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Abstract: In this paper, we propose a viscosity approximation method to solve the split common
fixed point problem and consider the bounded perturbation resilience of the proposed method in
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1. Introduction

Let H1 and H2 be two real Hilbert spaces with the inner product 〈·, ·〉 and the induced norm ‖ · ‖.
The split feasibility problem (SFP for short) is as follows:

Find a point x∗ ∈ C such that Ax∗ ∈ Q, (1)

where C and Q are nonempty closed convex subsets of H1 and H2, respectively, and A is a bounded
linear operator of H1 into H2.

If the set of solutions of the problem (1) is nonempty, then x∗ solving problem (1) is equivalent to

x∗ = PC(I − τA∗(I − PQ)A)x∗, (2)

where τ > 0 and PC denotes the metric projection of H1 onto C and A∗ is the corresponding adjoint
operator of A.

Recently, many problems in engineering and technology can be modeled by problem (1) and many
authors have shown that the SFP has many applications in our real life such as image reconstruction,
signal processing and intensity-modulated radiation therapy (see [1–3]).

In 1994, Censor and Elfving [4] used their algorithm to solve the SFP in the finite-dimensional
Euclidean space. In 2002, Byrne [5] improved the algorithm of Censor and Elfving and presented
a new method called the CQ algorithm for solving the SFP (1) as follows:

xn+1 = PC(I − τA∗(I − PQ)A)xn, ∀n ∈ N. (3)
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The split common fixed point problem (shortly, SCFPP) is formulated as follows:

Find a point x∗ ∈ Fix(U) such that Ax∗ ∈ Fix(T), (4)

where U : H1 → H1 and T : H2 → H2 are nonlinear mappings; here, Fix(U) denotes the set of fixed
points of the mapping U. We use S to denote the solution set of problem (4).

Note that, since every closed convex subset of a Hilbert space is the fixed point set of its associating
projection if U := PC and T := PQ, the SFP becomes a special case of the SCFPP.

In 2007, Censor and Segal [6] first studied the SCFPP and, to solve the SCFPP, they proposed the
following iterative algorithm:

xn+1 = U(xn − τA∗(I − T)Axn), ∀n ∈ N, (5)

where τ is a properly chosen stepsize. Algorithm (5) was originally designed to solve the problem (4)
for directed mappings.

In 2010, Moudafi [7] proposed an iterative method to solve the SCFPP for quasi-nonexpansive
mappings. In 2014, combining the Moudafi method with the Halpern iterative method, Kraikaew and
Saejung [8] proposed a new iterative algorithm which does not involve the projection operator to solve
the split common fixed point problem. More specifically, their algorithm generates a sequence {xn}
via the recursions:

xn+1 = αnx0 + (1− αn)U(xn − τA∗(I − T)Axn), ∀n ∈ N,

where x0 ∈ H is a fixed element, U and T are quasi-nonexpansive operators.
Recently, many authors have studied the SCFPP, the generalized SCFPP and some relative

problems (see, for instance, refs. [3–5,9–13] and they have also proposed a lot of algorithms to solve
the SCFPP (see [14–17] and the references therein).

On the other hand, the bounded perturbation resilience and superiorization of iterative methods
have been studied by some authors (see [18–23]). These problems have received much attention
because of their applications in convex feasibility problems [24], image reconstruction [25] and inverse
problems of radiation therapy [26] and so on.

Let P denote an algorithm operator. If the iteration xn+1 = Pxn is replaced by

xn+1 = P(xn + βnνn),

where βn is a sequence of nonnegative real numbers and {νn} is a sequence in H such that

∞

∑
n=0

βn < ∞ and ‖νn‖ ≤ M. (6)

Then, the algorithm is still convergent and so the algorithm P is the bounded perturbation
resilient [19].

In 2016, Jin, Censor and Jiang [21] introduced the projected scaled gradient method (PSG for
short) with bounded perturbations for solving the following minimization problem:

min
x∈C

f (x), (7)

where f is a continuous differentiable, convex function. The method PSG generates a sequence {xn}
defined by

xn+1 = PC(xn − γnD(xn)∇ f (xn) + e(xn)), ∀n ≥ 0, (8)

where D(xn) is a diagonal scaling matrix and e(xn) denotes the sequence of outer perturbations
satisfying ∑∞

n=0 ‖e(xn)‖ < ∞.
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Recently, Xu [22] projected the superiorization techniques for the relaxed PSG as follows:

xn+1 = (1− τn)xn + τnPC(xn − γnD(xn)∇ f (xn) + e(xn)), ∀n ≥ 0, (9)

where τn is a sequence in [0, 1].
Recently, for solving minimization problem of the combination of two convex functions

minx∈H f (x) + g(x), Guo and Cui [20] considered the modified proximal gradient method:

xn+1 = αnh(xn) + (1− αn)proxλng(I − λn∇ f )(xn) + e(xn), ∀n ≥ 0, (10)

and, under suitable conditions, they proved some strong convergence theorems of the method.
The definition of proximal operator proxλϕ is as follows.

Definition 1 (see [27]). Let Γ0(H) be the space of functions on a real Hilbert space H that are proper, lower
semicontinuous and convex. The proximal operator of ϕ ∈ Γ0(H) is defined by

proxϕ(x) = arg min
ν∈H
{ϕ(ν) +

1
2
‖ν− x‖2}, x ∈ H.

The proximal operator of ϕ of order λ > 0 is defined as the proximal operator of λϕ, that is,

proxλϕ(x) = arg min
ν∈H
{ϕ(ν) +

1
2λ
‖ν− x‖2}, x ∈ H.

Now, we propose a viscosity method for the problem (4) as follows:

xn+1 = αnh(xn + e(xn)) + (1− αn)U(xn − τn A∗(I − T)Axn + e(xn)), ∀n ≥ 0. (11)

If we treat the above algorithm as the basic algorithm P, the bounded perturbation of it is
a sequence {xn} generated by the iterative process:

yn = xn + βnνn,

xn+1 = αnh(yn + e(yn))

+ (1− αn)U(yn − τn A∗(I − T)Ayn + e(yn)), ∀n ≥ 0.

(12)

In this paper, mainly based on the above works [6,20,22], we prove that our main iterative method
(11) is the bounded perturbation resilient and, under some mild conditions, our algorithms strongly
converge to a solution of the split common fixed point problem, which is also the unique solution of
the variational inequality problem (13). Finally, we give two numerical examples to demonstrate the
effectiveness of our iterative schemes.

2. Preliminaries

Let {xn} be a sequence in the real Hilbert space H. We adopt the following notations:

(1) Denote {xn} converging weakly to x by xn ⇀ x and {xn} converging strongly to x by xn → x.
(2) Denote the weak ω-limit set of {xn} by ωw(xn) := {x : ∃xnj ⇀ x}.

Definition 2. A mapping F : H → H is said to be:

(i) Lipschitz if there exists a positive constant L such that

‖Fx− Fy‖ ≤ L‖x− y‖, ∀x, y ∈ H.
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In particular, if L = 1, then we say that F is nonexpansive, namely,

‖Fx− Fy‖ ≤ ‖x− y‖, ∀x, y ∈ H.

If L ∈ [0, 1), then we say F is contractive.

(ii) α-averaged mapping (shortly, α-av) if

F = (1− α)I + αT,

where α ∈ [0, 1) and T : H → H is nonexpansive.

Definition 3. A mapping B : H → H is said to be:

(i) monotone if
〈Bx− By, x− y〉 ≥ 0, ∀x, y ∈ H.

(ii) η-strongly monotone if there exists a positive constant η such that

〈Bx− By, x− y〉 ≥ η‖x− y‖2, ∀x, y ∈ H.

(iii) α-inverse strongly monotone (shortly, α-ism) if there exists a positive constant α such that

〈Bx− By, x− y〉 ≥ α‖Bx− By‖2, ∀x, y ∈ H.

In particular, if α = 1, then we say B is firmly nonexpansive, namely,

〈Bx− By, x− y〉 ≥ ‖Bx− By‖2, ∀x, y ∈ H.

Using the Cauchy–Schwartz inequality, it is easy to deduce that B is 1
α−Lipschitz if it is α-ism.

Now, we give the following lemmas and propositions needed in the proof of the main results.

Lemma 1 ([28]). Let H be a real Hilbert space. Then, the following inequality holds:

‖x+y‖2 ≤ ‖x‖2 + 2〈x + y, y〉, ∀x, y ∈ H.

Lemma 2 ([29]). Let h : H → H be a ρ-contraction with ρ ∈ (0, 1) and T : H → H be a nonexpansive
mapping. Then,

(i) I − h is (1− ρ)-strongly monotone, that is,

〈(I − h)x− (I − h)y, x− y〉 ≥ (1− ρ)‖x− y‖2, ∀x, y ∈ H.

(ii) I − T is monotone, that is,

〈(I − T)x− (I − T)y, x− y〉 ≥ 0, ∀x, y ∈ H.

Proposition 1 ([30]).

(i) If T1, T2, · · · , Tn are averaged mappings, then we can get that TnTn−1 · · · T1 is averaged. In particular,
if Ti is αi-av for each i = 1, 2, where αi ∈ (0, 1), then T2T1 is (α2 + α1 − α2α1)-av.
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(ii) If the mappings {Ti}N
i=1 are averaged and have a common fixed point, then we have

N⋂
i=1

Fix(Ti) = Fix(T1 . . . TN).

(iii) A mapping T is nonexpansive if and only if I − T is 1
2−ism.

(iv) If T is ν-ism, then, for any τ > 0, τT is ν
τ -ism.

(v) T is averaged if and only if I − T is ν-ism for some ν > 1
2 . Indeed, for any 0 < α < 1, T is α−averaged

if and only if I − T is 1
2α -ism.

Lemma 3 ([31]). Let H be a real Hilbert space and T : H → H be a nonexpansive mapping with Fix(T) 6= ∅.
If {xn} is a sequence in H weakly converging to x and {(I− T)xn} converges strongly to y, then (I− T)x = y.
In particular, if y = 0, then x ∈ Fix(T).

Lemma 4 ([32] or [33]). Assume that {sn} is a sequence of nonnegative real numbers such that

sn+1 ≤ (1− γn)sn + γnδn, sn+1 ≤ sn − ηn + ϕn, ∀n ≥ 0,

where {γn} is a sequence in (0, 1), {ηn} is a sequence of nonnegative real numbers, {δn} and {ϕn} are
two sequences in R such that

(i) ∑∞
n=0 γn = ∞;

(ii) limn→∞ ϕn = 0;
(iii) limk→∞ ηnk = 0 implies lim supk→∞ δnk ≤ 0 for any subsequence {nk} ⊂ {n}.

Then, limn→∞ sn = 0.

Lemma 5. Assume that A : H1 → H2 is a bounded linear operator and A∗ is the corresponding adjoint
operator of A. Let T : H2 → H2 be a nonexpansive mapping. If there exists a point z ∈ H1 such that
Az ∈ Fix(T), then

(I − T)Ax = 0⇐⇒ A∗(I − T)Ax = 0, ∀x ∈ H1.

Proof. It is clear that (I − T)Ax = 0 implies A∗(I − T)Ax = 0 for all x ∈ H1.
To see the converse, let x ∈ H such that A∗(I − T)Ax = 0. Take Az ∈ Fix(T). Since T is

nonexpansive, we have

‖TAx− Az‖2 = ‖TAx− TAz‖2 ≤ ‖Ax− Az‖2

and

‖TAx− Az‖2 = ‖Ax− TAx− (Ax− Az)‖2 = ‖Ax− TAx‖2− 2〈Ax− TAx, Ax− Az〉+ ‖Ax− Az‖2.

Combine the above two formulas, we have

‖Ax− TAx‖2 ≤ 2〈Ax− TAx, Ax− Az〉 = 2〈A∗(I − T)Ax, x− z〉 = 0.

This completes the proof.

3. The Main Results

In 2000, Moudafi [34] proposed the viscosity approximation method:

xn+1 = αnh(xn) + (1− αn)Nxn, ∀n ≥ 0,
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which converges strongly to a fixed point x∗ of the nonexpansive mapping N (see [35,36]). In 2004,
Xu [29] further proved that x∗ ∈ Fix(N) is also the unique solution of the following variational
inequality problem:

〈(I − h)x∗, x̃− x∗〉 ≥ 0, ∀x̃ ∈ Fix(N), (13)

where h : H → H is a ρ-contraction. By Lemma 2, we get I − h is strongly monotone, hence the
solution of problem (13) is unique.

In this section, we present a viscosity iterative method for solving problem (4). Meanwhile,
the algorithm approximates the unique fixed point of variational inequality problem (13).

Putting en := e(xn), we can rewrite the iteration (11) as follows:

xn+1 = αnh(xn + en) + (1− αn)U(xn − τn A∗(I − T)Axn + en)

= αnh(xn) + (1− αn)U(xn − τn A∗(I − T)Axn) + ẽn, ∀n ≥ 0,
(14)

where

ẽn = αn(h(xn + en)− h(xn))

+ (1− αn)(U(xn − τn A∗(I − T)Axn + en)−U(xn − τn A∗(I − T)Axn)).

Since U is nonexpansive and h is contractive, it is easy to get

‖ẽn‖ ≤ αn‖h(xn + en)− h(xn)‖
+ (1− αn)‖U(xn − τn A∗(I − T)Axn + en)−U(xn − τn A∗(I − T)Axn)‖
≤ (αnρ + 1− αn)‖en‖
≤ ‖en‖.

(15)

Theorem 1. Let H1,H2 be two real Hilbert spaces and A : H1 → H2 be a bounded linear operator with
L = ‖A∗A‖, where A∗ is the adjoint of A. Suppose that U : H1 → H1 and T : H2 → H2 are two averaged
mappings with the coefficients γ1 and γ2, respectively. Assume that the problem (4) is consistent (i.e., S 6= ∅).
Let h : H1 → H1 be a ρ-contraction with 0 ≤ ρ < 1. For any x0 ∈ H1, define the sequence {xn} by (14). If the
following conditions are satisfied:

(i) limn→∞ αn = 0 and ∑∞
n=0 αn = ∞;

(ii) 0 < lim infn→∞ τn ≤ lim supn→∞ τn < 1
γ2L ;

(iii) ∑∞
n=0 ‖en‖ < ∞.

Then, the sequence {xn} converges strongly to a point x∗ ∈ S, which is also the unique solution of the
variational inequality problem (13).

Proof. Set Vτn := U(I − τn A∗(I − T)A). Then, by Proposition 1, it follows that U(I − τn A∗(I − T)A)

is (γ1 + (1− γ1)γ2τnL)-av as 0 < τn < 1
γ2L .

Step 1. Show that {xn} is bounded. For any z ∈ S, we have

‖xn+1 − z‖
= ‖αnh(xn) + (1− αn)Vτn xn + ẽn − z‖
= ‖αn(h(xn)− z) + (1− αn)(Vτn xn − z) + ẽn‖
≤ αn‖h(xn)− h(z)‖+ αn‖h(z)− z‖+ (1− αn)‖Vτn xn − z‖+ ‖ẽn‖
≤ αnρ‖xn − z‖+ αn‖h(z)− z‖+ (1− αn)‖xn − z‖+ ‖ẽn‖

= (1− αn(1− ρ))‖xn − z‖+ αn(1− ρ)
‖h(z)− z‖+ ‖ẽn‖/αn

1− ρ
.

(16)
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Note that the condition (iii) and (15) imply that ∑∞
n=0 ‖ẽn‖ < ∞ and, from the conditions (i),

(iii) and αn > 0, it is easy to show that {‖ẽn‖/αn} is bounded. Therefore, there exists M1 > 0, such
that M1 := supn∈N{‖h(z)− z‖+ ‖ẽn‖/αn}. Thus, since the induction argument shows that

‖xn − z‖ ≤ max
{
‖x0 − z‖, M1

1− ρ

}
,

it turns out that the sequence {xn} is bounded and so are {h(xn)}, {Vτn xn} and {A∗(I − T)Axn}.

Step 2. Show that, for any sequence {nk} ⊂ {n}, if ηnk → 0, then limk→∞ ‖xnk −Vτnk
xnk‖ = 0. First,

if z ∈ S, then we have

‖xn+1 − z‖2

= ‖αnh(xn) + (1− αn)Vτn xn + ẽn − z‖2

= ‖αnh(xn) + (1− αn)Vτn xn − z‖2 + 2〈αnh(xn) + (1− αn)Vτn xn − z, ẽn〉+ ‖ẽn‖2

≤ α2
n‖h(xn)− z‖2 + (1− αn)

2‖Vτn xn − z‖2 + 2αn(1− αn)〈h(xn)− z, Vτn xn − z〉
+ (2αn‖h(xn)− z‖+ 2(1− αn)‖xn − z‖+ ‖ẽn‖)‖ẽn‖
≤ 2α2

n(‖h(xn)− h(z)‖2 + ‖h(z)− z‖2) + (1− αn)
2‖Vτn xn − z‖2

+ 2αn(1− αn)〈h(xn)− z, Vτn xn − z〉+ M2‖ẽn‖
≤ 2α2

n(‖h(xn)− h(z)‖2 + ‖h(z)− z‖2) + (1− αn)
2‖Vτn xn − z‖2

+ 2αn(1− αn)(‖h(xn)− h(z)‖‖xn − z‖+ 〈h(z)− z, Vτn xn − z〉) + M2‖ẽn‖
≤ (1− αn(2− αn(1 + 2ρ2)− 2(1− αn)ρ))‖xn − z‖2

+ 2αn(1− αn)〈h(z)− z, Vτn xn − z〉+ 2α2
n‖h(z)− z‖2 + M2‖ẽn‖,

(17)

where M2 := supn∈N{2αn‖h(xn)− z‖+ 2(1− αn)‖xn − z‖+ ‖ẽn‖}.
Second, we can rewrite Vτn as

Vτn = U(I − τn A∗(I − T)A) = (1− wn)I + wnWn, (18)

where wn = γ1 + (1 − γ1)γ2τnL and Wn is nonexpansive. By the condition (ii), we get γ1 <

lim infn→∞ wn ≤ lim supn→∞ wn < 1. Thus, it follows from (14), (17) and (18) that

‖xn+1 − z‖2

= ‖αnh(xn) + (1− αn)Vτn xn + ẽn − z‖2

≤ ‖αnh(xn) + (1− αn)Vτn xn − z‖2 + M2‖ẽn‖
= ‖Vτn xn − z + αn(h(xn)−Vτn xn)‖2 + M2‖ẽn‖
= ‖Vτn xn − z‖2 + αn

2‖h(xn)−Vτn xn‖2

+ 2αn〈Vτn xn − z, h(xn)−Vτn xn〉+ M2‖ẽn‖
= ‖(1− wn)xn + wnWnxn − z‖2 + αn

2‖h(xn)−Vτn xn‖2

+ 2αn〈Vτn xn − z, h(xn)−Vτn xn〉+ M2‖ẽn‖
= (1− wn)‖xn − z‖2 + wn‖Wnxn −Wnz‖2 − wn(1− wn)‖Wnxn − xn‖2

+ αn
2‖h(xn)−Vτn xn‖2 + 2αn〈Vτn xn − z, h(xn)−Vτn xn〉+ M2‖ẽn‖

≤ ‖xn − z‖2 − wn(1− wn)‖Wnxn − xn‖2 + αn
2‖h(xn)−Vτn xn‖2

+ 2αn〈Vτn xn − z, h(xn)Vτn xn〉+ M2‖ẽn‖.

(19)

Furthermore, set

sn = ‖xn − z‖2, γn = αn(2− αn(1 + 2ρ2)− 2(1− αn)ρ),
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δn =
1

2− αn(1 + 2ρ2)− 2(1− αn)ρ
[2αn‖h(z)− z‖2

+ M2
‖ẽn‖
αn

+ 2(1− αn)〈h(z)− z, Vτn xn − z〉],

ηn = wn(1− wn)‖Wnxn − xn‖2,

ϕn = αn
2‖h(xn)−Vτn xn‖2 + 2αn〈Vτn xn − z, h(xn)−Vτn xn〉+ M2‖ẽn‖.

Using the condition (i), it is easy to get γn → 0, Σ∞
n=0γn = ∞ and ϕn → 0. In order to complete

the proof, from Lemma 4, it suffices to verify that ηnk → 0 as k→ ∞, which implies that

lim sup
k→∞

δnk ≤ 0

for any subsequence {nk} ⊂ {n}. Indeed, ηnk → 0 as k → ∞ implies that ‖Wnk xnk − xnk‖ → 0 as
k→ ∞ from the condition (iii). Thus, from (18), it follows that

‖xnk −Vτnk
xnk‖ = wnk‖xnk −Wnk xnk‖ → 0. (20)

Step 3. Show that

ωw(xnk ) ⊂ S, (21)

where ωw(xnk ) is the set of all weak cluster points of {xnk}. To see (21), we prove the following:
Take x̃ ∈ ωw{xnk} and assume that {xnkj

} is a subsequence of {xnk} weakly converging to x̃.

Without loss of generality, we still use {xnk} to denote {xnkj
}. Assume τnk → τ. Then, we have

0 < τ < 1
γ2L . Setting V = U(I − τA∗(I − T)A), we deduce that

‖Vτnk
xnk −Vxnk‖

= ‖U(xnk − τnk A∗(I − T)Axnk )−U(xnk − τA∗(I − T)Axnk )‖
≤ |τnk − τ|‖A∗(I − T)Axnk‖. (22)

Since τnk → τ as k→ ∞, it follows immediately from (22) that

‖Vτnk
xnk −Vxnk‖ → 0

as k→ ∞. Thus, we have

‖xnk −Vxnk‖ ≤ ‖xnk −Vτnk
xnk‖+ ‖Vτnk

xnk −Vxnk‖ → 0. (23)

Using Lemma 3, we get ωw(xnk ) ⊂ Fix(V). Since both U and T are averaged, it follows from
Proposition 1 (ii) that

ωw(xnk ) ⊂ Fix(U), ωw(xnk ) ⊂ Fix(I − τA∗(I − T)A).

Then, by Lemma 5, we obtain ωw(xnk ) ⊂ S immediately. Meanwhile, we have

lim sup
k→∞

〈h(x∗)− x∗, xnk − x∗〉 = 〈h(x∗)− x∗, x̃− x∗〉, ∀x̃ ∈ S. (24)

In addition, since x∗ is the unique solution of the variational inequality problem (13), we have

lim sup
k→∞

〈h(x∗)− x∗, xnk − x∗〉 ≤ 0
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together with (20) and hence lim supk→∞ δnk ≤ 0. This completes the proof.

Next, we consider the bounded perturbation of (14) generated by the following iterative process:{
yn = xn + βnνn,

xn+1 = αnh(yn + e(yn)) + (1− αn)U(I − τn A∗(I − T)Ayn + e(yn)).
(25)

Theorem 2. Assume that the sequences {βn} and {νn} satisfy the condition (6). Let H1,H2 be two real Hilbert
spaces and A : H1 → H2 be a bounded linear operator with L = ‖A∗A‖, where A∗ is the adjoint of A. Suppose
that U : H1 → H1 and T : H2 → H2 are two averaged mappings with the coefficients γ1 and γ2, respectively.
Assume that problem (4) is consistent (i.e., S 6= ∅). Let h : H1 → H1 be a ρ-contraction with 0 ≤ ρ < 1.
For any x0 ∈ H1, define the sequence {xn} by (25). If the following conditions are satisfied:

(i) limn→∞ αn = 0 and ∑∞
n=0 αn = ∞;

(ii) 0 < lim infn→∞ τn ≤ lim supn→∞ τn < 1
γ2L ;

(iii) ∑∞
n=0 ‖e(yn)‖ < ∞.

Then, the sequence {xn} converges strongly to x∗, where x∗ is a solution of the problem (4), which is also
the unique solution of the variational inequality problem (13).

Proof. Now, put

ẽn =αn(h(yn + e(yn))− h(xn))

+ (1− αn)(U(yn − τn A∗(I − T)Ayn + e(yn))−U(xn − τn A∗(I − T)Axn)).

Then, Equation (25) can be rewritten as follows:

xn+1 = αnh(xn) + (1− αn)U(I − τn A∗(I − T)A)(xn) + ẽn, (26)

In fact, by Proposition 1 (iii) and the nonexpansiveness of T, it is not hard to show that A∗(I− T)A
is 2L−Lipschitz. Thus, we have

‖ẽn‖ ≤ αn‖h(yn + e(yn))− h(xn)‖
+ (1− αn)‖yn − xn − τn(A∗(I − T)Ayn + e(yn)− A∗(I − T)Axn)‖
≤ αnρ‖yn − xn + e(yn)‖
+ (1− αn)(‖yn − xn‖+ 2τnL‖yn − xn‖+ ‖e(yn)‖)
≤ (αnρ + (1− αn)(1 + 2τnL))βn‖νn‖+ (αnρ + (1− αn))‖e(yn)‖.

(27)

From the condition (iii) and condition (6), we have ∑∞
n=0 ‖ẽn‖ < ∞. Consequently, using

Theorem 1, it follows that the algorithm (14) is bounded perturbation resilient. This completes
the proof.

4. Numerical Results

In this section, we consider the following numerical examples to present the effectiveness,
realization and convergence of Theorems 1 and 2:

Example 1. Let H1 = H2 = R2. Suppose h(x) = 1
10 x and

A =

(
2 0
0 3

)
.
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Take U = PC and T = PQ, where C and Q are defined as follows:

C = {x ∈ R2 : ‖x‖2 ≤ 4}

and
Q = {y ∈ R2 : 6 ≤ y(i) ≤ 12, i = 1, 2},

where y(i) denotes the ith element of y.
We can compute the solution set S = {x : 3 ≤ x(1) ≤ 6, 2 ≤ x(2) ≤ 4, ‖x‖2 ≤ 4}.

Take the experiment parameters τn = 1
L and αn = 1

n+1 in the following iterative algorithms
and the stopping criteria is ‖xn+1 − xn‖ < error. According to the iterative process of Theorem 1,
the sequence {xn} is generated by

xn+1 =
1

n + 1
∗ 1

10
xn + (1− 1

n + 1
)U(xn − τn AT(I − T)Axn). (28)

As n → ∞, we have xn → x∗. Then, taking the random initial guess x0 and using MATLAB
software (MATLAB R2012a, MathWorks, Natick, MA, USA), we obtain the numerical experiment
results in Table 1.

Table 1. x0 = rand(2, 1), results without bounded perturbation.

τ n Time (s) xn Error

0.1111 52 0.02657 [2.9995 1.9998]T 10−5

0.1111 135 0.07538 [2.9998 2.0000]T 10−6

0.1111 216 0.15873 [3.0000 2.0000]T 10−7

Next, we consider the algorithm with bounded perturbation resilience. Choose the the bounded
sequence {νn} and the summarable nonnegative real sequence {βn} as follows:

vn =

−
dn

‖dn‖
, if 0 6= dn ∈ ∂IC(xn),

0, if 0 = dn ∈ ∂IC(xn),
(29)

and
βn = cn

for some c ∈ (0, 1), where the indicator function

IC(x) =

{
0, if x ∈ C,

∞, if x /∈ C,

and

∂IC(x) = NC(x) =

{
{u ∈ H : 〈u, x− y〉 ≥ 0, ∀y ∈ C}, if x ∈ C,

∅, if x /∈ C,

is the normal cone to C. The point dn is taken from NC(xn). Setting c = 0.5, the numerical results can
be seen in Table 2.
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Table 2. x0 = rand(2, 1), results with bounded perturbation.

τ n Time (s) xn Error

0.1111 45 0.02342 [2.9992 1.9998]T 10−5

0.1111 98 0.05317 [2.9998 2.0000]T 10−6

0.1111 153 0.10256 [3.0000 2.0000]T 10−7

As we have seen above, the accuracy of the solution is improved with the decrease of the stop
criteria. In addition, the sequence {xn} converges to the point (3, 2), which is a solution of the numerical
example. Of course, it is also the unique solution of the variational inequality 〈(I − h)x∗, x− x∗〉 ≥ 0.

In addition, we contrast the approximate value of solution x∗ of Example 1 under the same
parameter conditions, the same iterative numbers and the same initial value. The numerical results are
reported in Tables 3 and 4, where {x(1)n } and {x(2)n } denote the iterative sequences generated by the
algorithm (14) in this paper and Theorem 3.2 in Ref. [8], respectively.

Table 3. x0 = 2 ∗ rand(2, 1),results without bounded perturbation.

τ n x(1)
n x(2)

n Error

0.2179 52 [2.9884 1.9993]T [2.9850 1.9940]T 10−5

0.2179 132 [3.0000 1.9995]T [2.9942 1.9988]T 10−6

0.2179 208 [3.0000 1.9999]T [2.9995 1.9996]T 10−7

Table 4. x0 = 2 ∗ rand(2, 1), results with bounded perturbation.

τ n x(1)
n x(2)

n Error

0.2179 32 [2.9990 1.9997]T [2.9920 1.9987]T 10−5

0.2179 56 [2.9997 1.9999]T [2.9942 1.9988]T 10−6

0.2179 115 [3.0000 2.0000]T [2.9995 1.9998]T 10−7

Example 2. Let H1 = H2 = R3. Suppose h(x) = 1
3 x and

A =

1 0 −8
0 2 0
0 0 5

 .

Define T : R3 → R3 by

T : y = (y(1), y(2), y(3))T 7→ (y(1), y(2),
y(3) + sin y(3)

2
)T . (30)

It is obvious that T is 1
2 − av and the set of fixed points Fix(T) = {y| (y(1), y(2), 0)T} is nonempty.

Let U = PC and C = {x ∈ R3| ‖x‖ ≤ 1}. Then, we use the iterative algorithm of Theorem 1 to approximate
a point x∗ ∈ C such that Ax∗ ∈ Fix(T).

Take the experiment parameters τn = 1.9∗n
(n+1)L and αn = 1

n+1 in the following iterative algorithms.

Let F(x) = 1
2‖(I − T)Ax‖2 + IC(x) and the stopping criteria is F(x) < error.

Then, taking the random initial guess x0 and using MATLAB software, we obtain the numerical
experiment results in Table 5.
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Table 5. x0 = 10 ∗ rand(3, 1), results without bounded perturbation.

τ n Time (s) xn Error

0.0255 120 0.0155 [0.0085 0.0167 0.0037]T ∗ 10−2 10−5

0.0256 235 0.0461 [0.0078 0.0013 0.0013]T ∗ 10−3 10−6

0.0257 518 0.1881 [0.0029 0.0015 0.0002]T ∗ 10−4 10−7

Next, we consider the bounded perturbation. The definitions of vn and βn are similar to the
Example 1. Setting c = 0.8, the numerical results can be seen in Table 4.

As we have seen in Tables 5 and 6, the sequence {xn} approximates to the point (0, 0, 0)T , which
is a solution of the numerical example. Of course, it is also the unique solution of the variational
inequality 〈(I − h)x∗, x− x∗〉 ≥ 0.

Table 6. x0 = 10 ∗ rand(3, 1), results with bounded perturbation.

τ n Time (s) xn Error

0.0246 22 0.0036 [0.0108 0.0139 0.0015]T ∗ 10−2 10−5

0.0249 32 0.0040 [0.0085 0.0014 0.0014]T ∗ 10−3 10−6

0.0250 36 0.0058 [0.0028 0.0025 0.0034]T ∗ 10−4 10−7

5. Conclusions

The SCFPP is an inverse problem that consists in finding a point in a fixed point set such that its
image under a bounded linear operator belongs to another fixed point set. Many iterative algorithms
have been developed to solve these kinds of problems. In this paper, we have introduced a viscosity
iterative sequence and obtained the strong convergence. We prove the main result using the weaker
conditions than many existing similar methods—for example, Xu’s algorithm [37] for the SFP. More
specifically, his algorithm generates a sequence {xn} via the following recursions:

xn+1 = αnu + (1− αn)PC(xn − τn A∗(I − PQ)Axn),

where u is a a fixed element and {αn} ⊂ [0, 1] satisfies the assumptions:

(i) limn→∞ αn = 0 and ∑∞
n=0 αn = ∞,

(ii) either ∑∞
n=0 ‖αn+1 − αn‖ < ∞ or limn→∞(αn+1/αn) = 1.

The second condition is not necessary in our theorems. We also consider the bounded perturbation
resilience of the proposed method and get theoretical convergence results. Finally, numerical
experiments have been presented to illustrate the effectiveness of the proposed algorithms.
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