2)

(−0.8,−0.4) (1.7, 1.4) (−0.5,−0.7) (−0.4,−0.3)

(−0.3,−0.9) (−0.7,−0.5) (1.6, 1.9) (−0.6,−0.5)

(−0.2,−0.6) (−0.3,−0.4) (−0.5,−0.6) (1.0, 1.6)

 .

The Laplacian energy of each PFDG is calculated as:

LE(D1) = (3.5000, 3.5000), LE(D2) = (3.3400, 3.3400), LE(D3) = (3.1400, 3.1400),

LE(D4) = (3.2000, 3.2000), LE(D5) = (3.2400, 3.2400), LE(D6) = (3.1302, 3.1302).

Then, the weight of each expert can be calculated as:

wk = ((wµ)k, (wν)k) =

 LE((Dµ)k)
s
∑

l=1
LE((Dµ)l)

,
LE((Dν)k)

s
∑

l=1
LE((Dν)l)

 , k = 1, 2, . . . , s,

w1 = (0.1790, 0.1790), w2 = (0.1708, 0.1708), w3 = (0.1606, 0.1606),

w4 = (0.1637, 0.1637), w5 = (0.1657, 0.1657), w6 = (0.1601, 0.1601).
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Based on this, we compute a collective PFE pi (i = 1, 2, 3, 4) of the testing venue zi over all the
other testing venues using the PFWA operator:

pi = PFWA(p(1)i , p(2)i , . . . , p(s)i )

That is, p1 = (0.6113, 0.4749), p2 = (0.5802, 0.5202), p3 = (0.5412, 0.5553), p4 = (0.6057, 0.4812).
Compute the score functions s(pi) = µ2

i − ν2
i of pi(i = 1, 2, 3, 4), and rank all the testing venues

zi(i = 1, 2, 3, 4) according to the values of s(pi)(i = 1, 2, 3, 4).

s(p1) = 0.1482, s(p1) = 0.0660, s(p3) = −0.0155, s(p4) = 0.1353.

Then, z1 � z4 � z2 � z3.
Thus, the testing venue z1 is the best among the four given testing venues. We present our scheme

for this application in the following Algorithm 1.

Algorithm 1 The algorithm for the selection of the most important testing venue.
INPUT: A discrete set of testing venues (alternatives) Z = {z1, z2, . . . , zn}, a set of experts e =

{e1, e2, . . . , es} and construction of PFPR Rk = (p(k)ij )n×n for each expert.
OUTPUT: The selection of the optimal testing venue.

1. begin
2. Calculate the energy and Laplacian energy of each PFDG Dk(k = 1, 2, . . . , s).
3. Determine the wight vector for experts based on the energy of PFDGs by utilizing wk = E((Dµ)k)

s
∑

l=1
E((Dµ)l)

, E((Dν)k)
s
∑

l=1
E((Dν)l)

 , and then, based on the Laplacian energy of PFDGs by utilizing

wk =

 LE((Dµ)k)
s
∑

l=1
LE((Dµ)l)

, LE((Dν)k)
s
∑

l=1
LE((Dν)l)

 , k = 1, 2, . . . , s.

4. Aggregate all p(k)ij (j = 1, 2, . . . , n) corresponding to the testing venue zi, and get the PFE p(k)i of
the testing venue zi over all the other testing venues for the expert ek by using the PFA operator.

5. Aggregate all p(k)i (k = 1, 2, . . . , s) into a collective PFE pi for the testing venue zi using the PFWA
operator.

6. Compute the score functions s(pi) of pi(i = 1, 2, . . . , n).
7. Rank all the testing venues zi(i = 1, 2, . . . , n) according to s(pi)(i = 1, 2, . . . , n).
8. Output the optimal testing venue.
9. end

5.2. Evaluation of the Schemes of Reservoir Operation

This section focuses on evaluating the schemes of reservoir operation. It is a water resource
system led by Jiudianxia reservoir with a complex condition and multipurpose use along with the
Tao River basin and cascaded power stations in the Tao River. The reservoir was designed for many
purposes, such as power generation, irrigation, total water supply for agriculture, industry, residents
and environment. Due to different requirements for the partition of the amount of water, five reservoir
operation schemes z1, z2, z3, z4 and z5 are recommended.

z1: Maximum plant output, enough supply of water used in the Tao River basin, lower and higher
supply for society and the economy;

z2: Maximum plant output, enough supply of water used in the Tao River basin, lower and higher
supply for society and the economy, lower supply for the ecosystem;
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z3: Maximum plant output, enough supply of water used in the Tao River basin, lower and higher
supply for society and the economy, total supply for the ecosystem and environment, 90% of
which is passed down for flushing sands during low water periods;

z4: Maximum plant output, enough supply of water used in the Tao River basin, lower and higher
supply for society and the economy, total supply for the ecosystem and environment, 50% of
which is passed down for flushing sands during low water periods;

z5: Maximum plant output, enough supply of water used in the Tao River basin, lower and higher
supply for society and the economy, total supply for the ecosystem and environment during level
and flood periods.

To select the optimal scheme, the government invites four experts ek (k = 1, 2, 3, 4) to evaluate the
five schemes. Based on their experience, the experts compare each pair of schemes and give individual
judgments using the following PFPRs Rk = (r(k)ij )5×5 (k = 1, 2, 3, 4) [43]:

R1 =



(0.5, 0.5) (0.6, 0.8) (0.5, 0.7) (0.7, 0.4) (0.8, 0.1)

(0.8, 0.6) (0.5, 0.5) (0.5, 0.4) (0.6, 0.5) (0.5, 0.3)

(0.7, 0.5) (0.4, 0.5) (0.5, 0.5) (0.6, 0.7) (0.7, 0.6)

(0.4, 0.7) (0.5, 0.6) (0.7, 0.6) (0.5, 0.5) (0.8, 0.4)

(0.1, 0.8) (0.3, 0.5) (0.6, 0.7) (0.4, 0.8) (0.5, 0.5)


,

R2 =



(0.5, 0.5) (0.7, 0.2) (0.8, 0.4) (0.7, 0.6) (0.7, 0.3)

(0.2, 0.7) (0.5, 0.5) (0.5, 0.7) (0.8, 0.3) (0.5, 0.4)

(0.4, 0.8) (0.7, 0.5) (0.5, 0.5) (0.4, 0.6) (0.7, 0.6)

(0.6, 0.7) (0.3, 0.8) (0.6, 0.4) (0.5, 0.5) (0.5, 0.3)

(0.3, 0.7) (0.4, 0.5) (0.6, 0.7) (0.3, 0.5) (0.5, 0.5)


,

R3 =



(0.5, 0.5) (0.6, 0.7) (0.8, 0.3) (0.6, 0.4) (0.7, 0.2)

(0.7, 0.6) (0.5, 0.5) (0.7, 0.4) (0.1, 0.8) (0.5, 0.6)

(0.3, 0.8) (0.4, 0.7) (0.5, 0.5) (0.5, 0.7) (0.7, 0.4)

(0.4, 0.6) (0.8, 0.1) (0.7, 0.5) (0.5, 0.5) (0.5, 0.3)

(0.2, 0.7) (0.6, 0.5) (0.4, 0.7) (0.3, 0.5) (0.5, 0.5)


,

R4 =



(0.5, 0.5) (0.8, 0.6) (0.7, 0.1) (0.8, 0.3) (0.4, 0.7)

(0.6, 0.8) (0.5, 0.5) (0.5, 0.3) (0.4, 0.3) (0.7, 0.6)

(0.1, 0.7) (0.3, 0.5) (0.5, 0.5) (0.9, 0.2) (0.5, 0.3)

(0.3, 0.8) (0.3, 0.4) (0.2, 0.9) (0.5, 0.5) (0.8, 0.4)

(0.7, 0.4) (0.6, 0.7) (0.3, 0.5) (0.4, 0.8) (0.5, 0.5)


.

The PFDGs Dk corresponding to PFPRs given in matrices Rk (k = 1, 2, 3, 4) are shown in Figure 7:
The energy of each PFDG is calculated as:

E(D1) = (3.3053, 3.3053), E(D2) = (2.9252, 2.9252), E(D3) = (2.8510, 2.8510), E(D4) =

(3.0081, 3.0081).
Then, the weight of each expert can be calculated as:

wk = ((wµ)k, (wν)k) =

 E((Dµ)k)
4
∑

l=1
E((Dµ)l)

,
E((Dν)k)

4
∑

l=1
E((Dν)l)

 , k = 1, 2, . . . , 4,

w1 = (0.2734, 0.2734), w2 = (0.2420, 0.2420), w3 = (0.2358, 0.2358), w4 = (0.2488, 0.2488).
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Utilize the aggregation operator to fuse all the individual PFPRs Rk = (r(k)ij )5×5 (k = 1, 2, 3, 4) into
the collective PFPR R = (rij)5×5. Here, we apply the Pythagorean fuzzy weighted averaging (PFWA)
operator [2] to fuse the individual PFPR. Thus, we have:

PFWA(r(1)ij , r(2)ij , . . . , r(s)ij ) =

(√
1−

s

∏
k=1

(
1− (µ2

ij)
(k)
)wk

,
s

∏
k=1

(
ν
(k)
ij

)wk

)
.
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Figure 7. Pythagorean fuzzy digraphs.

R =


(0.5000, 0.5000) (0.6892, 0.5160) (0.7212, 0.3085) (0.7118, 0.4108) (0.6892, 0.2493)
(0.6544, 0.6690) (0.5000, 0.5000) (0.5614, 0.4264) (0.5828, 0.4347) (0.5645, 0.4500)
(0.4712, 0.6805) (0.4905, 0.5413) (0.5000, 0.5000) (0.6895, 0.4938) (0.6623, 0.4589)
(0.4446, 0.6978) (0.5535, 0.3811) (0.6078, 0.5763) (0.5000, 0.5000) (0.6991, 0.3486)
(0.4284, 0.6317) (0.4974, 0.5437) (0.5051, 0.6438) (0.3567, 0.6391) (0.5000, 0.5000)

 .

Calculate their scores using the score function sij = µ2
ij − ν2

ij:

R =


0.0000 0.2088 0.4250 0.3379 0.4129
−0.0194 0.0000 0.1334 0.1507 0.1161
−0.2411 −0.0524 0.0000 0.2316 0.2280
−0.2893 0.1611 0.0372 0.0000 0.3672
−0.2155 −0.0481 −0.1593 −0.2812 0.0000

 .



Mathematics 2018, 6, 136 24 of 27

The net flow of zi [44], i.e., the net degree of preference of zi over the other schemes is:

φ(zi) =
s

∑
k=1

wk

(
n

∑
j=1j 6=i

(r(k)ij − r(k)ji )

)
, i = 1, 2, . . . , n.

Therefore, the net flows of the five schemes are:

Φ = (φ(z1), φ(z2), φ(z3), φ(z4), φ(z5))
T = (2.1499, 0.1114,−0.2702,−0.1628,−1.8283)T

which gives the ranking of z1 � z2 � z4 � z3 � z5. Thus, the best scheme is z1.
Now, the Laplacian matrices of the PFDGs L(Dk) = RL

k (k = 1, 2, 3, 4) shown in Figure 7 are:

RL
1 =



(2.6, 2.0) (−0.6,−0.8) (−0.5,−0.7) (−0.7,−0.4) (−0.8,−0.1)

(−0.8,−0.6) (2.4, 1.8) (−0.5,−0.4) (−0.6,−0.5) (−0.5,−0.3)

(−0.7,−0.5) (−0.4,−0.5) (2.4, 2.3) (−0.6,−0.7) (−0.7,−0.6)

(−0.4,−0.7) (−0.5,−0.6) (−0.7,−0.6) (2.4, 2.3) (−0.8,−0.4)

(−0.1,−0.8) (−0.3,−0.5) (−0.6,−0.7) (−0.4,−0.8) (1.4, 2.8)


,

RL
2 =



(2.9, 1.5) (−0.7,−0.2) (−0.8,−0.4) (−0.7,−0.6) (−0.7,−0.3)

(−0.2,−0.7) (2.0, 2.1) (−0.5,−0.7) (−0.8,−0.3) (−0.5,−0.4)

(−0.4,−0.8) (−0.7,−0.5) (2.2, 2.5) (−0.4,−0.6) (−0.7,−0.6)

(−0.6,−0.7) (−0.3,−0.8) (−0.6,−0.4) (2.0, 2.2) (−0.5,−0.3)

(−0.3,−0.7) (−0.4,−0.5) (−0.6,−0.7) (−0.3,−0.5) (1.6, 2.4)


,

RL
3 =



(2.7, 1.6) (−0.6,−0.7) (−0.8,−0.3) (−0.6,−0.4) (−0.7,−0.2)

(−0.7,−0.6) (2.0, 2.4) (−0.7,−0.4) (−0.1,−0.8) (−0.5,−0.6)

(−0.3,−0.8) (−0.4,−0.7) (1.9, 2.6) (−0.5,−0.7) (−0.7,−0.4)

(−0.4,−0.6) (−0.8,−0.1) (−0.7,−0.5) (2.4, 1.5) (−0.5,−0.3)

(−0.2,−0.7) (−0.6,−0.5) (−0.4,−0.7) (−0.3,−0.5) (1.5, 2.4)


,

RL
4 =



(2.7, 1.7) (−0.8,−0.6) (−0.7,−0.1) (−0.8,−0.3) (−0.4,−0.7)

(−0.6,−0.8) (2.2, 2.0) (−0.5,−0.3) (−0.4,−0.3) (−0.7,−0.6)

(−0.1,−0.7) (−0.3,−0.5) (1.8, 1.7) (−0.9,−0.2) (−0.5,−0.3)

(−0.3,−0.8) (−0.3,−0.4) (−0.2,−0.9) (1.6, 2.5) (−0.8,−0.4)

(−0.7,−0.4) (−0.6,−0.7) (−0.3,−0.5) (−0.4,−0.8) (2.0, 2.4)


.

The Laplacian energy of each PFDG is calculated as:

LE(D1) = (4.7399, 4.4800), LE(D2) = (4.2800, 4.2800),

LE(D3) = (4.2000, 4.2000), LE(D4) = (4.1200, 4.1200).

Then, the weights can be calculated as:

wk = ((wµ)k, (wν)k) =

 LE((Dµ)k)
s
∑

l=1
LE((Dµ)l)

,
LE((Dν)k)

s
∑

l=1
LE((Dν)l)

 , k = 1, 2, . . . , s,

w1 = (0.2734, 0.2734), w2 = (0.2468, 0.2468), w3 = (0.2422, 0.2422), w4 = (0.2376, 0.2376).
Based on this, we utilize the PFWA operator to fuse all the individual PFPRs Rk = (r(k)ij )5×5 (k =

1, 2, 3, 4) into the collective PFPR R = (rij)5×5:
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R =


(0.5000, 0.5000) (0.6872, 0.5138) (0.7225, 0.3127) (0.7099, 0.4129) (0.6913, 0.2463)
(0.6542, 0.6674) (0.5000, 0.5000) (0.5629, 0.4289) (0.5845, 0.4375) (0.5618, 0.4491)
(0.4723, 0.6816) (0.4930, 0.5425) (0.5000, 0.5000) (0.6834, 0.5004) (0.6641, 0.4613)
(0.4466, 0.6961) (0.5572, 0.3790) (0.6108, 0.5719) (0.5000, 0.5000) (0.6961, 0.3475)
(0.4218, 0.6356) (0.4964, 0.5416) (0.5068, 0.6462) (0.3556, 0.6357) (0.5000, 0.5000)

 .

Calculate their scores using the score function:

R =


0.0000 0.2082 0.4242 0.3335 0.4173
−0.0174 0.0000 0.1329 0.1503 0.1139
−0.2415 −0.0512 0.0000 0.2167 0.2283
−0.2851 0.1668 0.0460 0.0000 0.3638
−0.2261 −0.0469 −0.1608 −0.2777 0.0000

 .

The net flows of the five alternatives are:

Φ = (φ(z1), φ(z2), φ(z3), φ(z4), φ(z5))
T = (2.1533, 0.1028,−0.2900,−0.1313,−1.8348)T

which gives the ranking of z1 � z2 � z4 � z3 � z5. Thus, the best scheme is z1. We present our
proposed method in the following Algorithm 2.

Algorithm 2 The algorithm for the selection of the most important scheme of reservoir operation.
INPUT: A discrete set of schemes (alternatives) Z = {z1, z2, . . . , zn}, a set of experts e = {e1, e2, . . . , es}
and construction of PFPR Rk = (p(k)ij )n×n for each expert.

OUTPUT: The selection of the optimal scheme.

1. begin
2. Calculate the energy and Laplacian energy of each PFDG Dk(k = 1, 2, . . . , s).
3. Determine the wight vector for experts based on the energy of PFDGs by utilizing wk = E((Dµ)k)

s
∑

l=1
E((Dµ)l)

, E((Dν)k)
s
∑

l=1
E((Dν)l)

 , and then, based on the Laplacian energy of PFDGs by utilizing

wk =

 LE((Dµ)k)
s
∑

l=1
LE((Dµ)l)

, LE((Dν)k)
s
∑

l=1
LE((Dν)l)

 , k = 1, 2, . . . , s.

4. Utilize the PFWA operator to fuse all the individual PFPRs Rk = (r(k)ij )n×n (k = 1, 2, . . . , s) into
the collective PFPR R = (rij)n×n.

5. Calculate their scores using the score function sij = µ2
ij − ν2

ij.
6. Determine the net degree of preference of scheme zi over the other schemes by utilizing:

φ(zi) =
s

∑
k=1

wk

(
n

∑
j=1j 6=i

(r(k)ij − r(k)ji )

)
, i = 1, 2, . . . , n.

7. Rank all the schemes zi(i = 1, 2, . . . , n) according to the net flows φ(zi)(i = 1, 2, . . . , n).
8. Output the best scheme.
9. end

6. Conclusions

A Pythagorean fuzzy set model is suitable for modeling problems with uncertainty, indeterminacy
and inconsistent information in which human knowledge is necessary and human evaluation needed.
Pythagorean fuzzy models give more precision, flexibility and compatibility to the system as compared
to the classical, fuzzy and intuitionistic fuzzy models. A PFG can describe the uncertainty of all kinds
of networks well. In this paper, we have introduced the concepts of energy and Laplacian energy of
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graphs in Pythagorean fuzzy circumstances and investigated their interesting properties. We have
derived the lower and upper bounds for the energy and Laplacian energy of a PFG. We have also
introduced the concept of the energy and Laplacian energy of a PFDG along with its applications
in decision making problems. We are planing to extend our research work to: (1) interval-valued
Pythagorean fuzzy graphs; (2) simplified interval-valued Pythagorean fuzzy graphs; and (3) hesitant
Pythagorean fuzzy graphs.
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the computations. M.A. verified the analytical methods.
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