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Abstract: In this paper, we are concerned with the asymptotic stability of the nontrivial endemic
equilibrium of an age-structured susceptible-infective-recovered (SIR) epidemic model. For a special
form of the disease transmission function, we perform the reduction of the model into a four-dimensional
system of ordinary differential equations (ODEs). We show that the unique endemic equilibrium of the
reduced system exists if the basic reproduction number for the original system is greater than unity.
Furthermore, we perform the stability analysis of the endemic equilibrium and obtain a fourth-order
characteristic equation. By using the Routh–Hurwitz criterion, we numerically show that the endemic
equilibrium is asymptotically stable in some epidemiologically relevant parameter settings.
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1. Introduction

The mathematical modeling of epidemics in human populations has been studied for a long time [1].
In 1760, Bernoulli used a mathematical model of differential equations to discuss the benefit of smallpox
inoculation [2]. In 1911, Ross claimed that malaria could be eradicated by reducing the number of
mosquitoes, and constructed a mathematical model of differential equations to theoretically support
his claim [3]. In 1927, Kermack and McKendrick constructed the first susceptible-infective-recovered
(SIR) epidemic model, in which the total population is divided into three classes called susceptible,
infective, and recovered [4]. Since their work, the theory of various epidemic models such as a
susceptible-infective-susceptible (SIS) epidemic model [5], a susceptible-exposed-infective-recovered
(SEIR)epidemic model [6], and a susceptible-infective-recovered-susceptible (SIRS) epidemic model [7]
with various structures such as the age structure [8,9], the space structure [10], and the network
structure [11] has been developed from both mathematical and epidemiological points of view.

Epidemiologically, the basic reproduction number R0 for an infectious disease is defined by
the expected number of secondary cases produced by a typical infective individual in a completely
susceptible population ([9], Chapter 5). Mathematically,R0 is defined by the spectral radius of a linear
operator called the next-generation operator [12], and it determines the complete global dynamics of
each equilibrium for some basic epidemic models: ifR0 < 1, then the trivial disease-free equilibrium is
globally asymptotically stable, whereas ifR0 > 1, then the nontrivial endemic equilibrium is globally
asymptotically stable [13]. However, for some epidemic models, the endemic equilibrium can be stable
even if R0 < 1 due to the backward bifurcation [14], and it can be unstable even if R0 > 1, which
leads to a periodic solution due to the Hopf bifurcation [15].

In [16], some conjectures on the threshold property of R0 for an age-structured SIR epidemic
model were proposed, and they were proved in [17]: ifR0 < 1, then the disease-free equilibrium is
globally asymptotically stable and no endemic equilibrium exists, whereas ifR0 > 1, then the endemic
equilibrium uniquely exists and it is locally asymptotically stable under some additional conditions.
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However, in general, it is known that the endemic equilibrium cannot always be unique and stable for
R0 > 1. Several authors have studied some special cases where the endemic equilibrium is unstable,
and periodic solutions occur through the Hopf bifurcation for R0 > 1 [18–21]. From the viewpoint
of application, it is important to investigate when the endemic equilibrium of an age-structured SIR
epidemic model is stable and when it is not, as the age distribution of infective individuals in such a
model should be stable if one tries to estimate the basic reproduction numberR0 for an endemic disease
by using statistical data that exhibit an almost unchanged age distribution of infective individuals.
The purpose of this study is to obtain a new condition under which the endemic equilibrium of an
age-structured SIR epidemic model is (locally) asymptotically stable.

Age-structured SIR epidemic models as stated above are systems of partial differential equations
(PDEs), and hence the stability analysis of them often requires a relatively difficult method such as
the spectral theory of positive operators ([17], §5). In this paper, we make some assumptions on the
parameters of an age-structured SIR epidemic model, under which we can perform the reduction of the
model into a four-dimensional system of ordinary differential equations (ODEs). We can then apply
the standard method of characteristic equations for the stability analysis of the endemic equilibrium.

This paper is organized as follows. In Section 2, we formulate an age-structured SIR epidemic
model, and perform the reduction of it into a four-dimensional system of ODEs. In Section 3, we
prove that the reduced system has a unique endemic equilibrium if the basic reproduction numberR0

for the original system is greater than unity. Moreover, we investigate the asymptotic stability of the
endemic equilibrium, and obtain a fourth-order characteristic equation. As its coefficients have quite
complex forms, we only prove their positivity, and numerically show by using the Routh–Hurwitz
criterion that the endemic equilibrium is asymptotically stable in some epidemiologically relevant
parameter settings in Section 4. In the parameter settings, the essential supremum of the demographic
mortality rate is determined based on a dataset for Japan in 2015, and the recovery rate γ and the basic
reproduction numberR0 are varied for the cases of an influenza-like disease (γ = 52 and 2 ≤ R0 ≤ 3),
a chlamydia-like sexually transmitted disease (γ = 1 and 1 < R0 ≤ 1.5), and a wider range of realistic
values of them (1/50 ≤ γ ≤ 365 and 1 < R0 ≤ 50). Finally, Section 5 is devoted to the discussion.

2. Reduction of an Age-Structured SIR Epidemic Model into ODEs

We first formulate an age-structured SIR epidemic model. Let S(t, a), I(t, a), and R(t, a) denote
the susceptible, infective, and recovered populations of age a ≥ 0 at time t ≥ 0, respectively.
Let b > 0 denote the birth rate, let µ(·) ∈ L∞

+(0,+∞) denote the age-specific mortality rate such
that

∫ +∞
0 µ(a)da = +∞, and let γ > 0 denote the recovery rate. As in [18], we focus on the

case where the disease transmission function is only dependent on the age of infective individuals:
κ = κ(·) ∈ L∞

+(0,+∞). In this case, the age-structured SIR epidemic model is formulated as follows:

(
∂

∂t
+

∂

∂a

)
S(t, a) = −S(t, a)

∫ +∞

0
κ(a)I(t, a)da− µ(a)S(t, a), t > 0, a > 0,(

∂

∂t
+

∂

∂a

)
I(t, a) = S(t, a)

∫ +∞

0
κ(a)I(t, a)da− [µ(a) + γ] I(t, a), t > 0, a > 0,(

∂

∂t
+

∂

∂a

)
R(t, a) = γI(t, a)− µ(a)R(t, a), t > 0, a > 0,

S(t, 0) = b, I(t, 0) = R(t, 0) = 0, t > 0,

S(0, a) = S0(a), I(0, a) = I0(a), R(0, a) = R0(a), a ≥ 0,

(1)

where (S0(·), I0(·), R0(·)) ∈ L1
+(0,+∞)× L1

+(0,+∞)× L1
+(0,+∞) denotes the initial age distributions

of each population. It is easy to see that (1) has the demographic steady state P∗(a) = be−
∫ a

0 µ(σ)dσ,
a ≥ 0. Let

s(t, a) =
S(t, a)
P∗(a)

, i(t, a) =
I(t, a)
P∗(a)

, r(t, a) =
R(t, a)
P∗(a)

, t ≥ 0, a ≥ 0.
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We then can normalize (1) as follows.

(
∂

∂t
+

∂

∂a

)
s(t, a) = −s(t, a)

∫ +∞

0
κ(a)P∗(a)i(t, a)da, t > 0, a > 0,(

∂

∂t
+

∂

∂a

)
i(t, a) = s(t, a)

∫ +∞

0
κ(a)P∗(a)i(t, a)da− γi(t, a), t > 0, a > 0,(

∂

∂t
+

∂

∂a

)
r(t, a) = γi(t, a), t > 0, a > 0,

s(t, 0) = 1, i(t, 0) = r(t, 0) = 0, t > 0,

s(0, a) =
S0(a)
P∗(a)

, i(0, a) =
I0(a)
P∗(a)

, r(0, a) =
R0(a)
P∗(a)

, a ≥ 0.

(2)

As shown in [18], for a specific form of κ(·) such that κ(·)P∗(·) is sufficiently concentrated in one
particular age class, the endemic equilibrium of (2) can be destabilized even if it uniquely exists. Thus,
our interest in this paper is when it is stable. In this paper, we assume that κ(·) has the following form:

κ(a) =
β

b
ae−kae

∫ a
0 µ(σ)dσ, β > 0, k > µ∞ = ess.sup

a≥0
µ(a) > 0, a ≥ 0. (3)

Note that κ(·) ∈ L∞
+(0,+∞) is satisfied under this assumption. In this case, the equations of s and

i in (2) can be rewritten as follows.

(
∂

∂t
+

∂

∂a

)
s(t, a) = −s(t, a)β

∫ +∞

0
ae−kai(t, a)da, t > 0, a > 0,(

∂

∂t
+

∂

∂a

)
i(t, a) = s(t, a)β

∫ +∞

0
ae−kai(t, a)da− γi(t, a), t > 0, a > 0,

s(t, 0) = 1, i(t, 0) = 0, t > 0,

s(0, a) =
S0(a)
P∗(a)

, i(0, a) =
I0(a)
P∗(a)

, a ≥ 0.

(4)

Note that we can omit the equation of r, as it does not affect the dynamics of (4). As in [17],
without loss of generality, we can assume that 0 ≤ s(t, a) ≤ 1 and 0 ≤ i(t, a) ≤ 1 for all t ≥ 0 and
a ≥ 0.

As seen in [17,18], the stability analysis of age-structured PDE systems such as (4) requires
complex calculation. In this paper, we perform the reduction of (4) into a four-dimensional system of
ODEs. Let

X(t) =
∫ +∞

0
e−kas(t, a)da, Y(t) =

∫ +∞

0
e−kai(t, a)da,

L(t) = β
∫ +∞

0
ae−kas(t, a)da, Λ(t) = β

∫ +∞

0
ae−kai(t, a)da, t ≥ 0.

Note that these variables have no specific epidemiological implications except Λ(t), which implies
the force of infection at time t ≥ 0. By differentiating X(·), we have

dX(t)
dt

=
∫ +∞

0
e−ka ∂s(t, a)

∂t
da =

∫ +∞

0
e−ka

[
−∂s(t, a)

∂a
− s(t, a)Λ(t)

]
da

=
[
−e−kas(t, a)

]+∞

0
− k

∫ +∞

0
e−kas(t, a)da− X(t)Λ(t) (5)

=1− [k + Λ(t)] X(t), t > 0.
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Similarly, we have

dY(t)
dt

=
∫ +∞

0
e−ka ∂i(t, a)

∂t
da =

∫ +∞

0
e−ka

[
−∂i(t, a)

∂a
+ s(t, a)Λ(t)− γi(t, a)

]
da

=
[
−e−kai(t, a)

]+∞

0
− k

∫ +∞

0
e−kai(t, a)da + X(t)Λ(t)− γY(t) (6)

= X(t)Λ(t)− (k + γ)Y(t), t > 0,

dL(t)
dt

= β
∫ +∞

0
ae−ka ∂s(t, a)

∂t
da = β

∫ +∞

0
ae−ka

[
−∂s(t, a)

∂a
− s(t, a)Λ(t)

]
da

= β
[
−ae−kas(t, a)

]+∞

0
+ β

∫ +∞

0
e−kas(t, a)da− k

∫ +∞

0
ae−kas(t, a)da− L(t)Λ(t) (7)

= βX(t)− [k + Λ(t)] L(t), t > 0,

and

dΛ(t)
dt

= β
∫ +∞

0
ae−ka ∂i(t, a)

∂t
da = β

∫ +∞

0
ae−ka

[
− ∂i(t, a)

∂a
+ s(t, a)Λ(t)− γi(t, a)

]
da

= β
[
−ae−kai(t, a)

]+∞

0
+ β

∫ +∞

0
e−kai(t, a)da− k

∫ +∞

0
ae−kai(t, a)da + L(t)Λ(t)− γΛ(t) (8)

= βY(t) + L(t)Λ(t)− (k + γ)Λ(t), t > 0.

Hence, combining (5)–(8), we obtain the following new four-dimensional system of ODEs:

dX(t)
dt

= 1− [k + Λ(t)] X(t), t > 0,

dY(t)
dt

= X(t)Λ(t)− (k + γ)Y(t), t > 0,

dL(t)
dt

= βX(t)− [k + Λ(t)] L(t), t > 0,

dΛ(t)
dt

= βY(t) + L(t)Λ(t)− (k + γ)Λ(t), t > 0,

X(0) = X0, Y(0) = Y0, L(0) = L0, Λ(0) = Λ0.

(9)

Note that (X0, Y0, L0, Λ0) ∈ R4
+ since (S0(·), I0(·)) ∈ L1

+(0,+∞)× L1
+(0,+∞). In what follows,

we perform the stability analysis of system (9).

3. Existence, Uniqueness, and Stability of the Endemic Equilibrium

Following the theory in [12], the basic reproduction number R0 for the original (normalized)
system (4) can be calculated as follows.

R0 =β
∫ +∞

0
ae−ka

∫ a

0
e−γ(a−σ)dσda =

β

γ

∫ +∞

0
ae−ka (1− e−γa)da

=
β

γ


[
− ae−ka

k

]+∞

0

+
1
k

∫ +∞

0
e−kada−

[
− ae−(k+γ)a

k + γ

]+∞

0

− 1
k + γ

∫ +∞

0
e−(k+γ)ada

 (10)

=
β

γ

[
1
k2 −

1

(k + γ)2

]
= β

2k + γ

k2 (k + γ)2 .
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We now prove that system (9) has the unique endemic equilibrium if R0 > 1. Let
E∗ : (X∗, Y∗, L∗, Λ∗) ∈ (R+ \ {0})4 denote the endemic equilibrium of system (9). The following
equations are satisfied: 

1− (k + Λ∗) X∗ = 0,

X∗Λ∗ − (k + γ)Y∗ = 0,

βX∗ − (k + Λ∗) L∗ = 0,

βY∗ + L∗Λ∗ − (k + γ)Λ∗ = 0.

(11)

We prove the following theorem.

Theorem 1. LetR0 be defined by (10). IfR0 > 1, then system (9) has the unique endemic equilibrium E∗.

Proof. By rearranging the first three equations in (11), we have

X∗ =
1

k + Λ∗
, Y∗ =

X∗Λ∗

k + γ
=

Λ∗

(k + γ) (k + Λ∗)
, L∗ =

βX∗

k + Λ∗
=

β

(k + Λ∗)2 . (12)

By substituting the equations of Y∗ and L∗ into the last equation in (11), we have

0 =
βΛ∗

(k + γ) (k + Λ∗)
+

βΛ∗

(k + Λ∗)2 − (k + γ)Λ∗.

Dividing both sides of this equation by Λ∗ and rearranging the equation, we have

1 =
β

k + γ

{
1

(k + γ) (k + Λ∗)
+

1

(k + Λ∗)2

}
. (13)

Let F(Λ∗) be a function defined by the right-hand side of this equation. Since F(Λ∗) is
monotonically decreasing to 0 as Λ∗ → +∞ and

F(0) =
β

k + γ

{
1

(k + γ) k
+

1
k2

}
= β

2k + γ

k2 (k + γ)2 = R0 > 1,

there exists the unique positive root Λ∗ > 0 of Equation (13). Substituting it into the three equations in (12),
we obtain the unique endemic equilibrium E∗. This completes the proof.

To investigate the asymptotic stability of the endemic equilibrium E∗, we consider the following
Jacobian matrix JE∗ around E∗:

JE∗ =


−(k + Λ∗) 0 0 −X∗

Λ∗ −(k + γ) 0 X∗

β 0 −(k + Λ∗) −L∗

0 β Λ∗ L∗ − (k + γ)

 .

From (12), we have

k + Λ∗ =
1

X∗
, L∗ = β (X∗)2 . (14)
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Using (14), we derive the characteristic polynomial for E∗ as follows:

|λI− JE∗ | =

∣∣∣∣∣∣∣∣∣
λ + k + Λ∗ 0 0 X∗

−Λ∗ λ + k + γ 0 −X∗

−β 0 λ + k + Λ∗ L∗

0 −β −Λ∗ λ− L∗ + k + γ

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
λ + k + Λ∗ 0 0 X∗

λ + k λ + k + γ 0 0
−β 0 λ + k + Λ∗ β (X∗)2

−β −β λ + k λ + k + γ

∣∣∣∣∣∣∣∣∣ (15)

=

∣∣∣∣∣∣∣∣∣∣∣

λ +
1

X∗
0 0 X∗

−γ λ + k + γ 0 0

−β (X∗λ + 2) 0 λ +
1

X∗
0

0 −β λ + k λ + k + γ

∣∣∣∣∣∣∣∣∣∣∣
=

(
λ +

1
X∗

)2
(λ + k + γ)2 − βX∗

[
−γ

(
λ +

1
X∗

)
+ (λ + k) (λ + k + γ) (X∗λ + 2)

]
=λ4 + a3λ3 + a2λ2 + a1λ + a0,

where I denotes the identity matrix and

a3 =
2

X∗
+ 2 (k + γ)− β (X∗)2 ,

a2 =
1

(X∗)2 + 4
k + γ

X∗
+ (k + γ)2 − βX∗ {2 + (2k + γ)X∗} ,

a1 =
2 (k + γ)

(X∗)2 +
2 (k + γ)2

X∗
− βX∗ {−γ + k (k + γ) X∗ + 2 (2k + γ)} ,

a0 =
(k + γ)2

(X∗)2 − βX∗
{
− γ

X∗
+ 2k (k + γ)

}
.

(16)

To apply the Routh–Hurwitz criterion, we prove the following proposition.

Proposition 1. LetR0 and ai (i = 0, 1, 2, 3) be defined by (10) and (16), respectively. IfR0 > 1, then ai > 0
for all i = 0, 1, 2, 3.

Proof. By Theorem 1, the unique endemic equilibrium E∗ exists. From (12) and (13), we have

k + γ =
βX∗

k + γ
+ β (X∗)2 , (k + γ)2 = βX∗ + (k + γ) β (X∗)2 , 1− kX∗ = 1− k

k + Λ∗
> 0.
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We then have

a3 =
2

X∗
+ 2

{
βX∗

k + γ
+ β (X∗)2

}
− β (X∗)2 =

2
X∗

+
2βX∗

k + γ
+ β (X∗)2 > 0,

a2 =
1

(X∗)2 +
4

X∗

{
βX∗

k + γ
+ β (X∗)2

}
+ βX∗ + (k + γ) β (X∗)2 − βX∗ {2 + (2k + γ)X∗}

=
1

(X∗)2 +
4β

k + γ
+ 3βX∗ − kβ (X∗)2 =

1

(X∗)2 +
4β

k + γ
+ 2βX∗ + (1− kX∗) βX∗ > 0,

a1 =
2β

(k + γ) X∗
+ 2β + 2β + 2 (k + γ) βX∗ + γβX∗ − k (k + γ) β (X∗)2 − 2kβX∗ − 2 (k + γ) βX∗

=
2β

(k + γ) X∗
+ 2β (1− kX∗) + 2β + (k + γ) βX∗ − kβX∗ − k (k + γ) β (X∗)2

=
2β

(k + γ) X∗
+ 3β (1− kX∗) + β + (k + γ) βX∗ (1− kX∗) > 0,

a0 =
β

X∗
+ (k + γ) β + γβ− 2k (k + γ) βX∗ =

β

X∗
+ 2 (k + γ) β− kβ− 2k (k + γ) βX∗

=
β

X∗
(1− kX∗) + 2 (k + γ) β (1− kX∗) > 0.

This completes the proof.

By Proposition 1, it follows from the Routh–Hurwitz criterion [15] (Proof of Theorem 3.1) that the
endemic equilibrium E∗ is asymptotically stable if and only if

∆ = a1a2a3 − a0a2
3 − a2

1 > 0. (17)

However, it seems that quite a long calculation is needed to show (17) analytically. Instead, in the
next section, we show (17) numerically in some epidemiologically relevant parameter settings.

4. Numerical Results

Let the unit time be 1 year. By the definition in (3), k should satisfy inequality
k > µ∞ = ess.supa≥0 µ(a) > 0. For the sake of simplicity, we regard a = 100 (years old) as the maximum
age of individuals. In a dataset available in [22], the mortality rate µ(a) is at most 0.39954 (at a = 100) for
males in Japan, 2015. Hence, we fix k = 0.4. By (10), we can determine β for chosenR0 and γ as follows:

β =
k2 (k + γ)2

2k + γ
R0.

We first consider an influenza-like disease which has an infectious period of about 1 week (see [23]).
Therefore, let γ = 52 so that the average infectious period is 1/γ = 1/52 year = 1 week. Following
the estimation result in [24], we vary the value of R0 from 2 to 3. In Figure 1a, we can confirm that
criterion ∆ defined in (17) is always positive, and hence, the endemic equilibrium E∗ is asymptotically
stable. In fact, in Figure 1b, the force of infection Λ(t) converges to the positive equilibrium value
Λ∗ = 0.2339 > 0 as time evolves forR0 = 2.5.

We next consider a chlamydia-like sexually transmitted disease which has an infectious period of
about 1 year (see [25]). Therefore, γ = 1 so that the average infectious period is 1/γ = 1 year. Based
on the estimation result in [25], we vary the value ofR0 from 1 to 1.5. In Figure 2a, we can confirm that
criterion ∆ is always positive, and hence the endemic equilibrium E∗ is asymptotically stable. In fact,
in Figure 2b, the force of infection Λ(t) converges to the positive equilibrium value Λ∗ = 0.0539 > 0
as time evolves forR0 = 1.25.

Finally, we vary the values of γ from 1/50 to 365 (i.e., the average infectious period 1/γ is varied
from 1/365 year = 1 day to 50 years) andR0 from 1 to 50. In Figure 3, we can confirm that criterion ∆
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is always positive in this parameter region. Hence, we can conclude that the endemic equilibrium E∗

is asymptotically stable for epidemiologically relevant values of γ andR0.
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Figure 1. Numerical confirmation of condition (17) and asymptotic stability of the endemic equilibrium
E∗ for the case of an influenza-like disease: (a) Variation of ∆ defined in (17) for 2 ≤ R0 ≤ 3; (b) Time
variation of Λ(t) forR0 = 2.5.

1.0 1.1 1.2 1.3 1.4 1.5
0

0.5

1

1.5

2

2.5

3

3.5

Basic reproduction number R0

C
ri
te
ri
on

∆

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time t

F
o
rc
e
of

in
fe
ct
io
n
Λ
(t
)

(a) (b)

Figure 2. Numerical confirmation of condition (17) and asymptotic stability of the endemic equilibrium
E∗ for the case of a chlamydia-like sexually transmitted disease: (a) Variation of ∆ defined in (17) for
1 < R0 ≤ 1.5; (b) Time variation of Λ(t) forR0 = 1.25.

Figure 3. Numerical confirmation of condition (17) for realistic values of recovery rate γ ∈ [1/50, 365]
and the basic reproduction numberR0 ∈ (1, 50].
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5. Discussion

In this paper, we formulated an age-structured SIR epidemic model and performed its reduction
into a four-dimensional system of ODEs under an additional assumption on the disease transmission
function κ(·). We proved that if the basic reproduction numberR0 is greater than 1, then the system has
the unique endemic equilibrium E∗ (Theorem 1). Moreover, we obtained a fourth-order characteristic
equation, and proved that all of its coefficients are positive (Proposition 1). By the Routh–Hurwitz
criterion, the endemic equilibrium E∗ is asymptotically stable if and only if ∆ > 0. As it seems difficult
to show ∆ > 0 analytically, we showed it numerically in Section 4 for some epidemiologically relevant
parameters. We showed that ∆ > 0 holds for parameters for an influenza-like disease (γ = 52 and
2 ≤ R0 ≤ 3) and a chlamydia-like disease (γ = 1 and 1 < R0 ≤ 1.5). Furthermore, we showed
that ∆ > 0 holds for a wider region of epidemiologically relevant parameters γ ∈ [1/50, 365] and
R0 ∈ (1, 50].

The results in this paper contribute to enlarge the stability region of the endemic equilibrium
E∗ for R0 > 1 to the set where we can perform our reduction method of the PDEs system into the
ODEs system. Epidemiologically, our results imply that E∗ can be stable forR0 > 1 with some realistic
parameters, and have broadened the possibilities of application of an age-structured SIR epidemic
model for the estimation ofR0 based on the real data of endemic diseases.

In this study, we restricted our attention to the case where the disease transmission function
κ = κ(a) is only dependent on the age a of infective individuals. Of course, the case where it depends
on the ages of both susceptible and infective individuals is more general and epidemiologically realistic.
Nevertheless, the stability of the endemic equilibrium of age-structured SIR epidemic models has
not been clarified well enough even for the former case. In fact, the global asymptotic stability of
the endemic equilibrium E∗ of such models does not generally hold even if the basic reproduction
numberR0 is greater than unity, as a special case where E∗ becomes unstable forR0 > 1 was obtained
in [18]. As an important future work, we will seek other forms of κ(·) for which we can apply a similar
reduction method to ODEs as in this study.
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