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Abstract: Let S be a semigroup. An element a of S is called a right [left] magnifying element if there
exists a proper subset M of S satisfying S = Ma [S = aM]. Let E be an equivalence relation on a
nonempty set X. In this paper, we consider the semigroup P(X, E) consisting of all E-preserving
partial transformations, which is a subsemigroup of the partial transformation semigroup P(X).
The main propose of this paper is to show the necessary and sufficient conditions for elements in
P(X, E) to be right or left magnifying.
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1. Introduction

An element a of a semigroup S is a right [left] magnifying element in S if there exists a proper
subset M of S satisfying S = Ma [S = aM]. The concepts of right and left magnifying elements of a
semigroup were first introduced in 1963 by Ljapin [1]. Many initially significant results were later
published by Migliorini in [2,3], where he also introduced the notion of minimal subset related to a
magnifying element of S. In [4], Catino and Migliorini determined the existence of strong magnifying
elements in a semigroup and the existence of magnifying elements in simple and bisimple semigroups
as well as regular semigroups. Semigroups with strong and nonstrong magnifying elements were
investigated by Gutan [5]. A year later, he showed in [6] that every semigroup which contains
magnifying elements is factorizable; this solved a problem raised by Catino and Migliorini. Gutan also
established in [7] the method for obtaining semigroups having good left magnifying elements such
that none of those is very good.

Let X be a nonempty set. The full transformation semigroup on X is the set

T(X) = { f : X → X | f is a function}

of all transformations from X into itself, which is a semigroup under the composition of functions.
In [8], Magill, Jr. characterized transformation semigroups with identities containing magnifying
elements. Gutan and Kisielewicz solved in [9] a long-standing open problem by showing the existence
of semigroups containing both good and bad magnifying elements.

Interesting properties, especially regularity and Green’s relations, on semigroups of
transformations preserving relations have been widely conducted; see, e.g., [10–14]. In 2013,
Huisheng and Weina [15] studied naturally orderd semigroups of partial transformations preserving
an equivalence relation. Chinram and Baupradist have lately investigated right and left magnifying
elements in some generalized transformation semigroups in [16,17].
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Let E be an equivalence relation of a nonempty set X. We conventionally set P(X) = {α : A→
X | A ⊆ X}. All functions will be written from the right, (x)α rather than α(x), and composed as
(x)(αβ) rather than (β ◦ α)(x), for α, β ∈ P(X). The semigroup of partial transformations preserving
the equivalence relation E

P(X, E) = {α ∈ P(X) | (x, y) ∈ E implies ((x)α, (y)α) ∈ E}

is exactly a subsemigroup of P(X). Furthermore, if E = X× X, then P(X, E) = P(X). In this paper,
we study right and left magnifying elements in P(X, E) and conclude necessary and sufficient
conditions for elements of P(X, E) to be left or right magnifying.

2. Right Magnifying Elements

Lemma 1. If α is a right magnifying element in P(X, E), then α is onto.

Proof. Suppose α is a right magnifying element in P(X, E). According to the definition of right
magnifying element, there exists a proper subset M of P(X, E) with Mα = P(X, E). Clearly,
the identity map idX on X belongs to P(X, E). Thus, there exists β ∈ M such that βα = idX . This shows
that α is onto.

Lemma 2. Let α be a right magnifying element in P(X, E). For any (x, y) ∈ E, there exists (a, b) ∈ E such
that x = (a)α, y = (b)α.

Proof. Suppose α is a right magnifying element in P(X, E). Again, by definition, we obtain a proper
subset M of P(X, E) satisfying Mα = P(X, E). Since idX ∈ P(X, E), there exists β ∈ M such that
βα = idX. Let x, y ∈ X be such that (x, y) ∈ E. It follows that (x)βα = x and (y)βα = y. Since
β ∈ P(X, E), we have ((x)β, (y)β) ∈ E. We then choose a = (x)β and b = (y)β. Therefore, the proof is
complete.

Lemma 3. If dom α = X and α is bijective in P(X, E), then α is not right magnifying.

Proof. Assume that dom α = X and α is bijective in P(X, E). By Lemma 2, α−1 ∈ P(X, E) such that
dom α−1 = X. Suppose that α is right magnifying. By definition, there is a proper subset M of P(X, E)
with Mα = P(X, E). Consequently, Mα = P(X, E)α. Then M = Mαα−1 = P(X, E)αα−1 = P(X, E),
which is a contradiction since M is a proper subset of P(X, E). Hence α is not right magnifying.

Lemma 4. If α ∈ P(X, E) is onto but not one-to-one, dom α = X and, for any (x, y) ∈ E, there exists
(a, b) ∈ E such that x = (a)α, y = (b)α, then α is right magnifying.

Proof. Let α ∈ P(X, E) be onto but not one-to-one and dom α = X. For any (x, y) ∈ E, there exists
(a, b) ∈ E such that x = (a)α, y = (b)α. Let M = {β ∈ P(X, E) | β is not onto}. Then, M 6= P(X, E).

Let γ be any function in P(X, E). Since α is onto, we have for each x ∈ dom γ, there exists
ax ∈ dom α such that (ax)α = (x)γ (if (a1)γ = (a2)γ, we must choose ax1 = ax2 and if ((x)γ, (y)γ) ∈ E,
we must choose (ax, ay) ∈ E). Define β ∈ P(X) by (x)β = ax for all x ∈ dom γ. To show that
β ∈ P(X, E), let x, y ∈ X be such that (x, y) ∈ E. Since γ ∈ P(X, E), ((x)γ, (y)γ) ∈ E. By assumption,
we obtain (ax, ay) ∈ E such that (x)γ = (ax)α and (y)γ = (ay)α. Hence, ((x)β, (y)β) ∈ E. Since α is
not one-to-one, β is not onto either. Thus, β ∈ M and we obtain, for all x ∈ X, that

(x)βα = ((x)β)α = (ax)α = (x)γ.

Then, βα = γ, hence Mα = P(X, E). Therefore, α is right magnifying.
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Example 1. Let X = N. Define a relation E on X by

(x, y) ∈ E if and only if b x
3
c = by

3
c.

Consider X/E = {{1, 2}} ∪ {{x, x + 1, x + 2} | x ∈ 3X} = {{1, 2}, {3, 4, 5}, {6, 7, 8}, . . .}. It is clear
that E is an equivalence relation on X. Let α ∈ P(X, E) be defined by (x)α = x for all positive integers x ≤ 5
and (x)α = x− 3 for all positive integers x > 5, that is,

α =

(
1 2 3 4 5 6 7 8 · · ·
1 2 3 4 5 3 4 5 · · ·

)
.

Then, α is onto but not one-to-one and, for any (x, y) ∈ E, there exists (a, b) ∈ E such that x = (a)α, y =

(b)α. Let M = {β ∈ P(X, E) | β is not onto}. For any function γ ∈ P(X, E), Lemma 4 ensures that there
exists β ∈ M such that βα = γ.

We will illustrate these ideas by considering the element γ of P(X, E), which is defined by (1)γ = 1,
(2)γ = 2 and (x)γ = x− 3 for positive integers x > 5, that is,

γ =

(
1 2 3 4 5 6 7 8 · · ·
1 2 − − − 3 4 5 · · ·

)
.

Define a function β : dom γ→ X by (x)β = x for all x ∈ dom γ, that is,

β =

(
1 2 3 4 5 6 7 8 · · ·
1 2 − − − 6 7 8 · · ·

)
.

Thus β ∈ M and we have

βα =

(
1 2 3 4 5 6 7 8 · · ·
1 2 − − − 6 7 8 · · ·

)(
1 2 3 4 5 6 7 8 · · ·
1 2 3 4 5 3 4 5 · · ·

)

=

(
1 2 3 4 5 6 7 8 · · ·
1 2 − − − 3 4 5 · · ·

)
= γ.

Lemma 5. If α ∈ P(X, E) is onto, dom α 6= X and for any (x, y) ∈ E, there exists (a, b) ∈ E such that
x = (a)α, y = (b)α, then α is right magnifying.

Proof. Let α ∈ P(X, E) be onto and dom α 6= X. For any (x, y) ∈ E, there exists (a, b) ∈ E such that
x = (a)α, y = (b)α. We follow the method of proof used in Lemma 4 and define β : dom γ −→ X
by (x)β = ax for all x ∈ dom γ. To show that β ∈ P(X, E), let x, y ∈ X be such that (x, y) ∈ E.
Since γ ∈ P(X, E), we have ((x)γ, (y)γ) ∈ E. By assumption, there exists (ax, ay) ∈ E such that
(x)γ = (ax)α and (y)γ = (ay)α. Hence, ((x)β, (y)β) ∈ E. Since dom α 6= X, β is not onto either.

Thus, β ∈ M and we obtain, for all x ∈ X, that

(x)βα = ((x)β)α = (ax)α = (x)γ.

Then, βα = γ, hence Mα = P(X, E). Therefore, α is right magnifying.

Example 2. Let X = N. Define an equivalence relation E on X by

(x, y) ∈ E if and only if b x
3
c = by

3
c.
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We obtain X/E = {{1, 2}} ∪ {{x, x + 1, x + 2} | x ∈ 3X} = {{1, 2}, {3, 4, 5}, {6, 7, 8}, . . .}. Let
α ∈ P(X, E) be defined by (3)α = 1, (4)α = 2 and (x)α = x− 3 for all positive integers x > 5, that is,

α =

(
1 2 3 4 5 6 7 8 · · ·
− − 1 2 − 3 4 5 · · ·

)
.

Then, α is onto, dom α 6= X and for any (x, y) ∈ E, there exists (a, b) ∈ E such that x = (a)α, y = (b)α.
Let M = {β ∈ P(X, E) | β is not onto}. For any function γ ∈ P(X, E), Lemma 5 ensures that there exists
β ∈ M such that βα = γ.

We will illustrate these ideas by considering the element γ of P(X, E), which is defined by (x)γ = b x + 3
3
c

for all x > 2, that is,

γ =

(
1 2 3 4 5 6 7 8 · · ·
− − 2 2 2 3 3 3 · · ·

)
.

To get the required result, define a function β : dom γ → X by (x)β = b x + 9
3
c if x = 3, 4, 5 and

(x)β = b x + 12
3
c for all positive integers x ≥ 6, that is,

β =

(
1 2 3 4 5 6 7 8 · · ·
− − 4 4 4 6 6 6 · · ·

)
.

Thus, β ∈ M and we have

βα =

(
1 2 3 4 5 6 7 8 · · ·
− − 4 4 4 6 6 6 · · ·

)(
1 2 3 4 5 6 7 8 · · ·
− − 1 2 − 3 4 5 · · ·

)

=

(
1 2 3 4 5 6 7 8 · · ·
− − 2 2 2 3 3 3 · · ·

)
= γ.

We summarize those lemmas in a theorem as follows.

Theorem 1. α is right magnifying in P(X, E) if and only if α is onto, for any (x, y) ∈ E, there exists (a, b) ∈ E
such that x = (a)α, y = (b)α and either

1. dom α 6= X or
2. dom α = X and α is not one-to-one.

Proof. It follows by Lemmas 1–5.

As a consequence, the following result holds for E = X× X.

Corollary 1. Let α ∈ P(X). Then, α is right magnifying in a semigroup P(X) if and only if α is onto and
either

1. dom α 6= X or
2. dom α = X and α is not one-to-one.

Proof. It follows immediately from Theorem 1.

3. Left Magnifying Elements

Lemma 6. If α is a left magnifying element in P(X, E), then α is one-to-one.

Proof. Using the same argument as in Lemma 1, we obtain a proper subset M of P(X, E) with
αM = P(X, E) and there exists β ∈ M such that αβ = idX . This shows that α is one-to-one.
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Lemma 7. If α is a left magnifying element in P(X, E), then dom α = X.

Proof. Suppose α is a left magnifying in P(X, E). Again, by definition, there is a proper subset M of
P(X, E) with αM = P(X, E). Let γ ∈ P(X, E) be such that dom γ = X. Then, γ = αβ for some β ∈ M.
Since dom γ = X, we obtain dom α = X.

Lemma 8. Let α be a left magnifying element in P(X, E). For any x, y ∈ X, if ((x)α, (y)α) ∈ E, then
(x, y) ∈ E.

Proof. Suppose α is a left magnifying element in P(X, E). By Lemma 7, dom α = X. There exists a
proper subset M of P(X, E) satisfying αM = P(X, E). Since idX ∈ P(X, E), there exists β ∈ M such
that αβ = idX. Let x, y ∈ X be such that ((x)α, (y)α) ∈ E. It follows that (x)αβ = x and (y)αβ = y.
Then, we obtain (x, y) = ((x)αβ, (y)αβ) ∈ E because β ∈ P(X, E).

Lemma 9. If α ∈ P(X, E) is bijective and dom α = X, then α is not left magnifying.

Proof. As in Lemma 3, the result holds by applying Lemma 8.

Lemma 10. If α ∈ P(X, E) is one-to-one but not onto, dom α = X and for any x, y ∈ X, ((x)α, (y)α) ∈ E
implies (x, y) ∈ E, then α is a left magnifying element in P(X, E).

Proof. Assume that α ∈ P(X, E) is one-to-one but not onto, dom α = X and for any x, y ∈ X,
((x)α, (y)α) ∈ E implies (x, y) ∈ E. Let M = {β ∈ P(X, E) | dom β ⊆ ran α}. Claim that αM =

P(X, E). Let γ ∈ P(X, E). For x ∈ ran α, then there exists ax ∈ dom γ such that (ax)α = x. Define
β ∈ P(X) by (x)β = (ax)γ if x ∈ ran α and ax ∈ dom γ. We see that dom β = {x ∈ ran α | ax ∈ dom
γ} ⊆ ran α. To show that β ∈ P(X, E), assume x, y ∈ ran α, (ax)α = x, (ay)α = y, ax, ay ∈ dom γ

and (x, y) ∈ E. Then, ((ax)α, (ay)α) ∈ E and hence, by assumption, we obtain (ax, ay) ∈ E. Thus,
((x)β, (y)β) = ((ax)γ, (ay)γ) ∈ E because γ ∈ P(X, E). Then, β ∈ M and for x ∈ X, we have

(x)αβ = ((x)α)β = (x)γ.

This gives us that αβ = γ and αM = P(X, E). Hence, α is a left magnifying element in P(X, E).

Example 3. Let X = N. Define a relation E on X by

(x, y) ∈ E if and only if b x
2
c ≡ by

2
c (mod 2).

It is obvious that E is an equivalence relation on X and, in addition, X/E =

{{1, 4, 5, 8, 9, . . .}, {2, 3, 6, 7, . . .}}. Let α ∈ E be defined by (x)α = x + 2 for all positive integers
x ∈ X. For convenience, we write α as

α =

(
1 4 5 8 9 12 13 · · · 2 3 6 7 10 11 · · ·
3 6 7 10 11 14 15 · · · 4 5 8 9 12 13 · · ·

)
.

We now obtain that α is one-to-one but not onto and for any x, y ∈ X, ((x)α, (y)α) ∈ E implies (x, y) ∈ E.
Let M = {β ∈ P(X, E) | dom β ⊆ ran α} and γ ∈ P(X, E) be any function. By Lemma 10, there exists
β ∈ M such that αβ = γ.

We will illustrate these ideas by considering the element γ of P(X, E), which is defined by (x)γ = x− 2
for all positive integers x > 3, that is,

γ =

(
1 4 5 8 9 12 13 · · · 2 3 6 7 10 11 · · ·
− 2 3 6 7 10 11 · · · − − 4 5 8 9 · · ·

)
.
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To get the required result, define a function β ∈ P(X, E) by (x)β = x− 4 for all x > 5, that is,

β =

(
1 4 5 8 9 12 13 · · · 2 3 6 7 10 11 · · ·
− − − 4 5 8 9 · · · − − 2 3 6 7 · · ·

)
.

Thus, β ∈ M and we have

αβ =

(
1 4 5 8 9 12 13 · · · 2 3 6 7 10 11 · · ·
3 6 7 10 11 14 15 · · · 4 5 8 9 12 13 · · ·

)
(

1 4 5 8 9 12 13 · · · 2 3 6 7 10 11 · · ·
− − − 4 5 8 9 · · · − − 2 3 6 7 · · ·

)

=

(
1 4 5 8 9 12 13 · · · 2 3 6 7 10 11 · · ·
− 2 3 6 7 10 11 · · · − − 4 5 8 9 · · ·

)
= γ.

Example 4. Let X = Z×Z. Define a relation E on X by

((a, b), (c, d)) ∈ E if and only if a = c.

Let α ∈ P(X, E) be defined by (a, b)α = (2a, 2b) for all a, b ∈ Z. Then, α is one-to-one but not onto and
for any (a, b), (c, d) ∈ X, ((a, b)α, (c, d)α) ∈ E implies ((a, b), (c, d)) ∈ E. Let M = {β ∈ P(X, E) | dom
β ⊆ ran α} and γ ∈ P(X, E) be any function. By Lemma 10, there exists β ∈ M such that αβ = γ. We will
illustrate these ideas by considering the element γ of P(X, E), which is defined by (a, b)γ = (a + 1, b + 2) for
all a, b ∈ Z.

To get the required result, define a function β ∈ P(X, E) by (a, b)β = (k + 1, l + 2) if a = 2k and b = 2l
for some k, l ∈ Z. Thus, β ∈ M and we have (a, b)αβ = ((a, b)α)β = (2a, 2b)β = (a + 1, b + 2) = (a, b)γ
for all a, b ∈ Z, which shows that αβ = γ.

We summarize those lemmas in a theorem as follows.

Theorem 2. α is left magnifying in P(X, E) if and only if α is one-to-one but not onto, dom α = X and for
any x, y ∈ X, ((x)α, (y)α) ∈ E implies (x, y) ∈ E.

Proof. It follows from Lemmas 6–10.

As a consequence, the following result holds for E = X× X.

Corollary 2. α is a left magnifying element in P(X) if and only if α is one-to-one but not onto and dom α = X.

Proof. It follows from Theorem 2.

4. Conclusions

In this paper, necessary and sufficient conditions for elements in P(X, E) to be right or left
magnifying are established as follows:

1. α is right magnifying in P(X, E) if and only if α is onto, for any (x, y) ∈ E, there exists (a, b) ∈ E
such that x = (a)α, y = (b)α and either

1. dom α 6= X or
2. dom α = X and α is not one-to-one.

2. Let α ∈ P(X). Then, α is right magnifying in a semigroup P(X) if and only if α is onto and either
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1. dom α 6= X or
2. dom α = X and α is not one-to-one.

3. α is left magnifying in P(X, E) if and only if α is one-to-one but not onto, dom α = X and for any
x, y ∈ X, ((x)α, (y)α) ∈ E implies (x, y) ∈ E.

4. α is a left magnifying element in P(X) if and only if α is one-to-one but not onto and dom α = X.
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