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Abstract

:

Let   X ⊂  P r    be an integral and non-degenerate variety. We study when a finite set   S ⊂ X   evinces the X-rank of the general point of the linear span of S. We give a criterion when X is the order d Veronese embedding   X  n , d    of   P n   and    | S |  ≤ (   n + ⌊ d / 2 ⌋  n  )  . For the tensor rank, we describe the cases with   | S | ≤ 3  . For    X  n , d   ,   we raise some questions of the maximum rank for   d ≫ 0   (for a fixed n) and for   n ≫ 0   (for a fixed d).






Keywords:


X-rank; symmetric tensor rank; tensor rank; veronese variety; segre variety












1. Introduction


Let   X ⊂  P r    be an integral and non-degenerate variety. For any   q ∈  P r   , the X-rank    r X   ( q )    of q is the minimal cardinality of a finite set   S ⊂ X   such that   q ∈ 〈 S 〉  , where   〈   〉   denotes the linear span. The definition of X-ranks captures the notion of tensor rank (take as X the Segre embedding of a multiprojective space) of rank decomposition of a homogeneous polynomial (take as X a Veronese embedding of a projective space) of partially symmetric tensor rank (take a complete linear system of a multiprojective space) and small variations of it may be adapted to cover other applications. See [1] for many applications and [2] for many algebraic insights. For the pioneering works on the applied side, see, for instance, [3,4,5,6,7]. The paper [7] proved that X-rank is not continuous and showed why this has practical importance. The dimensions of the secant varieties (i.e., the closure of the set of all   q ∈  P r    with a prescribed rank) has a huge theoretical and practical importance. The Alexander–Hirschowitz theorem computes in all cases the dimensions of the secant varieties of the Veronese embeddings of a projective space ([8,9,10,11,12,13,14]). For the dimensions of secant varieties, see [15,16,17] for tensors and [18,19,20,21,22,23,24,25,26,27] for partially symmetric tensors (i.e., Segre–Veronese embeddings of multiprojective spaces). For the important problem of the uniqueness of the set evincing a rank (in particular for the important case of tensors) after the classical [28], see [29,30,31,32,33,34,35,36,37,38]. See [39,40,41,42,43,44,45,46,47] for other theoretical works.



Let   S ⊂ X   be a finite set and   q ∈  P r   . We say that S evinces the X-rank of q if   q ∈ 〈 S 〉   and    | S |  =  r X   ( q )   . We say that S evinces an X-rank if there is   q ∈  P r    such that S evinces the X-rank of q. Obviously, S may evince an X-rank only if it is linearly independent, but this condition is not a sufficient one, except in very trivial cases, like when    r X   ( q )  ≤ 2   for all   q ∈  P r   . Call   r  X , max    the maximum of all integers    r X   ( q )   . An obvious necessary condition is that    | S |  ≤  r  X , max     and this is in very special cases a sufficient condition (see Propositions 1 for the rational normal curve). If S evinces the X-rank of   q ∈  P r   , then   q ∈ 〈 S 〉   and   q ∉ 〈  S ′  〉   for any    S ′  ⊊ S  . For any finite set   S ⊂  P r   , set     〈 S 〉  ′  : =  〈 S 〉  \  (  ∪   S ′  ⊊ S    〈  S ′  〉  )   . Note that     〈 S 〉  ′  = ∅   if and only if either   S = ∅   or S is linearly dependent (when   | S | = 1  ,     〈 S 〉  ′  = S   and S evinces itself). In some cases, it is possible to show that some finite   S ⊂ X   evinces the X-rank of all points of    〈 S 〉  ′  . We say that S evinces generically the X-ranks if there is a non-empty Zariski open subset U of   〈 S 〉   such that S evinces the X-ranks of all   q ∈ U  . We say that S totally evinces the X-ranks if S evinces the X-ranks of all   q ∈   〈 S 〉  ′   . We first need an elementary and well-known bound to compare it with our results.



Let   ρ ( X )   be the maximal integer such that each subset of X with cardinality   ρ ( X )   is linearly independent. See ([43] Lemma 2.6, Theorem 1.18) and ([42] Proposition 2.5) for some uses of the integer   ρ ( X )  . Obviously,   ρ ( X ) ≤ r + 1   and it is easy to check and well known that equality holds if and only if X is a Veronese embedding of   P 1   (Remark 1). If   | S | ≤ ⌊ ( ρ ( X ) + 1 ) / 2 ⌋  , then S totally evinces the X-ranks (as in [43] Theorem 1.18) while, for each integer   t > ⌊ ( ρ ( X ) + 1 ) / 2 ⌋   with   t ≤ r + 1  , there is a linearly independent subset of X with cardinality t and not totally evincing the X-ranks ( Lemma 3). Thus, to say something more, we need to make some assumptions on S and these assumptions must be related to the geometry of X or the reasons for the interest of the X-ranks. We do this in Section 3 for the Veronese embeddings and in Section 4 for the tensor rank. For tensors, we only have results for   | S | ≤ 3   (Propositions 3 and 4).



For all positive integers   n , d   let    ν  d , n   :  P n  →  P r   ,   r =    n + d  n   − 1  , denote the Veronese embedding of   P n  , i.e., the embedding of   P n   induced by the complete linear system    |   O  P n     ( d )  |   . Set    X  n , d   : =  ν  d , n    (  P n  )   . At least over an algebraically closed base field of characteristic 0 (i.e., in the set-up of this paper), for any   q ∈  P r   , the integer    r  X  n , d     ( q )    is the minimal number of d-powers of linear forms in   n + 1   variables whose sum is the homogeneous polynomial associated to q.



We prove the following result, whose proof is elementary (see Section 3 for the proof). In its statement, the assumption “   h 1   (  I A   (  ⌊ d / 2 ⌋  )  )  = 0  ” just means that the vector space of all degree   ⌊ d / 2 ⌋   homogeneous polynomials in   n + 1   variables vanishing on A has dimension      n + ⌊ d / 2 ⌋  n   −  | A |   , i.e., A imposes   | A |   independent conditions to the homogeneous polynomials of degree   ⌊ d / 2 ⌋   in   n + 1   variables.



Theorem 1.

Fix integers   n ≥ 2  ,   d > k > 2   and a finite set   A ⊂  P n    such that    h 1   (  I A   (  ⌊ d / 2 ⌋  )  )  = 0  . Set   S : =  ν  d , n    ( A )   . Then, S totally evinces the ranks for   X  n , d   .





A general   A ⊂  P n    satisfies the assumption of Theorem 1 if and only if    | A |  ≤    n + ⌊ d / 2 ⌋  n    . For much smaller   | A |  , one can check the condition    h 1   (  I A   (  ⌊ d / 2 ⌋  )  )  = 0   if A satisfies some geometric conditions (e.g., if A is in linearly general position, it is sufficient to assume   | A | ≤ n ⌊ d / 2 ⌋ + 1  ).



We conclude the paper with some questions related to the maximum of the X-ranks when X is a Veronese embedding of   P n  .




2. Preliminary Lemmas


Remark 1.

Let   X ⊂  P r    be an integral and non-degenerate variety. Since any   r + 2   points of   P r   are linearly dependent, we have   ρ ( X ) ≤ r + 1  . If X is a rational normal curve, then   ρ ( X ) = r + 1   because any   r + 1   points of X spans   P r  . Now, we check that, if   ρ ( X ) = r + 1  , then X is a rational normal curve. This is well known, but usually stated in the set-up of Veronese embeddings or the X-ranks of curves. Set   n : = dim X   and   d : = deg ( X )  . Assume   ρ ( X ) = r + 1  . Let   H ⊂  P r    be a general hyperplane. If   n > 1  , then   X ∩ H   has dimension   n − 1 > 0   and in particular it has infinitely many points. Any   r + 1   points of   X ∩ H   are linearly dependent. Now, assume   n = 1  . Since X is non-degenerate, we have   d ≥ n  . By Bertini’s theorem,   X ∩ H   contains d points of X. Since   ρ ( X ) = r + 1  ,   dim H = r − 1   and   H ∩ X ⊂ H  , we have   d ≤ r  . Hence,   d = r  , i.e., X is a rational normal curve.





The following example shows, that in many cases, there are are sets evincing X-ranks, but not totally evincing X-ranks or even generically evincing X-ranks.



Example 1.

Let   X ⊂  P r   ,   r ≥ 3  , be a rational normal curve. Take   q ∈  P r    with    r X   ( q )  = r  , i.e., take   q ∈ τ ( X ) \ X  , where   τ ( X )   is the tangential variety of X ([48]). Take   S ⊂ X   evincing the X-rank of q. Thus,   | S | = r   and S spans a hyperplane   〈 S 〉  . Since   dim τ ( X ) = 2   and   τ ( X )   spans   P r  ,   〈 S 〉 ∩ τ ( X )   is a proper closed algebraic subset of   〈 S 〉  . Thus, for a general   p ∈ 〈 S 〉  , we have    r X   ( p )  <  | S |    and hence S does not generically evinces X-ranks.





Lemma 1.

If   S ⊂ X   is a finite set evincing the rank of some   q ∈  P r   , then each    S ′  ⊂ S  ,    S ′  ≠ ∅  , evinces the X-rank of some    q ′  ∈  P r   .





Proof. 

We may assume    S ′  ≠ S  . Write    S ″  : = S \  S ′   . Since S evinces the rank of q, S is linearly independent, but   S ∪ { q }   is not linearly independent. Since    S ′  ≠ ∅   and    S ″  ≠ ∅  , there are unique    q ′  ∈  〈  S ′  〉    and    q ″  ∈  〈  S ″  〉    such that   q ∈ 〈  {  q ′  ,  q ″  }  〉  . Since S evinces the rank of q,   S ′   evinces the rank of   q ′  . ☐





Lemma 2.

Every non-empty subset of a set evincing generically (resp. totally) X-ranks evinces generically (resp. totally) the X-ranks.





Proof. 

Assume that S evinces generically the X-ranks and call U a non-empty open subset of    〈 S 〉  ′   such that    r X   ( q )  =  | S |    for all   q ∈ U  ; if S evinces totally the X-ranks, take   U : =   〈 S 〉  ′   . Fix    S ′  ⊊ S  ,    S ′  ≠ 0   and set    S ″  : = S \  S ′   . Let E be the set of all   q ∈   〈 S 〉  ′    such that   〈  { q }  ∪  S ″  〉 ∩ U ≠ ∅  . If   q ∈ E  , then    r X   ( q )  =  |  S ′  |    because    r X   (  q ′  )  =  | S |    for each    q ′  ∈  〈  { q }  ∪  S ″  〉  ∩ U  . Since    S ′  ∩  S ″  = ∅   and    S ′  ∪  S ″  = S   is linearly independent, E is a non-empty open subset of    〈 S 〉  ′   (a general element of   〈 S 〉   is contained in the linear span of a general element of   〈  S ′  〉   and a general element of   〈  S ′  〉  ). Now, assume   U =   〈 S 〉  ′   . Every element of    〈 S 〉  ′   is in the linear span of an element of    〈  S ′  〉  ′   and an element of    〈  S ″  〉  ′  . ☐





Lemma 3.

Take a finite set   S ⊂ X  ,   S ≠ ∅  .




	(a) 

	
If   | S | ≤ ⌊ ( ρ ( X ) + 1 ) / 2 ⌋  , then S totally evinces the X-ranks.




	(b) 

	
For each integer   t > ⌊ ( ρ ( X ) + 1 ) / 2 ⌋  , there is   A ⊂ X   such that   | A | = t   and A does not totally evince the X-ranks.











Proof. 

Take   q ∈   〈 S 〉  ′    and assume    r X   ( q )  <  | S |   . Take   B ⊂ X   evincing the X-rank of q. Since   | B | < | S |  , we have   B ≠ S  . Since   q ∈ 〈 S 〉 ∩ 〈 B 〉  , but no proper subset of either B or S spans q,   S ∪ B   is linearly dependent. Since   | B | ≤ | S | − 1  , we have   | B ∪ S | ≤ ρ ( X )  , contradicting the definition of   ρ ( X )  .



Now, we prove part (b). By Lemma 1, it is sufficient to do the case   t = ⌊ ( ρ ( X ) + 1 ) / 2 ⌋ + 1  . By the definition of the integer   ρ ( X )  , there is a subset   D ⊂ X   with   | D | = ρ ( X ) + 1   and D linearly dependent. Write   D = A ⊔ E   with   | A | = ⌊ ( ρ ( X ) + 1 ) / 2 ⌋ + 1   and   | E | = ρ ( X ) + 1 − | A |  . Note that   | A | > | E |  . Since   | A | ≤ ρ ( X )   (remember that   ρ ( X ) ≥ 2  ), both A and E are linearly independent. Since   A ∪ E   is linearly dependent, there is   q ∈ 〈 A 〉 ∩ 〈 E 〉  . Since   | D | = ρ ( X ) + 1  , every proper subset of D is linearly independent. Hence,    〈  A ′  〉  ∩  〈 E 〉  = ∅   for all    A ′  ⊊ A  . Thus,   q ∈   〈 A 〉  ′   . Since   | E | < | A |  , A does not evince the X-rank of q. ☐





Remark 2.

Take   X ⊂  P r    such that    r X   ( q )  ≤ 2   for all   q ∈  P r    (e.g., by [49], we may take most space curves). Any set   S ⊂ X   with   | S | = 2   evinces its X-ranks if and only if X contains no line.






3. The Veronese Embeddings of Projective Spaces


Let    ν  d , n   :  P n  →  P r   ,   r : = − 1 +    n + d  n    , denote the Veronese embedding of   P n  . Set    X  n , d   : =  ν  d , n    (  P n  )   .



Proposition 1.

Let   X ⊂  P d   ,   d ≥ 2  , be the rational normal curve.




	(a) 

	
A non-empty finite set   S ⊂ X   evinces some rank of   P d   if and only if   | S | ≤ d  .




	(b) 

	
A non-empty finite set   A ⊂ X   totally evinces the X-ranks if and only if   | A | ≤ ⌊ ( d + 2 ) / 2 ⌋  .











Proof. 

By a theorem of Sylvester’s ([48]), every   q ∈  P d    has X-rank at most d. Thus, the condition   | S | ≤ d   is a necessary condition for evincing some rank. By Lemma 1 to prove part (a), it is sufficient to prove it when   | S | = d  . Take any connected zero-dimensional scheme   Z ⊂ X   with   deg ( Z ) = 2   and   S ∩ Z = ∅  . Thus,   deg ( Z ∪ S ) = d + 2  . Since   X ≅  P 1   ,   deg (  O X   ( 1 )  ) = d   and X is projectively normal, we have    h 1   (  I  S ∪ Z    ( 1 )  )  = 1   and    h 1   (  I W   ( 1 )  )  = 0   for each    W ′  ⊊ S ∪ Z  . This is equivalent to say that the line   〈 Z 〉   meets   〈 S 〉   at a unique point, q and   q ≠  Z red   . By Sylvester’s theorem,    r X   ( q )  = d   ([48]). Since   q ∈ 〈 S 〉   and   | S | = d  , S evinces the X-rank of q.



If   A ≠ ∅   and   | A | ≤ ⌊ ( d + 2 ) / 2 ⌋  , then A totally evinces the X-ranks by part (a) of Lemma 3 and the fact that   ρ ( X ) = d + 1  . Now, assume   d ≥ | A | > ⌊ ( d + 2 ) / 2 ⌋  . Fix a set   E ⊂ X \ A   with   | E | = d + 2 − | A |  . Adapt the proof of part (b) of Lemma 3. ☐





Proposition 2.

Fix a set   S ⊂  X  n , d    ,   n ≥ 2  , with   | S | = d + 1  . The following conditions are equivalent:




	1. 

	
there is a line   L ⊂  P n    such that   | S ∩ L | > ⌊ ( d + 2 ) / 2 ⌋  ;




	2. 

	
S evinces no   X  n , d   -rank;




	3. 

	
there is   q ∈   〈 S 〉  ′    such that S does not evince the   X  n , d   -rank of q.











Proof. 

Obviously, (2) implies (3). If    X ′  ⊂ X   is a subvariety and   q ∈ 〈  X ′  〉  , we have    r  X ′    ( q )  ≥  r X   ( q )   . Thus, Sylvester’s theorem ([48]) and Lemma 2 show that (1) implies (2).



Now, assume the existence of   q ∈   〈 S 〉  ′    such that S does not evince the X-rank of q, i.e.,    r X   ( q )  ≤ d  . Take   A ⊂  P n    such that   ν ( A ) = S   and take   B ⊂  P n    such that    ν d   ( B )    evinces the X-rank of q. Since   q ∈   〈 S 〉  ′   , (Ref. [50] Lemma 1) gives    h 1   (  P n  ,  I  A ∪ B    ( d )  )  > 0  . Since   | A ∪ B | ≤ 2 d + 1  , (Ref. [51] Lemma 34) gives the existence of a line   L ⊂  P n    such that   | L ∩ ( A ∪ B ) | ≥ d + 2  . Let   H ⊂  P n    be a general hyperplane containing L. Since H is general and   A ∪ B   is a finite set, we have   H ∩ ( A ∪ B ) = L ∩ ( A ∪ B )  . Since   | L ∩ ( A ∪ B ) | ≥ d + 2  , we have   | A ∪ B \ H ∩ ( A ∪ B ) | ≤ d − 1   and hence    h 1   (  P n  ,  I  A ∪ B \ H ∩ ( A ∪ B   )   ( d − 1 )   ) = 0   . By ([52] Lemma 5.2), we have   A \ A ∩ H = B \ B ∩ H  . ☐





See [53,54] for some results on the geometry of sets   S ⊂  X  n , d     with controlled Hilbert function and that may be useful to extend Proposition 2.



Proof of Theorem 1:

Set   k : = ⌊ d / 2 ⌋  . Note that    h 1   (  I A   ( x )  )  = 0   for all   x ≥ k   and in particular    h 1   (  I A   ( d − k )  )  = 0  . Fix   q ∈   〈  ν  d , n    ( A )  〉  ′    and assume    r  X  n , d     ( q )  <  | A |   . Fix   B ⊂  P n    such that    ν  d , n    ( B )    evinces the   X  n , d   -rank of q. Since    h 1   (  I A   ( k )  )  = 0   and   | A | > | B |  , we have    h 0   (  I B   ( k )  )  >  h 0   (  I A   ( k )  )   . Thus, there is    M ∈ |   O  P n     ( k )  |    containing B, but with   A ⊈ M  , i.e.,   A \ A ∩ M ≠ ∅  , while   B \ B ∩ M = ∅  . Since    h 1   (  I A   ( d − k )  )  = 0  , we have    h 1   (  I  A \ A ∩ M    ( d − k )  )  = 0  . Since    h 1   (  I A   ( d )  )  = 0  ,    ν  d , n    ( A )    is linearly independent. Since    ν  d , n    ( B )    evinces a rank, it is linearly independent. Grassmann’s formula gives   dim  〈  ν  d , k    ( A )  〉  ∩  〈  ν  d , b    ( B )  〉  =  | A ∩ B |  +  h 1   (  I  A ∪ B    ( d )  )  − 1  . We have   A ∪ B = ( ( A ∪ B ) ∩ M ) ∪ ( A \ A ∩ M )  . Since   A \ A ∩ B   is a finite set, we have    h 2   (  I  A \ A ∩ B    ( d − k )  )  =  h 2   (  O  P n    ( d − k )  )  = 0  . Since    h 1   (  I  A \ A ∩ M    ( d − k )  )  = 0  , the residual exact sequence (also known as the Castelnuovo’s sequence)


  0 →  I  A \ A ∩ B    ( d − k )  →  I  A ∪ B    ( d )  →  I  M ∩ ( A ∪ B ) , M    ( d )  → 0  








gives    h 1   (  I  A ∪ B    ( d )  )  =  h 1   ( M ,  I  M ∩ ( A ∪ B )    ( d )  )   . Since M is projectively normal,    h 1   ( M ,  I  M ∩ ( A ∪ B )    ( d )  )  =  h 1   (  I  A ∪ B    ( d )  )   . Thus, the Grassmann’s formula gives   dim  〈  ν  d , n    ( A ∩ M )  〉  ∩  〈  ν  d , n    ( B ∩ M )  〉  =  | A ∩ B ∩ M |  +  h 1   (  I  A ∪ B    ( d )  )  − 1  . Since   B ⊂ M  , we get    〈  ν  d , n    ( A ∩ M )  〉  ∩  〈  ν  d , n    ( B ∩ M )  〉  =  〈  ν  d , k    ( A )  〉  ∩  〈  ν  d , b    ( B )  〉   . Since   A ∩ M ⊋ A  , we get   q ∉   〈  ν  d , n    ( A )  〉  ′   , a contradiction. ☐






4. Tensors, i.e., the Segre Varieties


Fix an integer   k ≥ 2   and positive integers    n 1  , … ,  n k   . Set   Y : =  ∏  i = 1  k   P  n i     (the Segre variety) and   N : = − 1 +  ∏  i = 1  k   (  n i  + 1 )   . Let   ν : Y →  P N    denote the Segre embedding. Let    π i  : Y →  P  n i     denote the projection on the i-th factor. For any   i ∈ { 1 , … , k }  , set   Y  [ i ]  : =  ∏  h ≠ i    P  n h     and call    η i  : Y → Y  [ i ]    the projection which forgets the i-th component. Let   ν  [ i ]  : Y  [ i ]  →  P  N i    ,    N i  : = − 1 +  ∏  h ≠ i    (  n h  + 1 )    denote the Segre embedding of   Y [ i ]  . A key difficulty is that   ρ ( ν ( Y ) ) = 2   because   ν ( Y )   contains lines.



Lemma 4.

Let   S ⊂ Y   be any finite set such that there is   i ∈ { 1 , … k }   with   η  i | S    not injective. Then,   ν ( S )   evinces no rank.





Proof. 

By Lemma 1, we reduce to the case   | S | = 2  , say   S = { a , b }   with   a = (  a 1  , … ,  a k  )  ,   b = (  b 1  , … ,  b k  )   with    a i  =  b i    if and only if   i > 1  . Since all lines of Y are contained in one of the factors of Y and all lines of   ν ( Y )   are images of lines of Y, we get   S ⊂ ν ( Y )  . Thus, each element of   〈 ν ( S ) 〉   is contained in   ν ( Y )   and hence it has rank 1. Since   | S | > 1  ,   ν ( S )   evinces no rank. ☐





Lemma 5.

Let   S ⊂ Y   such that there are    S ′  ⊆ S   and   i ∈ { 1 , … , k }   with    |   S ′   | = 3   ,    ν i   (  η i   (  S ′  )  )    linearly dependent and    π i   (  S ′  )  ⊂  P  n i     linearly dependent. Then,   ν ( S )   evinces no rank.





Proof. 

Let   Q ⊂  P 3    be a smooth quadric surface. Q is projectively equivalent to the Segre embedding of    P 1  ×  P 1    and each point of   P 3   has at most Q-rank 2 by [47] (Proposition 5.1). By Lemma 1, we may assume    S ′  = S  . By Lemma 4, we may assume that   η  i | S    is injective. Thus,    |   η  i | S    | = 3   . Since    ν i   (  η i   ( S )  )    is not linearly independent and it has cardinality 3, it is contained in a line of    ν i   ( Y  [ i ]  )   . Thus,    η i   ( S )    is contained in a line of one of the factors of   Y [ i ]  . By assumption,    π i   ( S )    is contained in a line of   P  n i   . Thus, S is contained in a subscheme of Y isomorphic to    P 1  ×  P 1   . Since each point of   P 3   has Q-rank   ≤ 2   and   | S | = 3  ,   ν ( S )   evinces no rank. ☐





Remark 3.

Fix a finite set   A ⊂ Y   such that   S : = ν ( A )   is linearly independent. S evinces no tensor rank if there is a multiprojective subspace    Y ′  ⊂ Y   such that   A ⊂  Y ′    and   | S |   is larger than the maximum tensor rank of   ν (  Y ′  )  .





Note that Lemmas 4 and 5 may be restated as a way to check for very low   | S |   if there is some   Y ′   as in Lemma 3 exists.



Proposition 3.

Take   S ⊂ ν ( Y )   with   | S | = 2  . Let   Y ′   be the minimal multiprojective subspace of Y containing S. The following conditions are equivalent:




	1. 

	
S evinces no rank;




	2. 

	
S does not generically evince ranks;




	3. 

	
S does not totally evince ranks;




	4. 

	
   Y ′  ≅  P 1   .











Proof. 

Since any two distinct points of   P N   are linearly independent (i.e.,   〈 S 〉   is a line) and   ν ( Y )   is the set of all points with   ν ( Y )  -rank 1, S evinces no rank if and only if   〈 S 〉 ⊂ ν ( Y )  . Use the fact that the lines of   ν ( Y )   are contained in one of the factors of   ν ( Y )  . Since   ν ( Y )   is cut out by quadrics, if   〈 S 〉 ⊈ ν ( Y )  , then   | 〈 S 〉 ∩ ν ( Y ) | ≤ 2  . Since   S ⊂ 〈 S 〉 ∩ ν ( Y ) ,   we see that all points of   〈 S 〉 \ S   have rank 2 ☐





Proposition 4.

Take   S ⊂ ν ( Y )   with   | S | = 3   and   ν ( S )   linearly independent. Write   S = ν ( A )   with   A ⊂  Y ′   . Let   Y ′   be the minimal multiprojective subspace of Y containing A. Write    Y ′  =  P  m 1   × …  P  m s     with   s ≥ 1   and    m 1  ≥ … ≥  m s  > 0  . We have    m 1  ≤ 2  .



If   η  i | A    is injective for all i and either    m 2  = 2   or   s ≥ 4   or    m 1  = 2   and   s = 3  , then S totally evinces its ranks. In all other cases for a general   E ∈  Y ′    with   | E | = 3  ,   ν ( E )   does not generically evince its ranks.





Proof. 

If   η  i | A    is not injective for some i, then S evinces no rank by Lemma 4. Thus, we may assume that each   η  i | A    is injective for all i. Each factor of   Y ′   is the linear span of    π i   ( A )    in   P  n i   . Hence,    m 1  ≤ 2  . Omitting all factors which are points, we get the form of   Y ′   we use. If    Y ′  =  P 1    (resp.   P 2  , resp.    P 1  ×  P 1   ), then each point of   〈 S 〉   has rank 1 (resp. 1, resp.   ≤ 2  ). Thus, in these cases, S evinces no rank. If either    Y ′  =  P 2  ×  P 1    or    Y ′  =   (  P 1  )  3   , then    σ 2   (  P 2  ×  P 1  )  =  P 5    and    σ 2   (   (  P 1  )  3  )  =  P 7    ([23,26]). Thus, the last assertion of the proposition is completed.



(a) Assume   s ≥ 2   and    m 2  = 2  . Taking a projection onto the first two factors, we reduce to the case   s = 2   (this reduction step is used only to simplify the notation). Take a    H ∈ |   O  Y ′     ( 1 , 0 )  |    containing B (this is possible because    h 0   (  O  P 2    ( 1 )  )  = 3 >  | B |   ). Since   Y ′   is the minimal multiprojective subspace of Y containing A, we have   A \ A ∩ H ≠ ∅  . Since   B \ B ∩ H = ∅  , (Ref. [52] Lemma 5.1) gives    h 1   (  I  A \ A ∩ H    ( 0 , 1 )  )  > 0  . Thus, either there is    A ′  ⊂ A   with    |   A ′   | = 2    and   η   1 |   A ′     not injective (we excluded this possibility) or   | A \ A ∩ H | = 3   (i.e.,   A ∩ H = ∅  ) and    η 1   ( A )  ⊂  P 2    is contained in a line R. Set   M : =  P 2  × R  . We get   A ⊂ M   and hence A is a contained in a proper multiprojective subspace, contradicting the definition of   Y ′  .



(b) Assume   s ≥ 3   and    m 1  = 2  . By part (a), we may assume    m 2  = 1  . Taking a projection, we reduce to the case   s = 3  , i.e.,    Y ′  =  P 2  ×  P 1  ×  P 1   . Take H as in step (a). As in step (a), we get   A ∩ H = ∅   and    η 1   ( A )    contained in a line R of the Segre embedding of    P 1  ×  P 1   , contradicting the definition of   Y ′  .



(c) Assume   s ≥ 4  . By step (b), we may assume    m 1  = 1  . Taking a projection onto the first four factors of   Y ′  , we reduce to the case    Y ′  =   (  P 1  )  4   . Fix any    H ∈ |   O  Y ′     ( 1 , 1 , 0 , 0 )  |    containing B. Assume for the moment   A ⊈ H  . By ([52] Lemma 5.1), we have    h 1   (  I  A \ A ∩ H    ( 0 , 0 , 1 , 1 )  )  > 0  , i.e., either there are   a = (  a 1  ,  a 2  ,  a 3  ,  a 4  ) ∈ A  ,   b = (  b 1  ,  b 2  ,  b 3  ,  b 4  ) ∈ A   with   a ≠ b   and    (  a 3  ,  a 4  )  =  (  b 3  ,  b 4  )    of   A ∩ H = ∅   and the projection of A onto the last 2 factors of   Y ′   is contained in a line. The last possibility is excluded by the minimality of   Y ′  . Thus,   a , b ∈ A   exists. Set   A : = { a , b , c }   and write   c = (  c 1  ,  c 2  ,  c 3  ,  c 4  )  . Permuting the factors of   Y ′  , we see that, for each   E ⊂ { 1 , 2 , 3 , 4 }  , there is    A E  ⊂ A   with    |   A E   | = 2    and    π E   (  A E  )    is a singleton, where    π E  :  Y ′  →  P 1  ×  P 1    denote the projection onto the factors of   Y ′   corresponding to E. Since the cardinality of the set  S  of all subset of   { 1 , 2 , 3 , 4 }   with cardinality 2 is larger than the cardinality of the set of all subsets of A with cardinality 3, there are   E , F ∈ S   such that   E ≠ F   and    A E  =  A F   . If   E ∩ F ≠ ∅  , say   E ∩ F = { i }  , then   η  i | A    is not injective, contradicting our assumption. If   E ∩ F = ∅  , we have   E ∪ F = { 1 , 2 , 3 , 4 }  . Since    A E  =  A F   , we get    |   A E   | = 1   , a contradiction. ☐





Remark 4.

Take a finite   S ⊂ ν ( Y )   and fix   q ∈   〈 ν  ( S )  〉  ′   . Let   A ⊂ Y   be the subset with   ν ( A ) = S  . It is easier to prove that S evinces the rank of q if we know that the minimal multiprojective subspace of Y containing A is the minimal multiprojective subspace   Y ″   of Y with   q ∈ 〈 ν  (  Y  ″   )  〉  . Note that this is always true if    Y ″  = Y  , i.e., if the tensor q is concise.






5. Questions on the Case of Veronese Varieties


Let    r max   ( n , d )    denote the maximum of all   X  n , d   -ranks (in [55,56] it is denoted with    r max   ( n + 1 , d )   ). The integer    r max   ( n , d )    depends on two variables, n and d. In this section, we ask some question on the asymptotic behavior of    r max   ( n , d )    when we fix one variable, while the other one goes to   + ∞  .



Let    r gen   ( n , d )    denote the   X  n , d   -rank of a general   q ∈  P r   . These integers do not depend on the choice of the algebraically closed base field  K  with characteristic 0. The diagonalization of quadratic forms gives    r max   ( n , 2 )  =  r gen   ( n , 2 )  = n + 1  . The integers    r gen   ( n , d )   ,   d > 2  , are known by an important theorem of Alexander and Hirschowitz ([8,9,10,11,12,13]); with four exceptional cases, we have    r gen   ( n , d )  =  d    n + d  n   /  ( n + 1 )  ⌉   . An important theorem of Blekherman and Teitler gives    r max   ( n , d )  ≤ 2  r gen   ( n , d )    (and even    r max   ( n , d )  ≤ 2  r gen   ( n , d )  − 1   with a few obvious exceptions) ([57,58]). In particular, for a fixed n, we have


   1  ( n + 1 ) !   ≤   lim   inf   d → + ∞    r max   ( n , d )  /  d n  ≤   lim   sup   d → + ∞    r max   ( n , d )  /  d n  ≤  2  ( n + 1 ) !   .  











It is reasonable to ask if     lim   inf   d → + ∞    r max   ( n , d )  /  d n    exists and its value. Of course, it is tempting also to ask a more precise information about    r max   ( n , d )    for   d ≫ 0  . In the case   n = 2  , De Paris proved in [55,56] that    r max   ( 2 , d )  ≥  ⌊  (  d 2  + 2 d + 5 )  / 4 ⌋    ([56] Theorem 3), which equality holds if d is even ([56] (Proposition 2.4)) and suggested that equality holds for all d. Since    r max   ( 2 , d + 1 )  ≥  r max   ( 2 , d )    even for odd d, the integer    r max   ( 2 , d )    grows like    d 2  / 4  . Thus, there is an interesting interval between the general upper bound of [57] (which, in this case, has order    d 2  / 3  ) and    r max   ( 2 , d )   . There are very interesting upper bounds for the dimensions of the set of all points with rank bigger than the generic one ([59]).



What are


    lim   sup   n → + ∞      ( n + 1 )  !  r max   ( n , d )    d n    and   lim   inf   n → + ∞      ( n + 1 )  !  r max   ( n , d )    d n    ?  











For all   d ≥ 3  , study    r max   ( n , d )  −  r max   ( n , d − 1 )    and compare for   d ≫ 0     r max   ( n , d )  −  r max   ( n , d − 1 )    with    r max   ( n − 1 , d )    and    r gen   ( n − 1 , d )   . Of course, this is almost exactly known when   n = 2   by Sylvester’s theorem ([48]) and De Paris ([55,56]), but    r max   ( 2 , d )  −  r max   ( 2 , d − 1 )    for   d ≫ 0   is both ∼   r gen   ( 1 , d )    and ∼   r max   ( 1 , d )  / 2   and so we do not have any suggestion for the case   n > 2  .
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