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Abstract: This paper deals with robust quasi approximate optimal solutions for a nonsmooth
semi-infinite optimization problems with uncertainty data. By virtue of the epigraphs of the
conjugates of the constraint functions, we first introduce a robust type closed convex constraint
qualification. Then, by using the robust type closed convex constraint qualification and robust
optimization technique, we obtain some necessary and sufficient optimality conditions for robust
quasi approximate optimal solution and exact optimal solution of this nonsmooth uncertain
semi-infinite optimization problem. Moreover, the obtained results in this paper are applied to
a nonsmooth uncertain optimization problem with cone constraints.

Keywords: approximate quasi-solutions; optimality conditions; robust nonsmooth semi-infinite
optimization

1. Introduction

Let T be a nonempty infinite index set, C ⊆ Rn be a nonempty convex set, and let f , gt : Rn → R,
t ∈ T, be continuous functions. We focus on the following semi-infinite optimization problem with
infinite number of inequality constraints

SIP


min f (x)
s.t. gt(x) ≤ 0, t ∈ T,

x ∈ C.

The feasible set of SIP is defined by

F := {x ∈ C | gt(x) ≤ 0, for all t ∈ T} .

It is well known that this modeling of problems as SIP is an very interesting research topic
in mathematical programming due to the wide range of its applications in various fields such
as Chebyshev approximation, engineering design, and optimal control, etc. For the last decades,
many papers have been devoted to investigate SIP from different points of view. We refer the readers
to the references [1–11] for more details. However, most practical optimization problems are often
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contaminated with uncertainty data. Thus, it is meaning to study the theory and application of SIP
with uncertainty data. In this paper, we consider the uncertainty case of SIP

USIP


min f (x, u)
s.t. gt(x, vt) ≤ 0, t ∈ T,

x ∈ C,

where f : Rn × Rm → R, and gt : Rn × Rq → R, t ∈ T, are continuous functions. The uncertain
parameters u and vt, t ∈ T, belong to the convex compact sets U ⊆ Rm and Vt ⊆ Rq, t ∈ T, respectively.

Nowadays, robust optimization technique has been recognized as one of the powerful
deterministic methodology that investigates an optimization problem with data uncertainty in
the objective or constraint functions. Following this methodology, many interesting results have
been obtained for different kinds of uncertain optimization problems, see, for example, [12–25].
Here, we only mention the works on optimality due to [17,19,21,23,25]. More precisely, by virtue of
a so-called Extended Nonsmooth Mangasarian-Fromovitz constraint qualification, Lee and Pham [17]
obtained a necessary optimality condition for a class of nonsmooth optimization problems in the face of
uncertainty data. Chuong [19] obtained some necessary and sufficient optimality conditions for robust
Pareto efficient solutions of an uncertain multiobjective optimization problem in terms of multipliers
and limiting subdifferential properties. By using a robust type constraint qualifications, Sun et al. [21]
investigated some characterizations of robust optimal solutions of an fractional optimization problem
under uncertainty data both in the objective and constraint functions. Fakhar et al. [23] deduced
some optimality conditions for robust (weakly) efficient solutions of a class of uncertain nonsmooth
multiobjective optimization problems in terms of a new concept of generalized convexity. They also
presented the viability of their methodology for portfolio optimization. Wei et al. [25] established some
weak alternative theorems and optimality conditions for a general scalar robust optimization problem
by using the image space analysis approach. However, there is a few papers to deal with robust
approximate optimal solutions of uncertain optimization problems, see, for example, [26–29]. Lee and
Lee [26,29] established optimality theorems and duality results of robust approximate optimal solutions
for uncertain convex optimization problems under closed convex cone constraint qualifications
(see also [27]). Sun et al. [28] introduced a robust type closed convex constraint qualification condition
and then established some optimality conditions for robust approximate optimal solutions of a convex
optimization problem with uncertainty data.

Motivated by the work reported in [27–29], this paper is devoted to deal with robust quasi
approximate optimal solution of USIP by virtue of its robust counterpart

RUSIP


min

{
maxu∈U f (x, u)

}
s.t. gt(x, vt) ≤ 0, ∀(t, vt) ∈ gph V ,

x ∈ C,

where V : T → 2R
q

is an uncertainty set-valued mapping with V(t) := Vt, for all t ∈ T. We make two
major contributions to invistigate robust quasi approximate optimal solutions for USIP. By using the
epigraphs of the conjugate functions, we first introduce some new robust type constraint qualification
conditions. Then, we obtain some robust forms of necessary and sufficient optimality conditions for
quasi approximate optimal solutions of USIP, which gives a new generalization of the approximate
optimality conditions for semi-infinite optimization problems to uncertain semi-infinite optimization
problems. Moreover, we apply the approach used in this paper to investigate uncertain optimization
problems with cone constraints. We also show that several results on characterizations of (robust)
approximate optimal solution of (uncertain) optimization problems reported in recent literature can be
obtained by the use of our approach.
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We organize this paper as follows. Section 2 give some basic definitions and preliminary results
used in this paper. Sections 3 and 4 obtain necessary and sufficient optimality conditions for robust
quasi approximate optimal solutions of USIP. Section 5 is devoted to apply the proposed methods to
an uncertain optimization problem with cone constraints.

2. Preliminaries

In this paper, we recall some notations and preliminary results, see, e.g., [3,30]. Let Rn be the
Euclidean space of dimension n and let Rn

+ be the nonnegative orthant of Rn. The symbol B∗ stands
for the closed unit ball of Rn. The inner product in Rn is defined by 〈·, ·〉. The norm of an element ξ of
Rn is given by

‖ξ‖ := sup {〈ξ, d〉 | d ∈ Rn, ‖d‖ ≤ 1} .

Let D ⊆ Rn. The closure (resp. convex hull, convex cone hull) of D is denoted by cl D (resp. co D,
cone D ). The dual cone of D is defined by

D∗ = {x∗ ∈ Rn | 〈x∗, x〉 ≥ 0, ∀x ∈ D}.

The indicator function δD : Rn → R∪ {+∞} of D is defined by

δD(x) =

{
0, if x ∈ D,
+∞, if x 6∈ D.

For the nonempty infinite index set T. Let R(T) be the following linear space [1],

R(T) := {λ = (λt)t∈T | λt = 0 for all t ∈ T except for finitely many λt 6= 0}.

The positive cone of R(T) is defined by

R(T)
+ :=

{
λ ∈ R(T) | λt ≥ 0 for all t ∈ T

}
.

The supporting set of λ ∈ R(T) is defined by

T(λ) := {t ∈ T | λt 6= 0},

which is a finite subset of T.
For an extended real-valued function f : Rn → R ∪ {+∞}. f is said to be proper,

if dom f = {x ∈ Rn | f (x) < +∞} 6= ∅. The epigraph of f is defined by epi f = {(x, r) ∈ Rn ×
R | f (x) ≤ r}. f is said to be a convex function if epi f is a convex set. The function f is said to be
concave whenever − f is convex. More generally, f is said to be lower semicontinuous if epi f is closed.
The Legendre-Fenchel conjugate function of f is f ∗ : Rn → R∪ {±∞} defined by

f ∗(x∗) = sup
x∈Rn

{〈x∗, x〉 − f (x)} , ∀x∗ ∈ Rn.

For any ε ≥ 0, the ε-subdifferential of f at x̄ ∈ dom f is given by

∂ε f (x̄) = {x∗ ∈ Rn | f (x)− f (x̄) ≥ 〈x∗, x− x̄〉 − ε, ∀x ∈ Rn} .

If ε = 0, the set ∂ f (x̄) := ∂0 f (x̄) is the subdifferential of f at x̄ ∈ dom f , that is,

∂ f (x̄) = {x∗ ∈ Rn | f (x)− f (x̄) ≥ 〈x∗, x− x̄〉, ∀x ∈ Rn} .
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Lemma 1 ([31]). Let f : Rn → R ∪ {+∞} be a proper, lower semicontinuous, and convex function, and let
x̄ ∈ dom f . Then,

epi f ∗ =
⋃
ε≥0

{(
ξ, 〈ξ, x̄〉+ ε− f (x̄)

)
| ξ ∈ ∂ε f (x̄)

}
.

Lemma 2 ([3]). Let I be an arbitrary index set and let fi : Rn → R ∪ {+∞}, i ∈ I, be proper, lower
semicontinuous and convex functions onRn. Assume that there exists x0 ∈ Rn, such that supi∈I fi(x0) < ∞. Then,

epi (sup
i∈I

fi)
∗ = cl

(
co
⋃
i∈I

epi f ∗i

)
,

where supi∈I fi : Rn → R∪ {+∞} is defined by (supi∈I fi)(x) = supi∈I fi(x) for all x ∈ Rn.

Lemma 3 ([3]). Let f1, f2 : Rn → R∪{+∞} be proper, and convex functions such that dom f1 ∩ dom f2 6= ∅.

(i) If f1 and f2 are lower semicontinuous, then,

epi ( f1 + f2)
∗ = cl (epi f ∗1 + epi f ∗2 ).

(ii) If one of f1 and f2 is continuous at some x̄ ∈ dom f1 ∩ dom f2, then,

epi ( f1 + f2)
∗ = epi f ∗1 + epi f ∗2 .

3. Necessary Approximate Optimality Conditions

This section is devoted to establish some necessary optimality conditions for a robust quasi
approximate optimal solution of USIP. The following conceptions and results will be used in
this sequel.

Definition 1. The robust feasible set of USIP is given by

F :=
{

x ∈ C | gt(x, vt) ≤ 0, ∀vt ∈ Vt, t ∈ T
}

.

Definition 2. (i) Let ε ≥ 0. A point x̄ ∈ F is called a robust quasi ε-optimal solution of USIP, iff x̄ ∈ F is
a quasi ε-optimal solution of RUSIP, i.e.,

max
u∈U

f (x̄, u) ≤ max
u∈U

f (x, u) +
√

ε‖x− x̄‖, ∀x ∈ F .

(ii) A point x̄ ∈ F is called a robust optimal solution of USIP, iff x̄ ∈ F is an optimal solution of RUSIP, i.e.,

max
u∈U

f (x̄, u) ≤ max
u∈U

f (x, u), ∀x ∈ F .

Remark 1. If U is a singleton set, the robust quasi ε-optimal solution coincides the concept defined by Lee and
Lee [29]. Moreover, if U and Vt, t ∈ T are singletons, the robust quasi ε-optimal solution of USIP deduces to be
the usual one of quasi ε-optimal solution of SIP, that is

f (x̄) ≤ f (x) +
√

ε‖x− x̄‖, ∀x ∈ F .

For more details, please see [5,32].

The following constraint qualification will be used in the study of robust quasi approximate
optimal solution of USIP.
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Definition 3. We say that robust type constraint qualification condition RCQC holds, iff

⋃
v∈V ,λ∈R(T)

+

epi

(
∑
t∈T

λtgt(·, vt)

)∗
+ epi δ∗C is a closed convex set,

where v ∈ V means that v is a selection of V , i.e., v : T → Rq and vt ∈ Vt for all t ∈ T.

Remark 2. In the special case when C = Rn, RCQC coincides the so-called closed convex cone constraint
qualification defined by Lee and Lee [29].

Now, following [29] , we give some characterizations of RCQC.

Proposition 1. Let gt : Rn ×Rq → R, t ∈ T, be continuous functions. Assume that Vt ⊆ Rn, t ∈ T, is
convex, and for any vt ∈ Vt, gt(·, vt) is a convex function, and for any x ∈ Rn, gt(x, ·) is concave on Vt. Then,

⋃
v∈V ,λ∈R(T)

+

epi

(
∑
t∈T

λtgt(·, vt)

)∗
+ epi δ∗C

is a convex set.

Proof. By ([29] Proposition 2.5) and ([28] Proposition 3.6), we can easily get the desired result.

Naturally, we can obtain the following result by virtue of ([29] Proposition 2.6).

Proposition 2. Let T be a compact metric space, and let V be compact-valued and uniformly upper
semi-continuous on T. Let gt : Rn×Rq → R, t ∈ T, be continuous functions such that for each vt ∈ Vt, gt(·, vt)

is a convex function. Suppose that there exists x̂ ∈ Rn such that gt(x̂, vt) < 0, for any vt ∈ Vt, t ∈ T. Then,

⋃
v∈V ,λ∈R(T)

+

epi

(
∑
t∈T

λtgt(·, vt)

)∗
+ epi δ∗C

is a closed set.

Now , we present a robust Farkas Lemma for convex functions. Since its proof is similar
to ([29] Lemma 3.1), we omit it.

Lemma 4. Let h : Rn → R be a convex function, and let gt : Rn ×Rq → R, t ∈ T, be continuous functions
such that for any vt ∈ Vt, gt(·, vt) is a convex function. Then, the following statements are equivalent:

(i) {x ∈ C | gt(x, vt) ≤ 0, ∀vt ∈ Vt, t ∈ T} ⊆ {x ∈ Rn | h(x) ≥ 0} .

(ii) (0, 0) ∈ epi h∗ + cl co
(⋃

v∈V ,λ∈R(T)
+

epi (∑t∈T λtgt(·, vt))
∗ + epi δ∗C

)
.

Now, we gives a necessary approximate optimality condition for a robust quasi ε-optimal solution
of USIP under the condition RCQC.

Theorem 1. Let ε ≥ 0. Let f : Rn × Rm → R be a continuous convex-concave function, and let gt :
Rn × Rq → R, t ∈ T, be continuous functions such that gt(·, vt) is convex on Rn, for any vt ∈ Vt.
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Assume that RCQC holds. If x̄ ∈ F is a robust quasi ε-optimal solution of USIP, then, there exist ū ∈ U ,
(λ̄t)t∈T ∈ R(T)

+ , and v̄t ∈ Vt, t ∈ T such that

0 ∈ ∂x f (x̄, ū) + ∑
t∈T

∂x(λ̄tgt)(x̄, v̄t) + ∂δC(x̄) +
√

εB∗,

and

gt(x̄, v̄t) = 0, ∀t ∈ T(λ̄).

Proof. Assume that x̄ ∈ F is a robust quasi ε-optimal solution of USIP. Then,

max
u∈U

f (x̄, u) ≤ max
u∈U

f (x, u) +
√

ε‖x− x̄‖, ∀x ∈ F .

This means that

F ⊆
{

x ∈ C | max
u∈U

f (x, u) +
√

ε‖x− x̄‖ −max
u∈U

f (x̄, u) ≥ 0
}

.

Let
ϕ(x) := max

u∈U
f (x, u) +

√
ε‖x− x̄‖ −max

u∈U
f (x̄, u).

By Lemma 4, we get

(0, 0) ∈ epi ϕ∗ + cl co

 ⋃
v∈V ,λ∈R(T)

+

epi

(
∑
t∈T

λtgt(·, vt)

)∗
+ epi δ∗C

 . (1)

Since RCQC holds, it follows from (1) and Lemma 3 that

(0, 0) ∈ epi ϕ∗ +
⋃

v∈V ,λ∈R(T)
+

∑
t∈T

epi (λtgt(·, vt))
∗ + epi δ∗C. (2)

On the other hand, by using Lemma 2 and the similar method of ([27] Theorem 1),

epi ϕ∗ = cl

(
co

⋃
u∈U

epi ( f (·, u))∗
)
+
√

εB∗ ×
[√

ε‖x̄‖+ max
u∈U

f (x̄, u),+∞
)

Moreover, since f is a continuous convex-concave function, it is easy to see
⋃

u∈U epi ( f (·, u))∗ is a
closed convex set. Then,

epi ϕ∗ =
⋃

u∈U
epi ( f (·, u))∗ +

√
εB∗ ×

[√
ε‖x̄‖+ max

u∈U
f (x̄, u),+∞

)
(3)

Together with (2) and (3), we have(
0,−
√

ε‖x̄‖ −max
u∈U

f (x̄, u)
)
∈
⋃

u∈U
epi ( f (·, u))∗ +

⋃
v∈V ,λ∈R(T)

+

∑
t∈T

epi (λtgt(·, vt))
∗ + epi δ∗C +

√
εB∗ ×R+.
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Therefore, there exist ū ∈ U , (λ̄t)t∈T ∈ R(T)
+ , and v̄t ∈ Vt, t ∈ T such that(

0,−
√

ε‖x̄‖ −max
u∈U

f (x̄, u)
)
∈ epi ( f (·, ū))∗ + ∑

t∈T
epi

(
λ̄tgt(·, v̄t)

)∗
+ epi δ∗C +

√
εB∗ ×R+.

This follows that there exist (ξ∗0 , r0) ∈ epi ( f (·, ū))∗, (ξ∗t , rt) ∈ epi
(
λ̄tgt(·, v̄t)

)∗, (γ∗, s) ∈ epi δ∗C, and
(b∗, b) ∈ B∗ ×R+, such that(

0,−
√

ε‖x̄‖ −max
u∈U

f (x̄, u)
)
=

(
ξ∗0 + ∑

t∈T
ξ∗t + γ∗ +

√
εb∗, r0 + ∑

t∈T
rt + s + b

)
. (4)

Moreover, by Lemma 1, there exist ε0 ≥ 0, εt ≥ 0, t ∈ T, and εs ≥ 0 such that

ξ∗0 ∈ ∂ε0
x f (x̄, ū), and r0 = 〈ξ∗0 , x̄〉+ ε0 − f (x̄, ū),

ξ∗t ∈ ∂εt
x
(
λ̄tgt

)
(x̄, v̄t), and rt = 〈ξ∗t , x̄〉+ εt −

(
λ̄tgt

)
(x̄, v̄t),

γ∗ ∈ ∂εs δC(x̄), and s = 〈γ∗, x̄〉+ εs.

From (4), we deduce that

0 ∈ ∂ε0
x f (x̄, ū) + ∑

t∈T
∂εt

x
(
λ̄tgt

)
(x̄, v̄t) + ∂εs δC(x̄) +

√
εB∗, (5)

and

−
√

ε‖x̄‖ −max
u∈U

f (x̄, u)

= r0 + ∑
t∈T

rt + s + b

=

〈
ξ∗0 + ∑

t∈T
ξ∗t + γ∗, x̄

〉
+ ε0 + ∑

t∈T
εt + εs − f (x̄, ū)− ∑

t∈T
λ̄tgt(x̄, v̄t) + b

= −
√

ε〈b∗, x̄〉+ ε0 + ∑
t∈T

εt + εs − f (x̄, ū)− ∑
t∈T

λ̄tgt(x̄, v̄t) + b

≥ −
√

ε〈b∗, x̄〉+ ε0 + ∑
t∈T

εt + εs −max
u∈U

f (x̄, u)− ∑
t∈T

λ̄tgt(x̄, v̄t) + b.

Together with λ̄tgt(x̄, v̄t) ≤ 0, we get

0 ≤ ε0 + ∑
t∈T

εt + εs − ∑
t∈T

λ̄tgt(x̄, v̄t) ≤
√

ε〈b∗, x̄〉 −
√

ε‖x̄‖ − b ≤ 0.

Then, ε0 = εt = εs = 0 and λ̄tgt(x̄, v̄t) = 0. Thus, it follows from (5) that

0 ∈ ∂x f (x̄, ū) + ∑
t∈T

∂x
(
λ̄tgt

)
(x̄, v̄t) + ∂δC(x̄) +

√
εB∗.

This completes the proof.

Remark 3. It is worth observing that robust approximate optimality conditions for USIP obtained in Theorem 1
seems to be new (the same as for Theorems 2, 3 and 4). The robust approximate optimality result similar to the
one in Theorems 1 and 2 appeared in ([27] Theorem 3.2) when C = Rn, U is singleton and T is a nonempty
finite index set.

Now, we present an numerical example to illustrate our necessary robust approximate optimality
condition for USIP.
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Example 1 ([29]). Let Rn = Rm = Rq = R, C = R+, U = [0, 1], and Vt = [1 − t
2 , 1 + t

2 ] for any
t ∈ T := [0, 1]. Moreover, for any x ∈ R, u ∈ U and vt ∈ Vt, let

f (x, u) = x2 − ux,

and
gt(x, vt) = tx2 − vtx.

Then, for USIP, it is easy to verify that F = [0, 1
2 ], and RCQC holds. So, the conditions of Theorem 1

are satisfied.
On the other hand, let ε = 2 and x̄ = 0 ∈ F . Obviously, x̄ is a robust quasi ε-optimal solution of USIP.

Moreover, for instance, there exist ū = 0, λ̄t = 1, t = 0, λ̄t = 0, t ∈ (0, 1], and v̄t = 1 + t
4 , t ∈ [0, 1] such that

0 ∈ ∂x f (x̄, ū) + ∑
t∈T

∂x(λ̄tgt)(x̄, v̄t) + ∂δC(x̄) +
√

εB∗,

and

gt(x̄, v̄t) = 0, ∀t ∈ T(λ̄).

Corollary 1. Let T be a compact metric space, and let V be compact-valued and uniformly upper
semi-continuous on T. Let f : Rn × Rm → R be a continuous convex-concave function, and let
gt : Rn × Rq → R, t ∈ T, be continuous functions such that for each vt ∈ Vt, gt(·, vt) is a convex
function, and for each x ∈ Rn, gt(x, ·) is concave on Vt. Suppose that there exists x̂ ∈ Rn such that
gt(x̂, vt) < 0, for any vt ∈ Vt, t ∈ T. If x̄ ∈ F is a robust quasi ε-optimal solution of USIP, then, there exist
ū ∈ U , (λ̄t)t∈T ∈ R(T)

+ , and v̄t ∈ Vt, t ∈ T such that

0 ∈ ∂x f (x̄, ū) + ∑
t∈T

∂x(λ̄tgt)(x̄, v̄t) + ∂δC(x̄) +
√

εB∗,

and

gt(x̄, v̄t) = 0, ∀t ∈ T(λ̄).

Proof. Combing Proposition 1, Proposition 2 and Theorem 1, we can easily obtain the desired result.

When U and V are singletons, the following result holds naturally.

Corollary 2. Let ε ≥ 0. Let f : Rn → R be a convex function, and let gt : Rn → R, t ∈ T, be continuous
convex functions. Assume that cone (

⋃
t∈T epi g∗t ) + epi δ∗C is a closed set. If x̄ ∈ F is a quasi ε-optimal

solution of SIP, then, there exist (λ̄t)t∈T ∈ R(T)
+ , such that

0 ∈ ∂x f (x̄) + ∑
t∈T

λ̄t∂xgt(x̄) + ∂δC(x̄) +
√

εB∗, and gt(x̄) = 0, ∀t ∈ T(λ̄).

The following theorem establish necessary condition for robust optimal solution of USIP. This
result can be considered as a version of robust optimality condition for nonsmooth and nonlinear
semi-infinite optimization problems which have not yet been considered in the literature.

Theorem 2. Let f : Rn ×Rm → R be a continuous convex-concave function, and let gt : Rn ×Rq → R,
t ∈ T, be continuous functions such that gt(·, vt) is convex on Rn, for any vt ∈ Vt. Assume that RCQC holds.
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If x̄ ∈ F is a robust optimal solution of USIP, then, there exist ū ∈ U , (λ̄t)t∈T ∈ R(T)
+ , and v̄t ∈ Vt, t ∈ T

such that

0 ∈ ∂x f (x̄, ū) + ∑
t∈T

∂x(λ̄tgt)(x̄, v̄t) + ∂δC(x̄),

and

gt(x̄, v̄t) = 0, ∀t ∈ T(λ̄).

The particular case of Theorem 1 corresponding to the cases where ε = 0, U and V are singletons
are of special interest. The interested reader is referred to [4,6–8,10] for necessary optimality conditions
of SIP in terms of different conditions.

Corollary 3. Let f : Rn → R be a convex function, and let gt : Rn → R, t ∈ T, be continuous convex
functions. Assume that cone (

⋃
t∈T epi g∗t ) + epi δ∗C is a closed set. If x̄ ∈ F is a optimal solution of SIP, then,

there exist (λ̄t)t∈T ∈ R(T)
+ , such that

0 ∈ ∂x f (x̄) + ∑
t∈T

λ̄t∂xgt(x̄) + ∂δC(x̄), and gt(x̄) = 0, ∀t ∈ T(λ̄).

4. Sufficient Approximate Optimality Conditions

This section is devoted to give some sufficient approximate optimality condition for a robust
quasi approximate optimal solution of USIP. Now, we first introduce a new concept of generalized
robust approximate KKT conditions for USIP.

Definition 4. Let ε ≥ 0. A point (x̄, λ̄, ū, v̄) ∈ F ×R(T)
+ × U × V is said to satisfy the generalized robust

approximate KKT conditions for USIP, iff

0 ∈ ∂x f (x̄, ū) + ∑
t∈T

∂x(λ̄tgt)(x̄, v̄t) + ∂δC(x̄) +
√

εB∗, (6)

and

gt(x̄, v̄t) = 0, t ∈ T(λ̄). (7)

Remark 4. Let ε = 0 in Definition 4. Then, the generalized robust approximate KKT conditions for USIP
coincides with the generalized robust KKT conditions for USIP.

Theorem 3. Let ε ≥ 0. Suppose that (x̄, λ̄, ū, v̄) ∈ F × R(T)
+ × U × V satisfies the generalized robust

approximate KKT conditions and f (x̄, ū) = maxu∈U fi(x̄, u). Then, x̄ ∈ F is a robust quasi ε-optimal solution
of USIP.

Proof. Since (x̄, λ̄, ū, v̄) ∈ F × R(T)
+ × U × V satisfies the generalized robust approximate KKT

conditions, there exist ξ∗0 ∈ ∂x f (x̄, ū), ξ∗t ∈ ∂x
(
λ̄tgt

)
(x̄, v̄t), and γ∗ ∈ ∂δC(x̄) and ζ∗ ∈ B∗, such that

ξ∗0 + ∑
t∈T

ξ∗t + γ∗ +
√

εζ∗ = 0. (8)

Since ξ∗0 ∈ ∂x f (x̄, ū), ξ∗t ∈ ∂x
(
λ̄tgt

)
(x̄, v̄t), and γ∗ ∈ ∂δC(x̄), we obtain that, for any x ∈ F ,

f (x, ū)− f (x̄, ū) ≥ 〈ξ∗0 , x− x̄〉 ,

(λ̄tgt)(x, v̄t)−
(
λ̄tgt

)
(x̄, v̄t) ≥ 〈ξ∗t , x− x̄〉 ,
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and
δC(x)− δC(x̄) ≥ 〈γ∗, x− x̄〉.

Then,

f (x, ū)− f (x̄, ū) + ∑
t∈T

λ̄tgt(x, v̄t)− ∑
t∈T

λ̄tgt(x̄, v̄t)

≥
〈

ξ∗0 + ∑
t∈T

ξ∗t + γ∗, x− x̄

〉
, ∀x ∈ F .

Moreover, together with λ̄tgt(x, v̄t) ≤ 0 and (8), we get,

f (x, ū)− f (x̄, ū)− ∑
t∈T

λ̄tgt(x̄, v̄t) ≥ −
√

ε 〈ζ∗, x− x̄〉 , ∀x ∈ F .

It follows from (7), f (x̄, ū) = maxu∈U fi(x̄, u) and f (x, ū) ≤ maxu∈U fi(x, u) that

max
u∈U

fi(x, u)−max
u∈U

fi(x̄, u) ≥ −
√

ε 〈ζ∗, x− x̄〉 , ∀x ∈ F .

Note that 〈ζ∗, x− x̄〉 ≤ ‖x− x̄‖, ∀x ∈ F . Thus,

max
u∈U

fi(x, u)−max
u∈U

fi(x̄, u) ≥ −
√

ε‖x− x̄‖, ∀x ∈ F ,

Thus, x̄ is a robust ε-optimal solution of USIP and the proof is complete.

Remark 5. It is worth observing that if, in addition, U is singleton and T is a nonempty finite index set,
the approximate optimality conditions given in Theorem 3 was established in [27]. So, our results can be regarded
as a generalization of the results obtained in [27].

In the case that U and V are singletons, we get the following optimality conditions which have
been studied in [5] under different kinds of constraint qualifications.

Corollary 4. Consider the problem SIP, and let ε ≥ 0 and x̄ ∈ F . Let f : Rn → R be convex at x̄, and let
gt : Rn → R, t ∈ T, be continuous convex functions. If there exists (λ̄t)t∈T ∈ R(T)

+ such that

0 ∈ ∂ f (x̄) + ∑
t∈T

λ̄t∂gt(x̄) + ∂δC(x̄) +
√

εB∗, and gt(x̄) = 0, t ∈ T(λ̄).

Then, x̄ ∈ F is a quasi ε-optimal solution of SIP.

The following theorem establish a sufficient condition for robust optimal solution of USIP.

Theorem 4. Let ε ≥ 0. Suppose that (x̄, λ̄, ū, v̄) ∈ F ×R(T)
+ × U × V satisfies the generalized robust KKT

conditions and f (x̄, ū) = maxu∈U fi(x̄, u). Then, x̄ ∈ F is a robust optimal solution of USIP.

Similarly, when ε = 0, U and V are singletons, the following sufficient optimality conditions for
SIP are obtained. Please see [4,6–8,10] for more details.

Corollary 5. Consider the problem SIP, and x̄ ∈ F . Let f : Rn → R be convex at x̄, and let gt : Rn → R,
t ∈ T, be continuous convex functions. If there exists (λ̄t)t∈T ∈ R(T)

+ such that

0 ∈ ∂ f (x̄) + ∑
t∈T

λ̄t∂gt(x̄) + ∂δC(x̄), and gt(x̄) = 0, t ∈ T(λ̄).
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Then, x̄ ∈ F is a optimal solution of SIP.

5. Applications

In this section, we apply the obtained results to an uncertain optimization problem with cone
constraints. Let C ⊆ Rn be a nonempty convex set, and let K ⊆ Rp be a nonempty closed and convex
cone. Consider an uncertain conic optimization problem

UCOP


min f (x, u)
s.t. g(x, v) ∈ −K,

x ∈ C,

where f : Rn ×Rm → R and g : Rn ×Rq → Rp are continuous functions. The uncertain parameters
u and v belong to the convex and compact uncertain sets U ⊆ Rm and V ⊆ Rq, respectively.

As in [3], for each λ ∈ K∗, 〈λ, g〉 will be denoted by (λg). Note that for any x ∈ C and v ∈ V ,
g(x, v) ∈ −K if and only if (λg)(x, v) ≤ 0, ∀λ ∈ K∗. Then, UCOP can be reformulated as an example
of USIP by setting

T := K∗, gλ(x, vλ) := (λg)(x, v), for any λ ∈ T = K∗.

In this section, we also use F to denote the feasible set of UCOP:

F :=
{

x ∈ C |(λg)(x, v) ≤ 0, ∀v ∈ V , λ ∈ K∗
}
=
{

x ∈ C | g(x, v) ∈ −K, ∀v ∈ V
}

.

Moreover, let β := (βλ)λ∈K∗ ∈ R(K∗)
+ , for any λ ∈ K∗. Then,

λ̃ := ∑
λ∈K∗

βλλ ∈ K∗,

and so ⋃
v∈V ,β∈R(K∗)

+

epi

(
∑

λ∈K∗
βλ(λg)(·, v)

)∗
=

⋃
v∈V ,λ̃∈K∗

epi
((

λ̃g
)
(·, v)

)∗
.

Thus, RCQC deduces to the constraint qualification RCCCQ introduced in [28], that is⋃
v∈V ,λ∈K∗

epi
(
(λg)(·, v)

)∗
+ epi δ∗C is closed and convex.

Similarly, we can get the corresponding results for robust quasi ε-optimal solutions of UCOP.

Theorem 5. Let ε ≥ 0. Let f : Rn × Rm → R be a continuous convex-concave function, and let g :
Rn ×Rq → Rp, be a continuous function such that g(·, v) is K-convex on Rn, for any v ∈ V . Assume that
RCCCQ holds. If x̄ ∈ F is a robust quasi ε-optimal solution of UCOP, then, there exist ū ∈ U , v̄ ∈ V ,
and λ̄ ∈ K∗, such that

0 ∈ ∂x f (x̄, ū) + ∂x(λ̄g)(x̄, v̄) + ∂δC(x̄) +
√

εB∗,

and

λ̄g(x̄, v̄) = 0.

The following theorem establish necessary condition for robust optimal solution of UCOP.
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Theorem 6. Let f : Rn ×Rm → R be a continuous convex-concave function, and let g : Rn ×Rq → Rp be a
continuous function such that g(·, v) is K-convex on Rn, for any v ∈ V . Assume that RCCCQ holds. If x̄ ∈ F
is a robust optimal solution of UCOP, then, there exist ū ∈ U , v̄ ∈ V , and λ̄ ∈ K∗, such that

0 ∈ ∂x f (x̄, ū) + ∂x(λ̄g)(x̄, v̄) + ∂δC(x̄),

and

λ̄g(x̄, v̄) = 0.

Definition 5. Let ε ≥ 0. A point (x̄, λ̄, ū, v̄) ∈ F × K∗ ×U × V satisfies the generalized robust approximate
KKT conditions for UCOP, iff

0 ∈ ∂x f (x̄, ū) + ∂x(λ̄g)(x̄, v̄) + ∂δC(x̄) +
√

εB∗,

and

λ̄g(x̄, v̄) = 0.

Remark 6. Note that if ε = 0 in Definition 5, we obtain the concept of generalized robust KKT conditions
for UCOP.

Similarly, we obtain the following sufficient optimality conditions for UCOP.

Theorem 7. Let ε ≥ 0. Suppose that (x̄, λ̄, ū, v̄) ∈ F × K∗ × U × V satisfies the generalized robust
approximate KKT conditions and f (x̄, ū) = maxu∈U fi(x̄, u). Then, x̄ ∈ F is a robust quasi ε-optimal
solution of UCOP.

Theorem 8. Suppose that (x̄, λ̄, ū, v̄) ∈ F × K∗ ×U × V satisfies the generalized robust KKT conditions and
f (x̄, ū) = maxu∈U fi(x̄, u). Then, x̄ ∈ F is a robust optimal solution of UCOP.

Remark 7. In the case that U is a singleton, optimality conditions of other kinds of robust approximate optimal
solutions for UCOP has been considered in [28].

6. Conclusions

In this paper, a nonsmooth semi-infinite optimization problem under data uncertainty USIP is
considered. By using a new robust type constraint qualification condition RCQC and the notions of the
subdifferential of convex functions, some necessary and sufficient approximate optimality conditions
for robust quasi ε-optimal solutions of USIP are established. The results obtained in this paper improve
the corresponding results reported in recent literature.

Our research paves the way for further study. It would be interesting to consider other concepts of
approximate optimal solutions, such as almost robust (quasi) approximate optimal solution, or almost
robust regular approximate optimal solution, for USIP in the future. On the other hand, since fractional
semi-infinite optimization is one of an important model for semi-infinite optimization problems, so it
could be possible to investigate fractional semi-infinite optimization problems with data uncertainty
in the future.
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