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Abstract: In this paper, by transforming the given over-determined system into a square
system, we prove a necessary and sufficient condition to certify the simple real zeros of the
over-determined system by certifying the simple real zeros of the square system. After certifying
a simple real zero of the related square system with the interval methods, we assert that the
certified zero is a local minimum of sum of squares of the input polynomials. If the value of
sum of squares of the input polynomials at the certified zero is equal to zero, it is a zero of the
input system. As an application, we also consider the heuristic verification of isolated zeros of
polynomial systems and their multiplicity structures.
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1. Introduction

Finding zeros of polynomial systems is a fundamental problem in scientific computing.
Newton’s method is widely used to solve this problem. For a fixed approximate solution of
a system, we can use the α-theory [1–3], the interval methods or the optimization methods [4–9]
to completely determine whether it is related to a zero of the system. However, the α-theory or
the interval methods focuses mainly on a simple zero of a square system, that is, a system with n
equations and n unknowns.

Some special certifications of a rational solution of rational polynomials with certified sum
of squares decompositions are considered [10–16].

What about singular zeros of a well-constrained polynomial system? Usually, an over-
determined system which contains the same zero as a simple one is constructed by introducing
new equations. The basic idea is the deflation techniques [17–24]. In some studies [25–30],
new variables are also included. Moreover, some authors verify that a perturbed system possesses
an isolated singular solution within a narrow and computed error bound. The multiplicity
structures of singular zeros of a polynomial system are also studied [18,21,29]. Although it is
in a theoretical sense and global sense, the method in [17] provides a sufficient condition that
a zero is exactly a zero of a zero-dimensional polynomial system with rational coefficients.

For the deflation methods mentioned above, on the one hand, to be a zero of the perturbed
systems does not mean being a zero of the input system considering the difference between the
two systems; on the other hand, although the over-determined systems without introducing
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new variables have the same zeros as the input systems, the verification methods, such as the
α-theory or the interval methods, could not be used directly on the over-determined systems
in general.

In [31], the authors extended the α-theory from well-constrained systems to over-determined
systems. A main result about Newton’s method given in their paper is their Theorem 4 [31],
which says that under the condition of 2α1(g, ζ) < 1, where g = (g1, . . . , gm) ∈
(C[x1, . . . , xn])m(m ≥ n), J(g)(x)† is the Moore–Penrose inverse of the Jacobian matrix J(g)(x)
of g and

α1(g, x) = β1(g, x)γ1(g, x),

β1(g, x) = ‖J(g)(x)†‖‖g(x)‖,

γ1(g, x) = sup
k≥2

(
‖J(g)(x)†‖ Jk(g)(x)

k!

) 1
k−1

,

ζ is an attractive fixed point for Newton’s method and, simultaneously, a strict local

minimum for ‖g‖2 =
m
∑

j=1
‖gj‖2. However, as they stated, whether the attracting fixed points for

Newton’s method are always local minima of ‖g‖2, or the zeros of the input system, is unknown.
In this paper, we consider the problem of certifying the simple real zeros of

an over-determined polynomial system. Given Σ = { f1, . . . , fm} ∈ (R[x1, . . . , xn])m(m ≥ n),

we construct a new square system Σ′ = { ∂ f
∂x1

, . . . , ∂ f
∂xn
} with f =

m
∑

i=1
f 2
i . After transforming the

input over-determined system into a square one, we can use both the α-theory and the interval
methods to certify its simple zeros. In this paper, we only consider using the interval methods to
certify the simple real zeros of the over-determined system. We prove that the simple real zeros
of the input system are local minima of sum of squares of the input polynomials. We also give
the condition that the local minimum is a simple zero of the input system.

Let R be the field of real numbers. Denote R[x] = R[x1, . . . , xn] as the polynomial ring.
Let F = { f1, . . . , fm} ⊂ R[x] be a polynomial system. Let p = (p1, . . . , pn) ∈ Rn.

The following theorem is the main result of this paper.

Theorem 1. Let Σ = { f1, . . . , fm} ⊂ R[x] (m ≥ n) and f =
m
∑

i=1
f 2
i . Then, we have:

1. If p ∈ Rn is an isolated simple real zero of Σ, p is a local minimum of f .
2. p is a simple real zero of Σ if and only if (p, 0) is a simple real zero of the square system

Σr = {J1( f ), . . ., Jn( f ), f − r}, where Ji( f ) = ∂ f
∂xi

and r is a new variable.

In the above theorem, we get a necessary and sufficient condition to certify the simple real
zeros of the input system Σ by certifying the simple real zeros of the square system Σr. Therefore,
to certify that p is a simple real zero of Σ, the key point is verifying that f (p) = 0.

However, it is difficult to decide numerically if a point is a zero of a polynomial.
Thus, we cannot use the necessary and sufficient condition to certify the simple real zeros
of Σ by certifying the simple real zeros of Σr.

As an alternative, we refine and certify the simple real zeros of Σ by refining and certifying a
new square system Σ′ = {J1( f ), . . ., Jn( f )}with the interval methods and get a verified inclusion
X, which contains a unique simple real zero x̂ of Σ′. In fact, x̂ is a local minimum of f , which also
is a necessary condition for the certification. On the one hand, if f (x̂) = 0, by Theorem 1, (x̂, 0) is
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a simple real zero of Σr, and then x̂ is a simple real zero of Σ. Thus, we certified the input system
Σ. On the other hand, if f (x̂) 6= 0, we can only assert that Σr has a unique zero in the verified
inclusion X× [0, f (x̂)], which means we certified the system Σr.

A big difference between this paper and our pervious work [32] is that we do not merely
consider certifying simple zeros of over-determined polynomial systems, but also consider the
certification of the general isolated zeros. Specifically, as an application of our method, we give
a heuristic method for certifying not only the isolated singular zeros of polynomial systems,
but also the multiplicity structures of the isolated singular zeros of polynomial systems.

This paper is an extended version of the CASC’17 conference paper [32].
The paper is organized as follows. We introduce some notations and preliminaries in the

next section. In Section 3, we give a method to show how to transform an over-determined
system into a square one. The interval verification method on the obtained square system
is considered in Section 4. We give two applications of our method in Section 5 and draw
conclusions in Section 6.

2. Preliminaries

Let C be the field of complex numbers. Denote C[x] = C[x1, . . . , xn] as the polynomial
ring. Let F = { f1, . . . , fm} ⊂ C[x] be a polynomial system. Let p = (p1, . . . , pn) ∈ Cn. F(p) = 0
denote that p is a zero of F(x) = 0.

Let A be a matrix. Denote AT as the transpose of A and rank(A) as the rank of A.
Let Mat(ai,j) denote the matrix whose i-th row j-th column element is ai,j.

Let Σ = { f1, . . . , fm} ⊂ C[x] be a polynomial system. Denote J(Σ) as the Jacobian matrix of
Σ. That is,

J(Σ) =


∂ f1
∂x1

. . . ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

. . . ∂ fm
∂xn

 .

For a polynomial f ∈ C[x], let J( f ) denote ( ∂ f
∂x1

, ∂ f
∂x2

, . . . , ∂ f
∂xn

), Ji( f ) = ∂ f
∂xi

and

Ji,j( f ) = Jj(Ji( f )) = ∂2 f
∂xj∂xi

. Denote Σr = {J1( f ), . . ., Jn( f ), f − r} with f =
m
∑

j=1
f 2
j .

We denote the value of a function matrix A ∈ C[x]n×n at a point p ∈ Cn as A(p). Let J(F)(p)
denote the value of a function matrix J(F) at a point p, similarly for J( f )(p).

Definition 1. An isolated solution of F(x) = 0 is a point p ∈ Cn which satisfies:

∃ ε > 0 : {y ∈ Cn : ‖y− p‖ < ε} ∩ F−1(0) = {p}.

Definition 2. We call an isolated solution p ∈ Cn of F(x) = 0 a singular solution if and only if

rank(J(F)(p)) < n.

Otherwise, we call p a simple solution.

Definition 3. A stationary point of a polynomial function f (x) ∈ C[x] is a point p ∈ Cn,
which satisfies:

∂ f
∂xi

(p) = 0, ∀ i = 1, . . . , n.
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We can find the following lemma in many undergraduate textbooks about linear algebra
(see Example 7 on page 224 in [33] for example).

Lemma 1. Let A ∈ Rm×n be a real matrix with m ≥ n and B = AT A. Then, the ranks of A and B are
the same, especially for the case that A is of full rank.

In the following, we consider the real zeros of the systems with real coefficients. It is
reasonable since, for a system (m equations and n unknowns) with complex coefficients,
we can rewrite the system into a new one with 2 m equations and 2 n unknowns by splitting
the unknowns xi = xi,1 + i xi,2 and equations f j(x1, . . . , xn) = gj,1(x1,1, x1,2, . . . , xn,1, xn,2) +

i gj,2(x1,1, x1,2, . . . , xn,1, xn,2), where i2 = −1, f j ∈ C[x], gj,1, gj,2 ∈ R[x], j = 1, . . . , m, and find the
complex zeros of the original system by finding out the real zeros of the new system.

3. Transforming Over-determined Polynomial Systems into Square Ones

In this section, we show how to transform an over-determined polynomial system into a
square one with their zeros having a one-to-one correspondence, especially for the simple zeros.

By Definition 3, we have the following lemma:

Lemma 2. Given a polynomial system Σ = { f1, . . . , fm} ⊂ R[x] (m ≥ n). Let f =
m
∑

i=1
f 2
i and

Σ′ = {J1( f ), J2( f ), . . . , Jn( f )}. If p ∈ Rn is an isolated real zero of Σ′, then p is a stationary point of f .

Lemma 3. Let Σ = { f1, . . . , fm} ⊂ R[x] (m ≥ n), Σ′ = {J1( f ), J2( f ), . . . , Jn( f )} with f =
m
∑

i=1
f 2
i .

If p ∈ Rn is an isolated real zero of Σ, then we have:

1. p is an isolated real zero of Σ′.
2. rank(J(Σ)(p)) = rank(J(Σ′)(p)).

Proof. It is clear that p is an isolated real zero of Σ′ providing that p is an isolated real zero of Σ,

since Ji( f ) = 2
m
∑

k=1
fk Ji( fk).

To prove the second part of this lemma, we rewrite Ji( f ) as follows.

Ji( f ) = 2 〈 f1, . . . , fm〉 〈Ji( f1), . . . , Ji( fm)〉T , (1)

where 〈 · 〉T is the transpose of a vector or a matrix 〈 · 〉. Then,

Ji,j( f ) = Jj(Ji( f )) = Jj(2
m

∑
k=1

fk Ji( fk)) = 2
m

∑
k=1

(Jj( fk)Ji( fk) + fk Ji,j( fk))

= 2 〈Jj( f1), . . . , Jj( fm)〉 〈Ji( f1), . . . , Ji( fm)〉T + 2
m

∑
k=1

fk Ji,j( fk).
(2)

Then, the Jacobian matrix of Σ′ is

J(Σ′) =

 J1,1( f ) . . . J1,n( f )
...

. . .
...

Jn,1( f ) . . . Jn,n( f )

 = Mat(Ji,j( f )).
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We rewrite

Mat(Ji,j( f )) = 2 AT A + 2 Mat(
m

∑
k=1

fk Ji,j( fk)), (3)

where

A =

 J1( f1) . . . Jn( f1)
...

. . .
...

J1( fm) . . . Jn( fm)


is an m× n matrix which is exactly the Jacobian matrix of Σ, that is, J(Σ) = A. Then, we have

J(Σ′)(p) = 2A(p)T A(p). (4)

By Lemma 1, the second part of the lemma is true. This ends the proof.

Remark 1. In our construction of f and Σ′, the degrees of the polynomials almost be doubled compared
to the original one. However, to evaluate the Jacobian matrix of Σ′, we evaluate the Jacobian matrix of the
original system with m2n numerical products. One can find it from Equation (4) in the above proof. In fact,
to get J(Σ′)(p), we only need to compute A(p), which does not increase our actual computing degree.

As a byproduct, thanks to the doubled degree of the polynomials, our final certified accuracy is also
improved in Lemma 4.

The following is the proof of Theorem 1:

Proof. In fact, by fixing the real zero p as an isolated simple zero in Lemma 3, we have p is an
isolated simple real zero of Σ′ = {J1( f ), . . . , Jn( f )}. Since p is an isolated simple zero of Σ, A(p)
is a column full rank matrix. Therefore, it is easy to verify that J(Σ′)(p) = 2 A(p)T A(p) is a
positive definite matrix. Thus, p is a local minimum of f and the first part of the theorem is true.
Now, we consider the second part.

First, it is easy to verify that p is the real zero of Σ if and only if (p, 0) is the real zero of Σr.
Notice that Σr = {Σ′, f − r}. Thus, with the same method as proving Lemma 3, we can compute
easily that

J(Σr)(p, 0) =

(
J(Σ′)(p) 0

0 −1

)
=

(
2 J(Σ)(p)TJ(Σ)(p) 0

0 −1

)
,

which implies that

rank(J(Σ)(p)) = rank(J(Σ′)(p)) = rank(J(Σr)(p, 0))− 1, (5)

which means that J(Σr)(p, 0) is of full rank if and only if J(Σ)(p) is of full rank. Thus, p is an
isolated simple zero of Σ if and only if (p, 0) is an isolated simple zero of Σr. The second part is
true. We have finished the proof.

From Theorem 1, we know that the simple real zeros of Σ and Σr are in one-to-one
correspondence with the constraint that the value of the sum of squares of the polynomials
in Σ at the simple real zeros is identically zero. Thus, we can transform an over-determined
polynomial system into a square system Σr.

We show a simple example to illustrate the theorem below.
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Example 1. The simple zero p = (0, 0) of the over-determined system Σ = { f1, f2, f3} corresponds to a
simple zero of a square system Σr = {J1( f ), J2( f ), f − r}, where f = f 2

1 + f 2
2 + f 2

3 with

f1 = x2 − 2 y, f2 = y2 − x, f3 = x2 − 2 x + y2 − 2 y.

We can verify simply that (p, 0) is a simple zero of Σr.

Although the simple real zeros of Σ and Σr have a one-to-one correspondence, it cannot be
used directly to do certification of the simple zeros of Σ since we cannot certify r = 0 numerically.
However, we can certify the zeros of Σ′ = {J1( f ), J2( f ), . . . , Jn( f )} as an alternative, which is a
necessary condition for the certification.

We discuss it in next section.

4. Certifying Simple Zeros of Over-determined Systems

In this section, we consider certifying the over-determined system with the interval methods.
We prove the same local minimum result as [31].

The classical interval verification methods are based on the following theorem:

Theorem 2 ([5,6,8,30]). Let f = ( f1, . . . , fn) ∈ (R[x])n be a polynomial system, x̃ ∈ Rn, real interval
vector X ∈ IRn with 0 ∈ X and real matrix R ∈ Rn×n be given. Let an interval matrix M ∈ IRn×n be
given whose i-th row Mi satisfies

{∇ fi(ζ) : ζ ∈ x̃ + X} ⊆ Mi.

Denote by I the n× n identity matrix and assume

−Rf(x̃) + (I − RM)X ⊆ int(X),

where int(X) denotes the interior of X. Then, there is a unique x̂ ∈ x̃ + X with f(x̂) = 0. Moreover,
every matrix M̃ ∈ M is nonsingular. In particular, the Jacobian J(f)(x̂) is nonsingular.

About interval matrices, there is an important property in the following theorem.

Theorem 3 ([34]). A symmetric interval matrix AI is positive definite if and only if it is regular and
contains at least one positive definite matrix.

Given an over-determined polynomial system Σ = { f1, . . . , fm} ⊂ R[x] with an isolated
simple real zero, we can compute a related square system

Σ′ = { ∂ f
∂x1

,
∂ f
∂x2

, . . . ,
∂ f
∂xn
} with f =

m

∑
j=1

f 2
j .

Based on Lemma 3, a simple zero of Σ is a simple zero of Σ′. Thus, we can compute the
approximate simple zero of Σ by computing the approximate simple zero of Σ′. Using Newton’s
method, we can refine these approximate simple zeros with quadratic convergence to a relative
higher accuracy. Then, we can certify them with the interval method mentioned before and
get a verified inclusion X, which possesses a unique certified simple zero of the system Σ′ by
Theorem 2, denoting as x̂ ∈ X.
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However, even though we get a certified zero x̂ of the system Σ′, considering Lemma 2,
we cannot say x̂ is a zero of the input system Σ. Because the certified zero x̂ is just a stationary
point of f . Considering Theorem 1 and the difference between Σ′ and Σr, we have the
following theorem.

Theorem 4. Let Σ, Σ′, Σr, f , x̂ and the interval X be given as above. Then, we have:

1. x̂ is a local minimum of f .
2. There exists a verified inclusion X× [0, f (x̂)] that possesses a unique simple zero of the system Σr.

Especially, if f (x̂) = 0, the verified inclusion X possesses a unique simple zero of the input system Σ.

Proof. First, it is easy to see that computing the value of the matrix J(Σ′) at the interval X
will give a symmetric interval matrix, denoting as J(Σ′)(X). By Theorem 2, we know that, for
every matrix M ∈ J(Σ′)(X), M is nonsingular. Therefore, the interval matrix J(Σ′)(X) is regular.
Especially, the matrix J(Σ′)(x̂), which is the Hessian matrix of f , is full rank and, therefore,
is positive definite. Thus, x̂ is a local minimum of f . By Theorem 3, we know that J(Σ′)(X) is
positive definite. Thus, for every point q ∈ X, J(Σ′)(q) is a positive definite matrix. Considering
Theorem 2, it is trivial that, for the verified inclusion X× [0, f (x̂)], there exists a unique simple
zero of the system Σr. If f (x̂) = 0, by Theorem 1, the verified inclusion X of the system Σ′ is a
verified inclusion of the original system Σ.

Remark 2. 1. In the above proof, we know that, for every point q ∈ X, J(Σ′)(q) is a positive
definite matrix.

2. By Theorem 2, we know that there is a unique x̂ ∈ X with Σ′(x̂) = 0. However, we could not
know what the exact x̂ is. According to the usual practice, in actual computation, we take the midpoint p̂
of the inclusion X as x̂ and verify whether f (p̂) = 0. Considering the uniqueness of x̂ in X, therefore, if
f (p̂) = 0, we are sure that the verified inclusion X possesses a unique simple zero of the input system Σ.
If f (p̂) 6= 0, we can only claim that there is a local minimum of f in the inclusion X and X× [0, f (p̂)] is
a verified inclusion for the system Σr.

Considering the expression of Σ and f and for the midpoint p̂ of X, we have a trivial
result below.

Lemma 4. Denote ε =
m

max
j=1
| f j(p̂)|. Under the conditions of Theorem 4, we have | f (p̂)| ≤ mε2.

Based on the above idea, we give an algorithm below. In the verification steps,
we apply algorithm verifynlss in INTLAB [30], which is based on Theorem 2, to compute
a verified inclusion X for the related square system Σ′. For simplicity, denote the interval
X = [x1, x1], · · · , [xm, xm] and the midpoint of X as p̂ = [(x1 + x1)/2, . . . , (xm + xm)/2].

The correctness and the termination of the algorithm is obvious by the above analysis.
We give two examples to illustrate our algorithm.

Example 2. Continue Example 1. Given an approximate zero p̃ = (0.0003528, 0.0008131),
using Newton’s method, we get a higher accuracy approximate zero

p̃′ = 10−11 · (−0.104224090958505,−0.005858368844383).
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Compute f = f 2
1 + f 2

2 + f 2
3 and Σ′ = {J1( f ), J2( f )}. After applying algorithm verifynlss on Σ′,

we have a verified inclusion:

X =

(
[−0.11330049261083, 0.11330049261083]
[−0.08866995073891, 0.08866995073891]

)
· 10−321.

Based on Theorem 2, we know that there exists a unique x̂ ∈ X, such that Σ′(x̂) = 0.
Let Σr = {J1( f ), J2( f ), f − r}. By Theorem 1, we can certify the simple zero of Σ by certifying

the simple zero of Σr theoretically. Considering the difference between Σ′ and Σr, we check first whether
the value of f at some point in the interval X is zero. According to the usual practice, we consider the
midpoint p̂ of X, which equals (0, 0) and, further, f (p̂) is zero. Therefore, we are sure that there exists a
unique x̂ = (x̂, ŷ) ∈ X, s.t. Σr((x̂, 0)) = 0 and, then, there exists a unique simple zero (x̂, ŷ) ∈ X of the
input system Σ, which means we certified the input system Σ.

Example 3. Let Σ = { f1 = x2
1 + 3 x1x2 + 3 x1x3 − 3 x2

3 + 2 x2 + 2 x3, f2 = −3 x1x2 + x1x3 − 2 x2
2 +

x2
3 + 3 x1 + x2, f3 = 2 x2x3 + 3 x1− 3 x3 + 2, f4 = −6 x2

2x3 + 2 x2x2
3 + 6 x2

2 + 15 x2x3− 6 x2
3− 9 x2−

7 x3 + 6} be an over-determined system. Consider an approximate zero

p̃ = (−1.29655, 0.47055,−0.91761).

Using Newton’s method, we get a higher accuracy zero

p̃′ = (−1.296687216045438, 0.470344502045004,−0.917812633399457).

Compute
f = f 2

1 + f 2
2 + f 2

3 + f 2
4 and Σ′ = {J1( f ), J2( f ), J3( f )}.

After applying algorithm verifynlss on Σ′, we have a verified inclusion:

X =

 [−1.29668721603974, −1.29668721603967]
[ 0.47034450205107, 0.47034450205114]
[−0.91781263339256, −0.91781263339247]

 .

Similarly, based on Theorem 2, we know that there exists a unique x̂ ∈ X, such that Σ′(x̂) = 0.
Proceeding as in the above example, we consider the midpoint p̂ of X and compute f (p̂) = 3.94 ·

10−31 6= 0. Thus, by Theorem 4, we get a verified inclusion X× [0, f (p̂)], which contains a unique simple
zero of the system Σr. It means that X may contain a zero of Σ. Even if X does not contain a zero of Σ,
it contains a local minimum of f , which has a minimum value no larger than f (p̂).

5. Two Applications

As an application, we consider certifying isolated singular zeros of over-determined systems
heuristically. Generally, dealing with the multiple zeros of polynomial systems directly is difficult.
The classical method to deal with the isolated singular zeros of polynomial systems is the
deflation technique, which constructs a new system owning the same singular zero as an isolated
simple one. Although the deflation method can be used to refine or verify the isolated zero of
the original system, it is a pity that the multiplicity information of the isolated zero is missed.
In this section, as an application of the method of converting an over-determined system into a
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square system in previous section, we give a heuristic method for certifying isolated singular
zeros of polynomial systems and their multiplicity structures.

5.1. Certifying Isolated Singular Zeros of Polynomial Systems

Recently, Cheng et al. [35] proposed a new deflation method to reduce the multiplicity
of an isolated singular zero of a polynomial system to get a final system, which owns the
isolated singular zero of the input system as a simple one. Different from the previous deflation
methods, they considered the deflation of isolated singular zeros of polynomial systems from
the perspective of linear combination.

In this section, we first give a brief introduction of their deflation method and, then,
show how our method is applied to certify the isolated singular zeros of the input system
in a heuristic way.

Definition 4. Let f ∈ C[x], p̃ ∈ Cn and a tolerance θ > 0, s.t. | f (p̃)| < θ. We say f is θ-singular at
p̃ if ∣∣∣∣∣∂ f (p̃)

∂xj

∣∣∣∣∣ < θ, ∀1 ≤ j ≤ n.

Otherwise, we say f is θ-regular at p̃.

Let F = { f1, . . . , fn} ⊂ C[x] be a polynomial system. p̃ ∈ Cn is an approximate isolated zero
of F = 0. Consider a tolerance θ. First, we can compute the polynomials of all fi(i = 1, . . . , n),
which is θ-regular at the approximate zero p̃. That is, we compute a polynomial set

G = {dγ
x ( f )|dγ

x ( f ) is θ-regular at p̃, f ∈ F}.

Then, put G and F together and compute a subsystem H = {h1, . . . , hs} ⊂ G ∪ F, whose
Jacobian matrix at p̃ has a maximal rank s. If s = n, we get the final system F̃′ = H. Otherwise,
we choose a new polynomial h ∈ G∪ F \H and compute

g = h +
s

∑
i=1

αihi, gj =
∂h
∂xj

, j = 1, . . . , n,

where αj, j = 1, . . . , n are new introduced variables. Next, we check if

rank(J(H, g1, . . . , gn)(p̃)) = n + s. (6)

If Equation (6) holds, we get the final system F̃′ = H ∪ {g1, . . . , gn}. Otherwise,
let H := H∪ {g1, . . . , gn} ⊂ C[x, α] and repeat again until Equation (6) holds.

Now, we give an example to illustrate the above idea.

Example 4. Consider a polynomial system F = { f1 = − 9
4 + 3

2 x1 + 2 x2 + 3 x3 + 4 x4 − 1
4 x2

1, f2 =

x1− 2 x2− 2 x3− 4 x4 + 2 x1x2 + 3 x1x3 + 4 x1x4, f3 = 8− 4 x1− 8 x4 + 2 x2
4 + 4 x1x4− x1x2

4, f4 =

−3 + 3 x1 + 2 x2 + 4 x3 + 4 x4}. Consider an approximate singular zero

p̃ = ( p̃1, p̃2, p̃3, p̃4) = (1.00004659,−1.99995813,−0.99991547, 2.00005261)

of F = 0 and the tolerance ε = 0.005.



Mathematics 2018, 6, 166 10 of 18

First, we have the Taylor expansion of f3 at p̃:

f3 = 3× 10−9 − 3× 10−9(x1 − p̃1) + 0.00010522(x4 − p̃4) + 0.99995341(x4 − p̃4)
2

−0.00010522(x1 − p̃1)(x4 − p̃4)− (x1 − p̃1)(x4 − p̃4)
2.

Consider the tolerance θ = 0.05. Since

| f3(p̃)| < θ,
∣∣∣∣∂ f3

∂xi
(p̃)
∣∣∣∣ < θ(i = 1, 2, 3, 4),

∣∣∣∣∣∂2 f3

∂x2
4
(p̃)

∣∣∣∣∣ > θ,

we get a polynomial
∂ f3

∂x4
= −8 + 4 x1 + 4 x4 − 2 x1x4,

which is θ-regular at p̃. Similarly, by the Taylor expansion of f1, f2, f4 at p̃, we have that f1, f2, f4 are all
θ-regular at p̃.

Thus, we have
G = { f1, f2,−8 + 4 x1 + 4 x4 − 2 x1x4, f4}.

Compute
r = rank(J(G)(p̃), ε) = 3.

We can choose

H = {h1 = f1, h2 = f2, h3 = −8 + 4 x1 + 4 x4 − 2 x1x4}

from G∪ F. To h = f4 ∈ G∪ F \H, let

g = h + α1h1 + α2h2 + α3h3.

By solving a Least Square problem:

LeastSquares((J(H, h)(p̃))T [α1, α2, α3,−1]T = 0),

we get an approximate value:

(α̃1, α̃2, α̃3) = (−1.000006509,−0.9997557989, 0.000106178711).

Then, compute

g1 =
∂g
∂x1

= 3 +
3
2

α1 + α2 + 4α3 −
1
2

α1x1 + 2α2x2 + 3α2x3 + 4α2x4 − 2α3x4,

g2 =
∂g
∂x2

= 2 + 2α1 − 2α2 + 2α2x1,

g3 =
∂g
∂x3

= 4 + 3α1 − 2α2 + 3α2x1,

g4 =
∂g
∂x4

= 4 + 4α1 − 4α2 + 4α3 + 4α2x1 − 2α3x1,

and we get a polynomial set
H′ = {h1, h2, h3, g1, g2, g3, g4},
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which satisfies
rank(J(H′)(p̃, α̃1, α̃2, α̃3), ε) = 7.

Thus, we get the final system F̃′(x, α) = H′.

In the above example, given a polynomial system F with an isolated singular zero p,
by computing the derivatives of the input polynomials directly or the linear combinations of the
related polynomials, we compute a new system F̃′, which has a simple zero. However, generally,
the final system F̃′ does not contain all fi(i = 1, . . . , n). Thus, to ensure that the simple zero or
parts of the simple zero of the square system F̃′ really correspond to the isolated singular zero
of the original system, we put F and F̃′ together and consider certifying the over-determined
system F∪ F̃′ in the following.

Example 5. Continue with Example 4. we put F and F̃′ together and get the over-determined system
Σ = F∪ F̃′. According to our method in Section 4, let

f =
4

∑
j=1

f 2
j + h2

3 +
4

∑
j=1

g2
j .

Then, we compute

Σ′ = { ∂ f
∂x1

, . . . ,
∂ f
∂x4

,
∂ f
∂α1

, . . . ,
∂ f
∂α3
} and Σr = {Σ′, f − r}.

After applying algorithm verifynlss on Σ′ at (p̃, α̃1, α̃2, α̃3), we have a verified inclusion:

X =



[ 0.99999999999979, 1.00000000000019]
[−2.00000000000060,−1.99999999999945]
[−1.00000000000040,−0.99999999999956]
[ 1.99999999999998, 2.00000000000002]
[−1.00000000000026,−0.99999999999976]
[−1.00000000000022,−0.99999999999975]
[−0.00000000000012, 0.00000000000010]


By Theorem 2, we affirm that there is a unique isolated simple zero x̂ ∈ X, s.t. Σ′(x̂) = 0.
Next, as in Examples 2 and 3, we consider the midpoint (p̂, α̂) of X and compute

f (p̂, α̂) = 4.0133× 10−28. Thus, by Theorem 4, we get a verified inclusion X× [0, f (p̂, α̂)], which
contains a unique simple zero of the system Σr. It means that X may contain a zero of Σ. Even if X does
not contain a zero of Σ, it contains a local minimum of f , which has a minimum value no larger than
f (p̂, α̂).

In the above example, we get the verified inclusion X× [0, f (p̂, α̂)] of the system Σr. Noticing
that f (p̂, α̂) 6= 0, according to Theorem 4, we are not sure if the verified inclusion X contains
a unique simple zero of the system Σ. While, considering the value of f (p̂, α̂) is very small,
under certain numerical tolerance condition(for example 10−25), we can deem that the verified
inclusion X contains a simple zero of the system Σ. That is, we certified the over-determined
system Σ and further certified the original system F.
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5.2. Certifying the Multiplicity Structures of Isolated Singular Zeros of Polynomial Systems

In recent years, Mourrain et al. [21,36] proposed a new deflation method, which can be used
to refine the accuracy of an isolated singular zero and the parameters introduced simultaneously
and, moreover, the parameters can describe the multiplicity structure at the zero. They also
proved that the number of equations and variables in this deflation method depend polynomially
on the number of variables and equations of the input system and the multiplicity of the singular
zero. However, although they also showed that the isolated simple zeros of the extended
polynomial system correspond to zeros of the input system, the extended system is usually an
over-determined system. Therefore, the problem of knowing the multiplicity structure of the
isolated singular zero exactly becomes the problem of solving or certifying the isolated simple
zero of the over-determined system.

In this section, we first give a brief introduction of their deflation method and, then, show
how our method is applied to certify the multiplicity structure of the isolated singular zero of
the input system heuristically.

Let F = { f1, . . . , fm} ⊂ C[x]. Let p = (p1, . . . , pn) ∈ Cn be an isolated multiple zero of F.
Let I = 〈 f1, . . . , fm〉, mp be the maximal ideal at p and Q be the primary component of I at p so
that
√

Q = mp.
Consider the ring of power series C[[∂p]] := C[[∂1,p, . . . , ∂n,p]] and we use the notation for

β = (β1, . . . , βn) ∈ Nn:

∂
β
p( f ) := ∂

β1
1,p · · · ∂

βn
n,p =

∂|β| f

∂xβ1
1 · · · ∂xβn

n
(p), for f ∈ C[x].

The deflation method based on the orthogonal primal-dual pairs of bases for the space
C[x]/Q and its dual D ⊂ C[∂], which is illustrated in the following lemma.

Lemma 5. Let F, p, Q, D be as in the above and δ be the multiplicity of F at p. Then, there exists a
primal-dual basis pair of the local ring C[x]/Q with the following properties:

1. (a) The primal basis of the local ring C[x]/Q has the form

B := {(x− p)α0 , (x− p)α1 , . . . , (x− p)αδ−1}.

We can assume that α0 = 0 and that the monomials in B are connected to 1. Define the set of
exponents in B

E := {α0, . . . , αδ−1}.

2. The unique dual basis Λ = {Λ0, Λ1, . . . , Λδ−1} ⊂ D orthogonal to B has the form:

Λ0 = ∂α0
p = 1p,

Λ1 =
1

α1!
∂α1

p + ∑
|β|<|α1|

β/∈E

να1,β
1
β!

∂
β
p,

...

Λδ−1 =
1

αδ−1!
∂

αδ−1
p + ∑

|β|<|αδ−1|
β/∈E

ναδ−1,β
1
β!

∂
β
p,
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The above lemma says that, once given a primal basis B of the local ring C[x]/Q, there
exists a unique dual basis Λ, which can be used to determine the multiplicity structure of p
in F and further the multiplicity δ of p, orthogonal to B. Based on the known primal basis B,
Mourrain et.al constructed the following parametric multiplication matrices, which can be used
to determine the coefficients of the dual basis Λ.

Definition 5. Let B as defined in Lemma 5 and denote the exponents in B by E := {α0, . . . , αδ−1} as
above. Let

E+ :=
n⋃

i=1

(E + ei)

with E + ei = {(γ1, . . . , γi + 1, . . . , γn) : γ ∈ E} and we denote ∂(E) = E+ \ E. We define an array
µ of length nδ(δ− 1)/2 consisting of 0s, 1s and the variables µαi ,β as follows: for all αi, αk ∈ E and
j ∈ {1, . . . , n} the corresponding entry is

µαi ,αl+ej =


1, i f αi = αk + ej

0, i f αk + ej ∈ E, αi 6= αk + ej

µαi ,αl+ej , i f αk + ej /∈ E.

The parametric multiplication matrices corresponding to E are defined for i = 1, . . . , n by

Mt
i(µ) :=

0 µα1,ei µα2,ei · · · µαδ−1,ei

0 0 µα2,α1+ei · · · µαδ−1,α1+ei
...

...
...

0 0 0 · · · µαδ−1,αδ−2+ei

0 0 0 · · · 0

.

Definition 6. (Parametric normal form). Let K ⊂ C be a field. We define

Nz,µ : K[x] −→ K[z, µ]δ

f 7−→ Nz,µ( f ) := f (z + M(µ))[1] = ∑
γ∈Nn

1
γ!

∂
γ
z ( f )M(µ)γ[1].

where [1] = [1, 0, . . . , 0] is the coefficient vector of 1 in the basis B.

Based on the above lemma and definitions, the multiplicity structure are characterized by
polynomial equations in the following theorem.

Theorem 5 ([36]). Let K ⊂ C be any field, F ⊂ K[x], and let p ∈ Cn be an isolated zero of F.
Let Q be the primary ideal at p and assume that B is a basis for K[x]/Q satisfying the conditions of
Lemma 5. Let E ⊂ Nn be as in Lemma 5 and Mi(µ) for i = 1, . . . , n be the parametric multiplication
matrices corresponding to E as in Definition 5 and Nz,µ be the parametric form as in Definition 6. Then,
(z, µ) = (p, ν) is an isolated zero with multiplicity one of the polynomial system in K[z, µ]:{

Nz,µ( fk) = 0, f or k = 1, . . . , m,

Mi(µ) · Mj(µ)− Mj(µ) · Mi(µ) = 0, f or i, j = 1, . . . , n.
(7)
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The second part of Equation (7) gives a pairwise commutation relationship of the parametric
multiplication matrices. Moreover, Theorem 5 makes sure that Equation (7) has an isolated zero
(p, ν) of multiplicity one. Thus, it can be used to deflate the isolated zero p of the input system F
and simultaneously determine the multiplicity structure of p.

Now, we show an example to illustrate how their method works.

Example 6. Let F = { f1 = x1 + x2 + x2
1, f2 = x1 + x2 + x2

2} be a polynomial system with a three-fold
isolated zero p = (0, 0). Given the primal basis B = {1, x1, x2

1}, which satisfies the properties of Lemma 5,
we can compute the parametric multiplication matrices:

Mt
1(µ) =

0 1 0
0 0 1
0 0 0

 , Mt
2(µ) =

0 µ1 µ2

0 0 µ3

0 0 0

 .

Thus, Equation (7) generates the following polynomials:

1. N ( f1) = 0 gives the polynomials x1 + x2 + x2
1, 1 + 2x1 + µ1, 1 + µ2.

2. N ( f2) = 0 gives the polynomials x1 + x2 + x2
2, 1 + (1 + 2x2)µ1, (1 + 2x2)µ2 + µ1µ3.

3. M1M2 − M2M1 = 0 gives the polynomial µ3 − µ1.

Furthermore, Theorem 5 promises that (p, ν1, ν2, ν3) is an isolated zero with multiplicity one of the
system F′ = { f1, f2, 1 + 2x1 + µ1, 1 + µ2, 1 + (1 + 2x2)µ1, (1 + 2x2)µ2 + µ1µ3, µ3 − µ1}.

On the one hand, from the above example, we can see that given a polynomial system F
with an isolated zero p, by Theorem 5, we will get an extended system F′ ⊂ C[x, µ], which owns
an isolated zero (p, ν) with multiplicity one. Moreover, by Lemma 5, we have the dual basis

Λ = {1, ∂1 + ν1∂2,
1
2

∂2
1 + ν2∂2 + ν3∂1∂2 +

1
2

ν1ν3∂2
2},

which corresponds to the primal basis B = {1, x1, x2
1}.

On the other hand, it is not hard to see that Equation (7) defined in Theorem 5 usually gives
an over-determined extended system F′. Once given an approximate zero (p̃, ν̃), similar to in
Corollary 4.12 in [29], we can use random linear combinations of the polynomials in F′ to produce
a square system, which has a simple zero at (p, ν) with high probability. Furthermore, Newton’s
method can be used on this square system to refine (p̃, ν̃) to a higher accuracy. However, this
operation can only return an approximate multiplicity structure of the input system F with a
higher accuracy. Next, we consider employing our certification method to certify the multiplicity
structure of F.

Example 7. Continue to consider Example 6. Let Σ = F′ = { f1, f2, g1 = 1 + 2x1 + µ1, g2 =

1 + µ2, g3 = 1 + (1 + 2x2)µ1, g4 = (1 + 2x2)µ2 + µ1µ3, g5 = µ3 − µ1}. Given an approximate zero

(p̃, ν̃) = (0.15, 0.12,−1.13,−1.32,−1.47).

By Algorithm 1, with Newton’s method, we get a higher accuracy zero

(p̃′, ν̃′) = (0.000000771, 0.000001256,−1.000002523,−1.000000587,−1.000001940).
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Then, let

f = f 2
1 + f 2

2 +
5

∑
j=1

g2
j

and compute
Σ′ = {J1( f ), J2( f ), Jµ1

( f ), Jµ2
( f ), Jµ3

( f )}.

After applying algorithm verifynlss on Σ′ at (p̃′, ν̃′), we have a verified inclusion:

X =


[−0.00000000000001, 0.00000000000001]
[−0.00000000000001, 0.00000000000001]
[−1.00000000000001, −0.99999999999999]
[−1.00000000000001, −0.99999999999999]
[−1.00000000000001, −0.99999999999999]

 .

Based on Theorem 2, we know that there exists a unique (x̂, µ̂) ∈ X, s.t. Σ′(x̂, µ̂) = 0.
Similarly, as in Examples 2 and 3, we consider the midpoint (p̂, ν̂) of X and compute f (p̂, ν̂) = 0.

Thus, by Theorem 4, we are sure that there exists a unique simple zero (x̂1, x̂2, ν̂1, ν̂2, ν̂3) of the input
system Σ in the interval X, which means we certified the input system Σ.

According to the analysis in the above example, we know that, after applying our
Algorithm 1 on the extended system Σ = F′, we get a verified inclusion X, which possesses a
unique simple zero of F′. Noticing that the values of the variables µ1, µ2, µ3 in F′ determine the
coefficients of the dual basis Λ, thus, certifying the extended system F′ means certifying the
multiplicity structure of the input system F at p. Thus, by Theorem 4, as long as f (x̂, µ̂) = 0,
we are sure that we certified not only the isolated singular zero of the input system F, but also its
multiplicity structure.

Algorithm 1 VSPS: verifying a simple zero of a polynomial system.

Input: an over-determined polynomial system Σ := { f1, · · · , fm} ⊂ R[x] and an approximate

simple zero p̃ = ( p̃1, · · · , p̃n) ∈ Rn.
Output: a verified inclusion X and a small non-negative number.

1: Compute f and Σ′;
2: Compute p̃′ := Newton(Σ′, p̃);
3: Compute X := verifynlss(Σ′, p̃′) and f (p̂);
4: if f (p̂) = 0, then

5: return (X, 0);
6: else

7: return (X, f (p̂)).
8: end if

6. Conclusions

In this paper, we introduce the following two main contributions. First, we consider
certifying the simple zeros of over-determined systems. By transforming the given
over-determined system into a square one, we prove a necessary and sufficient condition to
certify the simple real zeros of the over-determined system Σ by certifying the simple real zeros
of the square system Σr. However, noting that deciding numerically if a point is a zero of a
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polynomial is difficult, we refine and certify the simple real zeros of Σ by refining and certifying
a new square system Σ′ with the interval methods and get a verified inclusion X, which contains
a unique simple real zero x̂ of Σ′. In fact, x̂ is a local minimum of f , which is also a necessary
condition for the certification. By the necessary and sufficient condition in Theorem 1, we know
that, as long as f (x̂) = 0, we can say that x̂ is a simple real zero of Σ and we certified the input
system Σ.

Second, based on our work [35] and the work of Mourrain et al. [21,36], as an application
of our method, we give a heuristic method for certifying not only the isolated singular zeros
of polynomial systems, but also the multiplicity structures of the isolated singular zeros of
polynomial systems.

In the future, for the certified zero x̂, trying to give a sufficient condition for the certification
is the direction of our effort.
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