
mathematics

Article

The Importance of Transfer Function in Solving
Set-Union Knapsack Problem Based on Discrete Moth
Search Algorithm

Yanhong Feng 1,2,3, Haizhong An 1,2,* and Xiangyun Gao 1,2

1 School of Economics and Management, China University of Geosciences, Beijing 100083, China;
qinfyh@hgu.edu.cn (Y.F.); gaoxy@cugb.edu.cn (X.G.)

2 Key Laboratory of Carrying Capacity Assessment for Resource and Environment,
Ministry of Natural Resources, Beijing 100083, China

3 School of Information Engineering, Hebei GEO University, Shijiazhuang 050031, China
* Correspondence: ahz369@cugb.edu.cn

Received: 1 September 2018; Accepted: 10 December 2018; Published: 24 December 2018 ����������
�������

Abstract: Moth search (MS) algorithm, originally proposed to solve continuous optimization
problems, is a novel bio-inspired metaheuristic algorithm. At present, there seems to be little concern
about using MS to solve discrete optimization problems. One of the most common and efficient
ways to discretize MS is to use a transfer function, which is in charge of mapping a continuous
search space to a discrete search space. In this paper, twelve transfer functions divided into three
families, S-shaped (named S1, S2, S3, and S4), V-shaped (named V1, V2, V3, and V4), and other
shapes (named O1, O2, O3, and O4), are combined with MS, and then twelve discrete versions MS
algorithms are proposed for solving set-union knapsack problem (SUKP). Three groups of fifteen
SUKP instances are employed to evaluate the importance of these transfer functions. The results
show that O4 is the best transfer function when combined with MS to solve SUKP. Meanwhile,
the importance of the transfer function in terms of improving the quality of solutions and convergence
rate is demonstrated as well.

Keywords: set-union knapsack problem; moth search algorithm; transfer function; discrete algorithm

1. Introduction

The knapsack problem (KP) [1] is still considered as one of the most challenging and interesting
classical combinatorial optimization problems, because it is non-deterministic polynomial hard
problem and has many important applications in reality. As an extension of the standard 0–1 knapsack
problem (0–1 KP) [2], the set-union knapsack problem (SUKP) [3] is a novel KP model recently
introduced in [4,5]. The SUKP finds many practical applications such as financial decision making [4],
data stream compression [6], flexible manufacturing machine [3], and public key prototype [7].

The classical 0–1 KP is one of the simplest KP model in which each item has a unique value and
weight. However, SUKP is constructed of a set of items S = {U1, U2, U3, . . . , Um} and a set of elements
U = {u1, u2, u3, . . . , un}. Each item is associated with a subset of elements. In SUKP, each item has
a nonnegative profit and each element has a nonnegative weight. The goal is to maximize the total
profit of a subset of items S∗ ⊂ S such that the total weight of the corresponding element does not
exceed the maximum capacity of knapsack C. Hence, SUKP is more complicated and more difficult to
handle than the standard 0–1 KP. Thus far, only a few researchers have studied this issue despite its
practical importance and NP-hard character. For example, Goldschmidt et al. applied the dynamic
programming (DP) algorithm for SUKP [3]. However, when the exact algorithm is used, no satisfactory

Mathematics 2019, 7, 17; doi:10.3390/math7010017 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math7010017
http://www.mdpi.com/journal/mathematics
http://www.mdpi.com/2227-7390/7/1/17?type=check_update&version=3

Mathematics 2019, 7, 17 2 of 25

approximate solution is usually obtained in polynomial time. Afterwards, Ashwin [4] proposed
an approximation algorithm A-SUKP for SUKP. Obviously, A-SUKP also has to face the inevitable
problem, that is, how to compromise between achieving a high-quality solution and exponential
runtime. Recently, He et al. [5] presented a binary artificial bee colony algorithm (BABC) to solve SUKP
and comparative studies were conducted among BABC, A-SUKP, and binary differential evolution
(DE) [8]. The results verified that BABC outperformed A-SUKP method. Ozsoydan et al. [9] proposed
a swarm intelligence-based algorithm for the SUKP and designed an effective mutation procedure.
Although this method does not require transfer functions, it lacks generality. Therefore, it is urgent to
find an efficient metaheuristic algorithm to address SUKP whether from the perspective of academic
research or practical application.

As a relatively novel nature-inspired metaheuristic algorithm, moth search (MS) algorithm was
recently developed for continuous optimization by Wang [10]. Computational experiments have
shown that MS is not only effective but also efficient when addressing unconstrained continuous
optimization problems, compared with five state-of-the-art metaheuristic algorithms. Because of its
relative novelty, extensive research on MS is relatively scarce, especially discrete version MS algorithm.
Feng et al. presented a binary moth search algorithm (BMS) for discounted {0–1} knapsack problem
(DKP) [11].

As we all know, the metaheuristic algorithm is usually discretized in two ways: direct
discretization and indirect discretization. Direct discretization is usually achieved by modifying
the evolutionary operator of the original algorithm to solve a particular discrete problem. This method
depends on the algorithm used and the problem solved. Obviously, the disadvantages of direct
discretization are lack of versatility and complicated operation. The latter is discretized by establishing
a mapping relationship between continuous space and discrete space. Concretely speaking, indirect
discretization is usually achieved by an appropriate transfer function to convert real-valued variables
into discrete variables. Many discrete versions of swarm intelligence algorithms using transfer
functions have been proposed to solve various optimization problems. Discrete binary particle
swarm optimization [12], discrete firefly algorithm [13], and binary harmony search algorithm [14]
are among the most typical algorithms. Through analyzing the literature, many kinds of transfer
functions can be used, such as sigmoid function [12], tanh function [15], etc. However, most existing
metaheuristics only consider one transfer function. Little research concentrates on the importance
of transfer functions in solving discrete problems. In addition, a few studies [16,17] investigate the
efficiency of multiple transfer functions.

In this paper, twelve principal transfer functions are used and then twelve new discrete
MS algorithms are proposed to solve SUKP. These functions include four S-shaped transfer
functions [16,17], named S1, S2, S3, and S4, respectively; four V-shaped transfer functions [16,17],
named V1, V2, V3, and V4, respectively; and four other shapes transfer functions (Angle modulation
method [18,19], Nearest integer method [20,21], Normalization method [22], and Rectified linear unit
method [23]), named O1, O2, O3, and O4, respectively. Therefore, combining twelve transfer functions
with MS algorithm, twelve discrete MS algorithms are naturally proposed, named as MSS1, MSS2,
MSS3, MSS4, MSV1, MSV2, MSV3, MSV4, MSO1, MSO2, MSO3, and MSO4, respectively.

The remainder of the paper is organized as follows. In Section 2, we briefly introduce the SUKP
problem and MS algorithm. The families of transfer functions and repair optimization mechanism
are presented in Section 3. In Section 4, the twelve discrete MS algorithms are compared to shed light
on how the transfer functions affect the performance of the algorithm. After that, the best algorithm
(MSO4) is compared with five state-of-the-art methods on fifteen SUKP instances. Finally, we draw
conclusions and suggest some directions for future research.

2. Background

To describe discrete MS algorithm for the SUKP, we first explain the mathematical model of SUKP
and then introduce the MS algorithm.

Mathematics 2019, 7, 17 3 of 25

2.1. Set-Union Knapsack Problem

The set-union knapsack problem (SUKP) [3,4] is a variant of the classical 0–1 knapsack problem
(0–1 KP). More formally, the SUKP can be defined as follows: given a set of elements U = {u1, u2, u3,
. . . , un} and a set of items S = {U1, U2, U3, . . . , Um}, such that S is the cover of U, and Ui 6= ∅∧Ui ⊂ U
(i = 1, 2, 3, . . . , m) and each item Ui has a value pi > 0. Each element uj (j = 1, 2, 3, . . . , n) has a
weight wj > 0. Suppose that set A consists of some items packed into the knapsack with capacity C,
namely A ⊆ S. Then, the profit of A is defined as P(A) = ∑

Ui∈A
pi and the weight of A is defined as

W(A) = ∑uj∈ ∪
Ui∈A

Ui
wj. The objective of the SUKP is to find a subset A that maximizes the total value

P(A) on condition that the total weight W(A) ≤ C. Then, the mathematical model of SUKP can be
formulated as follows:

Max P(A) = ∑
Ui∈A

pi (1)

subject to W(A) = ∑
uj∈ ∪

Ui∈A
Ui

wj ≤ C, A ⊆ S (2)

where pi (i = 1, 2, 3, . . . , m), wj (j = 1, 2, 3, . . . , n), and C are all positive integers.
Recently, an integer programming model is proposed by He et al. [5] to solve SUKP easily by

using metaheuristic algorithm; the new mathematical model of SUKP can be defined as follows:

Max f (Y) = ∑m
i=1 yi pi (3)

subject to W(AY) = ∑j∈ ∪
Ui∈AY

Ui
wj ≤ C (4)

Obviously, all the 0–1 vectors Y = [y1, y2, y3, . . . , ym] ∈ {0, 1}m are the potential solutions of SUKP.
A solution satisfying the constraint of Equation (4) is a feasible solution; otherwise, it is an infeasible
solution. AY = {Ui|yi ∈ Y, yi = 1, 1 ≤ i ≤ m} ⊆ S. Then, yi = 1 if and only if Ui ∈ AY.

2.2. Moth Search Algorithm

The MS algorithm [10] is a novel metaheuristic algorithm that was inspired by the phototaxis
and Lévy flights of the moths in nature, which are the two most representative characteristics of
moths. The MS is akin to other population-based swarm intelligence algorithms. However, MS differs
from most the population-based metaheuristic algorithms, such as genetic algorithm (GA) [24,25]
and particle swarm optimization algorithm (PSO) [26,27], which consist of only one population, as,
in MS, the whole population is divided into two subpopulations according to the fitness, namely
subpopulation1 and subpopulation2.

The MS starts its evolutionary process by first randomly generating n moth individuals. Each
moth individual represents a candidate solution to the corresponding problem with a specific fitness
function. In MS, two operators are considered including Lévy flights operator and straight flight
operator. Correspondingly, an individual update in subpopulation1 and subpopulation2 is generated
by performing Lévy flights operator and straight flight operator, respectively.

i. Lévy flights: For each individual i in subpopulation1, it will fly around the best one in the form
of Lévy flights. The resulting new solution is calculated based on Equations (5)–(7).

xt+1
i = xt

i + αL(s) (5)

α = Smax/t2 (6)

L(s) =
(β− 1)Γ(β− 1)sin(π(β−1)

2)

πsβ
(7)

Mathematics 2019, 7, 17 4 of 25

where xi
t and xi

t+1 denote the position of moth i at generation t and t + 1, respectively. α denotes
the scale factor related to specific problem. Smax is the max walk step and it takes the value 1.0
in this paper. L(s) represents the step drawn from Lévy flights and Γ(x) is the gamma function.
In this paper, β = 1.5 and s can be regarded as the position of moth individual in the solution
space then sβ is the β power of s.

ii. Straight flights: for each individual i in subpopulation2, it will fly towards that source of light
in line. The resulting new solution is formulated as Equation (8).

xt+1
i =

{
λ× (xt

i + ϕ× (xt
best − xt

i)) i f rand > 0.5
λ× (xt

i +
1
ϕ × (xt

best − xt
i)) else

(8)

where λ and ϕ represent scale factor and acceleration factor, respectively. xt
best is the best

individual at generation t. Rand is a function generating a random number uniformly
distributed in (0, 1).

3. Discrete MS Optimization Method for SUKP

In this section, we describe the newly proposed discrete MS for SUKP. The main purpose of
extending MS algorithm to solve the novel SUKP is to investigate the significant role of the transfer
functions in terms of improving the quality of solutions and convergence rate. The basic MS algorithm
was initially proposed for continuous optimization problems, while SUKP belongs to a discrete
optimization problem with constraints. Therefore, the SUKP problem must contain three key elements,
namely, discretization method, solution representation, and constraint handling. The three key
elements are described in detail subsequently.

3.1. Transfer Functions

Transfer function is a major contributor of the discrete MS algorithm; therefore, it deserves
special attention and research. In this section, 12 transfer functions are introduced. According
to the shape of transfer function curve, we divide the twelve transfer functions into three groups:
S-shaped transfer functions [12], V-shaped transfer functions [15], and other-shaped (O-shaped)
transfer functions [19,21]. As described above, each group consists of four functions, which are named
as Si, Vi, and Oi (i = 1, 2, 3, 4), respectively. These transfer functions are presented in Table 1 and
Figure 1.

Table 1. Twelve transfer functions.

Number Mathematical Formula

S1 [17] T(x) = 1
1+e−2x

S2 [12] T(x) = 1
1+e−x

S3 [17] T(x) = 1
1+e−x/2

S4 [17] T(x) = 1
1+e−x/3

V1 [20] T(x) =
∣∣∣er f (

√
π

2 x)
∣∣∣ = ∣∣∣∣√2

π

∫ √π
2 x

0 e−t2
dt
∣∣∣∣

V2 [12] T(x) = |tanh(x)|
V3 [17] T(x) =

∣∣∣ x√
1+x2

∣∣∣
V4 [17] T(x) =

∣∣∣ 2
π arctan(π

2 x)
∣∣∣

O1 [18] T(x) = sin(2π(x− a) ∗ b ∗ cos(2π(x− a) ∗ c)) + d
(a = 0, b = 1, c = 1, d = 0)

O2 [20] T(x) = b|xmod2|c
O3 [22] T(x) = (x+xmin)

(|xmin |+xmax)
(xmin ≤ x ≤ xmax)

O4 [23] T(x) = x

Mathematics 2019, 7, 17 5 of 25

Mathematics 2018, 6, x FOR PEER REVIEW 5 of 26

V3 [17]
2

()
1
xT x
x

=
+

V4 [17]
2() arctan()

2
T x xπ

π
=

O1 [18] () sin(2 ()* *cos(2 ()*))T x x a b x a c dπ π= − − +
(a = 0, b = 1, c = 1, d = 0)

O2 [20] () mod2T x x=

O3 [22]
()()

()
min

min max

x xT x
x x

+
=

+
 (min maxx x x≤ ≤)

O4 [23] ()T x x=

Figure 1. Twelve transfer functions.

As stated in the literature [16,17], the transfer functions define the probability that the element
of position vector of each moth individual changes from 0 to 1, and vice versa. Therefore, an
appropriate transfer function should ensure that a real-valued vector in a continuous search space is
mapped to the value 1 in a binary search space with greater probability. Suppose applying the
transfer function T(x) will return a function value y (y = 1 or y = 0) through a mapping method. The
probability of a transfer function with a value of 1 (PR) is displayed in Figure 2. Three groups of
items, namely, 100 items, 300 items, and 500 items, were selected to count the PR value:

1
{ 1}

100%

N

i i
i
y y

PR
N

=

=
= ×

(9)

where N represents the number of items. The value of longitudinal axis in Figure 2 is the average of
PR among 100 independent runs.

Figure 1. Twelve transfer functions.

As stated in the literature [16,17], the transfer functions define the probability that the element of
position vector of each moth individual changes from 0 to 1, and vice versa. Therefore, an appropriate
transfer function should ensure that a real-valued vector in a continuous search space is mapped to the
value 1 in a binary search space with greater probability. Suppose applying the transfer function T(x)
will return a function value y (y = 1 or y = 0) through a mapping method. The probability of a transfer
function with a value of 1 (PR) is displayed in Figure 2. Three groups of items, namely, 100 items,
300 items, and 500 items, were selected to count the PR value:

PR =

N
∑

i=1
{yi|yi = 1}

N
× 100% (9)

where N represents the number of items. The value of longitudinal axis in Figure 2 is the average of
PR among 100 independent runs.Mathematics 2018, 6, x FOR PEER REVIEW 6 of 26

Figure 2. Probability of transfer function with a value of 1.

As shown in Figure 2, the four S-shaped transfer functions have similar PR values, which are
close to 0.5. However, the PR values of the four V-shaped transfer functions differ considerably. V2
has the best PR value while the PR value of V3 is less than 0.2. It seems that V3 combining with MS
should show poor performance. Similarly, V4 also demonstrates unsatisfactory performance, with a
PR value of less than 0.25. Of the four other shapes of transfer functions, O1, O3, and O4 obtain a
similar PR value, that is, close to 0.5. The PR value of O2 is slightly smaller than that of O1, O3, and
O4. In sum, according to the preliminary analysis of PR values, it seems that V3, V4, and O2 are not
suitable for combining with MS to solve binary optimization problems.

3.2. Solution Representation

The basic MS is a real-valued algorithm and each moth individual is represented as a real-valued
vector. Two main operators are defined in continuous space. However, SUKP is a discrete
optimization problem with constraints and the solution is a binary vector. In this paper, the most
general and simplest method, mapping the real-valued vectors into binary ones by transfer functions,
is opted. Concretely speaking, a real-valued vector X = [x1, x2, …, xm] ∈ [−a, a]m still evolves in
continuous space. Here, m is the number of items and a is a positive real value, and a = 5.0 in this
paper. Then, transfer function T(x) is used to map X into a binary vector Y = [y1, y2, …, ym] ∈{0, 1}m.
According to the feature of these transfer functions, three mapping methods are as follows.

The first mapping method: Choose a transfer function from S1–S4, V1–V4, and O3.

1 () ()
0

i
i

if rand T x
y

else
≥

=

 (10)

where rand() is a random number in (0, 1). In Figure 1, it can be observed that S-shaped transfer
functions, V-shaped transfer functions, and O3 will return a random real number between 0 and 1.
Therefore, the comparison of rand() to T(xi) equals 1 or 0. Then, the mapping procedure is shown as
Table 2.

Table 2. The first mapping procedure according to S2 transfer function.

Element x0 x1 x2 x3 x4 x5 x6 x7 x8 x9
X 2.96 3.32 −3.25 2.65 2.61 −1.57 −0.07 0.91 1.04 1.68

T(X) 0.95 0.97 0.04 0.93 0.93 0.17 0.48 0.71 0.74 0.84
Rand() 0.61 0.17 0.07 0.15 0.08 0.86 0.72 0.39 0.80 0.62

Y 0 0 1 0 0 1 1 0 1 0
The second mapping method: Choose the transfer function O2.

Figure 2. Probability of transfer function with a value of 1.

As shown in Figure 2, the four S-shaped transfer functions have similar PR values, which are
close to 0.5. However, the PR values of the four V-shaped transfer functions differ considerably. V2 has

Mathematics 2019, 7, 17 6 of 25

the best PR value while the PR value of V3 is less than 0.2. It seems that V3 combining with MS should
show poor performance. Similarly, V4 also demonstrates unsatisfactory performance, with a PR value
of less than 0.25. Of the four other shapes of transfer functions, O1, O3, and O4 obtain a similar PR
value, that is, close to 0.5. The PR value of O2 is slightly smaller than that of O1, O3, and O4. In sum,
according to the preliminary analysis of PR values, it seems that V3, V4, and O2 are not suitable for
combining with MS to solve binary optimization problems.

3.2. Solution Representation

The basic MS is a real-valued algorithm and each moth individual is represented as a real-valued
vector. Two main operators are defined in continuous space. However, SUKP is a discrete optimization
problem with constraints and the solution is a binary vector. In this paper, the most general and
simplest method, mapping the real-valued vectors into binary ones by transfer functions, is opted.
Concretely speaking, a real-valued vector X = [x1, x2, . . . , xm] ∈ [−a, a]m still evolves in continuous
space. Here, m is the number of items and a is a positive real value, and a = 5.0 in this paper. Then,
transfer function T(x) is used to map X into a binary vector Y = [y1, y2, . . . , ym] ∈ {0, 1}m. According to
the feature of these transfer functions, three mapping methods are as follows.

The first mapping method: Choose a transfer function from S1–S4, V1–V4, and O3.

yi =

{
1 i f rand() ≥ T(xi)

0 else
(10)

where rand() is a random number in (0, 1). In Figure 1, it can be observed that S-shaped transfer
functions, V-shaped transfer functions, and O3 will return a random real number between 0 and 1.
Therefore, the comparison of rand() to T(xi) equals 1 or 0. Then, the mapping procedure is shown as
Table 2.

Table 2. The first mapping procedure according to S2 transfer function.

Element x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

X 2.96 3.32 −3.25 2.65 2.61 −1.57 −0.07 0.91 1.04 1.68
T(X) 0.95 0.97 0.04 0.93 0.93 0.17 0.48 0.71 0.74 0.84

Rand() 0.61 0.17 0.07 0.15 0.08 0.86 0.72 0.39 0.80 0.62
Y 0 0 1 0 0 1 1 0 1 0

The second mapping method: Choose the transfer function O2.

yi = T(xi) (11)

The third mapping method: Choose either O1 or O4 as the transfer function.

yi =

{
1 i f T(xi) ≥ 0
0 else

(12)

Then, the quality of any feasible solution Y is evaluated by the objective function f of the SUKP.
Given a potential solution Y = [y1, y2, . . . , ym], the objective function value f (Y) is defined by

f (Y) =
m

∑
i=1

yi pi (13)

3.3. Repair Mechanism and Greedy Optimization

Clearly, SUKP is a kind of important combinatorial optimization problem with constraints. Due
to the existence of constraints, the feasible search space of decision variables becomes irregular,

Mathematics 2019, 7, 17 7 of 25

which will increase the difficulty of finding the optimal solution. Among the many constraint
processing techniques, repairing the infeasible solution is a common method to solve the combinatorial
optimization problem. Michalewicz [28] introduced an evolutionary system based on repair technology.
Obviously, repairing technique is dependent on specific problems and different repairing method must
be designed for different problems. Consequently, He et al. [5] designed a repairing and optimization
algorithm (named S-GROA) for SUKP, which can not only repair infeasible solutions but also further
optimize feasible solutions. On the basis of S-GROA [5], a quadratic greedy repair and optimization
strategy (QGROS) is proposed by Liu et al. [29]. In this paper, QGROS is adopted. The preprocessing
phase of QGROS can be summarized as follows:

(1) Compute the frequency dj of the element j (j = 1, 2, 3, . . . , n) in the subsets U1, U2, U3, . . . , Um.

(2) Calculate the unit weight Ri of the item i (i = 1, 2, 3, . . . , m).

Ri = ∑j∈Ui
(wj/dj) (14)

(3) Record the profit density of each item in S according to PDi.

PDi = pi/Ri(i = 1, 2, 3, . . . , m) (15)

(4) Sort all the items in a non-ascending order based on PDi (i = 1, 2, 3, . . . , m) and then the index
value recorded in an array H[1 . . . m].

(5) Define a term AY = {Ui|yi ∈ Y∧ yi = 1, 1 ≤ i ≤ m} for any binary vector Y = [y1, y2, . . . , ym]
∈{0, 1}m.

The pseudocode of QGROS [29] is outlined in Algorithm 1.

Algorithm 1. QGROS algorithm for SUKP.

Begin
Step 1: Input: the candidate solution Y = [y1, y2, . . . , ym] ∈ {0, 1}m, H[1 . . . m].
Step 2: Initialization. The m-dimensional binary vector Z = [0, 0, . . . , 0].
Step 3: Greedy repair stage

For i = 1 to m do
If (yH[i] = 1 and W(AZ ∪ {H[i]}) ≤ C)

ZH[i] = 1 and AZ = AZ ∪ {H[i]} .
End if

End for
Y← Z.

Step 4: Quadratic greedy stage
Do not consider the elements that have been packed into the knapsack,
recalculate dj (j = 1, 2, 3, . . . , n), Ri (i = 1, 2, 3, . . . , m), and H[1 . . . m]

Step 5: Optimization sate
For i = 1 to m do

If (yH[i] = 0 and W(AZ ∪ {H[i]}) ≤ C)
yH[i] = 1 and AY = AY ∪ {H[i]} .

End if
End for

Step 6: Output:Y = [y1, y2, . . . , ym] and f (Y)
End.

In Algorithm 1, we can observe that QGROS consists of three stages. The first stage is determining
whether the constraints are met for the items in the potential solution that are ready to be packed
into the knapsack. At this stage, items in the potential solution that are intended to be packed into

Mathematics 2019, 7, 17 8 of 25

knapsack but violate constraints will be removed. Therefore, all solutions are feasible after this stage.
The second stage is recalculating the frequency of each element, the unit weight of each item, and the
array H[1 . . . m]. The third stage is optimizing the remaining items by loading appropriate items into
the knapsack with the aim of maximizing the use of the remaining capacity. At this stage, items in the
feasible solution that are not intended to be loaded in the knapsack but satisfy the constraints will be
loaded. Hence, after this stage, all solutions remain feasible and the quality of solutions is improved.

3.4. The Main Scheme of Discrete MS for SUKP

Having discussed all the components of the discrete MS algorithms in detail, the complete
procedure is outlined in Algorithm 2.

3.5. Computational Complexity of the Discrete MS Algorithm

Computational complexity is the main criterion for evaluating the running time of an algorithm,
which can be calculated according to its structure and implementation. In Algorithm 2, it can
be seen that the computing time in each iteration is mainly dependent on the number of moths,
problem dimension, and sorting of items as well as moth individual in each iteration. In addition,
the computational complexity is mainly determined by Steps 1–4. In Step 1, since the Quicksort
algorithm is used, the average and the worst computational costs are O(mlogm) and O(m2), respectively.
In Step 2, the initialization of N moth individuals costs time O(N × m) = O(m2). In Step 3, the fitness
calculation of N moth individuals costs time O(N). In Step 4, Lévy flight operator has time complexity
O(N/2 × m) = O(m2), straight flight operator has time complexity O(N/2 × m) = O(m2), QGROS has
time complexity O(m× n), and sorting the population with Quicksort has average time complexity and
worst time complexity of O(NlogN) and O(N2), respectively. Consequently, the overall computational
complexity is O(mlogm) + O(m2) + O(N) + O(m2) + O(m2) + O(m × n) + O(NlogN) = O(m2), where m is
the number of items and N is the number of moths.

4. Results and Discussion

In this section, we present experimental studies on the proposed discrete MS algorithms for
solving SUKP.

Mathematics 2019, 7, 17 9 of 25

Algorithm 2. The main procedure of discrete MS algorithm for SUKP.

Begin
Step 1: Sorting.

Sort all items in S in non-increasing order according to PDi (0 ≤ i ≤ m), and
the indexes of items are recorded in array H [0 . . . m].

Step 2: Initialization.
Set the maximum iteration number MaxGen and iteration counter G = 1;
β = 1.5; the acceleration factor ϕ = 0.618.
Generate N moth individuals randomly {X1, X2, . . . , XN}, Xi ∈ [−a, a]m.
Divide the whole population into two subpopulations with equal size:
subpopulation1 and subpopulation2, according to their fitness.
Calculate the corresponding binary vector Yi = T(Xi) by using transfer
functions (i = 1, 2, . . . , N).

Perform repair and optimization with QGROS.
Step 3: Fitness calculation.

Calculate the initial fitness of each individual, f (Yi), 1 ≤ i ≤ N.
Step 4: While G < MaxGen do

Update subpopulation 1 by using Lévy flight operator.
Update subpopulation 2 by using fly straightly operator.
Calculate the corresponding binary vector Yi = T(Xi) by using transfer
functions (i = 1, 2, . . . , N).
Perform repair and optimization with QGROS.
Evaluate the fitness of the population and record the <Xgbest, Ygbest>.
G = G + 1.
Recombine the two newly-generated subpopulations.
Sort the population by fitness.
Divide the whole population into subpopulation 1 and subpopulation 2.

Step 5: End while
Step 6: Output: the best results.

End.

Test instance: Three groups of thirty SUKP instances were recently presented by He et al. [5].
What needs to be specified is that the set of items S = {U1, U2, U3, . . . , Um} is represented as a
0–1 matrix M = (rij), with m rows and n columns. For each element rij in M (i = 1, 2, . . . , m; j = 1,
2, . . . , n), rij = 1 if and only if uj = Ui. Therefore, each instance contains four factors: (1) m denotes
the number of items; (2) n denotes the number of elements; (3) density of element 1 in the matrix
Mα ∈ {0.1, 0.15}; and (4) the ratio of C to the sum of all elements β ∈ {0.75, 0.85}. According to the
relationship between m and n, three types of instances are generated. The first group: 10 SUKP
instances with m > n, m ∈ {100, 200, 300, 400, 500} and n ∈ {85, 185, 285, 385, 485}, named as
F01–F10, respectively. The second group: 10 SUKP instances with m = n, m ∈ {100, 200, 300, 400,
500} and n ∈ {100, 200, 300, 400, 500}, named as S01–S10, respectively. The third group: 10 SUKP
instances with m < n, m ∈ {85, 185, 285, 385, 485} and n ∈ {100, 200, 300, 400, 500}, named as T01–T10,
respectively. We selected five instances in each group with α = 0.1 and β = 0.75. The instances can
be downloaded at http://sncet.com/ThreekindsofSUKPinstances(EAs).rar. Three categories with
different relationships between m and n (m > n, m = n, and m < n) of 15 SUKP instances were selected
for testing. The parameters and the best solution value (Best*) [5] are shown in Table 3.

http://sncet.com/ThreekindsofSUKPinstances(EAs).rar

Mathematics 2019, 7, 17 10 of 25

Table 3. The parameters and the best solution value provided in [5] for 15 SUKP instances.

Number Instance m n Capacity Best*

1 F01 100 85 12,015 13,251
2 F03 200 185 22,809 13,241
3 F05 300 285 36,126 10,553
4 F07 400 385 50,856 10,766
5 F09 500 485 60,351 11,031
6 S01 100 100 11,223 14,044
7 S03 200 200 25,630 11,846
8 S05 300 300 38,289 12,304
9 S07 400 400 49,822 10,626

10 S09 500 500 63,902 10,755
11 T01 85 100 12,180 11,664
12 T03 185 200 25,405 13,047
13 T05 285 300 38,922 11,158
14 T07 385 400 49,815 10,085
15 T09 485 500 62,516 10,823

Experimental environment: For fair comparisons, all proposed algorithms in this paper were
coded in C++ and in the Microsoft Visual Studio 2015 environment. All the experiments were run on a
PC with Intel (R) Core (TM) i7-7500 CPU (2.90 GHz and 8.00 GB RAM).

On the stopping condition, we followed the original paper [5] and set the iteration number
MaxGen equal to max {m, n} for all SUKP instances. Here, m denotes the number of items and n is the
number of elements in each SUKP instance. In addition, the population size of all the algorithms was
set to N = 20. For each SUKP instance, we carried out 100 independent replications.

The parameters for the proposed discrete MS algorithms were set as follows: the max step
Smax = 1.0, acceleration factor ϕ = 0.618, and the index β = 1.5.

4.1. The Performance of Discrete MS Algorithm with Different Transfer Functions

Computational results are summarized in Table 4, which records the results for SUKP instances
with m > n, m = n, and m < n, respectively. For each instance, we give several criteria to evaluate the
comprehensive performance of the twelve discrete MS algorithms. “Best” and “Mean” refer to the best
value and the average value for each instance obtained by each algorithm among 100 independent
runs. The best solution provided in [5] are given in parentheses in the first column.

Mathematics 2019, 7, 17 11 of 25

Table 4. The best values and average values of twelve discrete MS algorithms on 15 SUKP instances.

Number Criterion MSS1 MSS2 MSS3 MSS4 MSV1 MSV2 MSV3 MSV4 MSO1 MSO2 MSO3 MSO4

F01 Best 12,698 13,283 12,861 13,057 13,003 13,003 13,044 13,044 12,973 12,678 13,283 13,283
(13251) Mean 12,250 13,102 12,168 12,227 12,564 12,740 12,858 12,697 12,320 12,066 13,052 13,062

F03 Best 12,762 13,286 12,216 12,189 12,875 12,639 11,953 12,267 13,175 12,255 13,322 13,521
(13241) Mean 11,777 12,860 11,465 11,261 12,176 12,100 11,321 11,193 12,371 11,007 13,101 13,193

F05 Best 10,142 10,668 9974 10,047 9966 9562 9752 9460 10,539 9656 10,643 11,127
(10553) Mean 9588 10,196 9465 9393 9352 9120 9250 9131 9822 8987 10,381 10,302

F07 Best 10,456 11,321 9793 10,005 10,625 9539 9917 9814 10,906 9801 11,321 11,435
(10766) Mean 9750 10,644 9349 9467 10,042 9150 9317 9265 10,141 9028 10,833 10,411

F09 Best 10,669 11,410 10,642 10,461 10,718 10,725 10,598 10,288 11,279 9808 11,172 11,031
(11031) Mean 10,293 10,913 10,082 9965 10,420 9969 10,134 9997 10,648 9429 10,750 10,716

S01 Best 13,405 14,044 13,080 13,611 13,396 13,814 13,721 13,721 13,659 13,202 14,003 14,044
(14044) Mean 12,725 13,478 12,418 12,607 13,211 13,569 13,540 13,503 12,899 12,339 13,583 13,649

S03 Best 11,249 11,104 10,904 11,295 11,329 10,802 10,481 10,808 11,757 11,147 11,873 12,350
(11846) Mean 10,469 10,576 10,282 10,285 10,622 9879 10,112 10,212 10,789 9975 11,419 11,508

S05 Best 11,649 12,071 11,472 11,459 11,799 11,686 11,421 11,380 11,862 11,048 12,240 12,598
(12304) Mean 10,979 11,650 10,753 10,787 11,199 11,206 10,898 11,165 11,272 10,153 11,721 11,541

S07 Best 10,330 10,990 10,218 10,073 10,177 9669 9957 9977 10,650 10,006 10,722 10,727
(10626) Mean 9831 10,379 9766 9681 9968 9286 9372 9460 10,019 9426 10,327 10,343

S09 Best 10,074 10,495 9995 10,037 9938 10,025 10,043 10,052 10,199 9553 10,355 10,355
(10755) Mean 9719 9968 9583 9675 9654 9707 9804 9713 9807 9,127 10,056 9919

T01 Best 11,034 11,573 11,158 11,332 11,427 11,027 11,151 11,076 11,195 11,159 11,519 11,735
(11664) Mean 10,577 11,259 10,491 10,501 10,812 10,572 10,496 10,781 10,568 10,495 11,276 11,287

T03 Best 12,234 13,306 12,357 12,136 12,415 12,633 12,039 11,829 12,798 12,085 13,378 13,647
(13047) Mean 11,549 12,621 11,624 11,522 11,745 11,743 11,535 11,400 11,980 11,267 12,948 13,000

T05 Best 11,025 11,173 11,167 10,765 10,814 10,725 10,485 11,240 11,183 10,299 11,226 11,391
(11158) Mean 10,385 10,871 10,247 10,118 10,635 10,229 10,059 10,735 10,651 9584 10,957 10,816

T07 Best 9676 9609 9140 9169 9594 9303 9049 8965 9675 9198 9783 9739
(10085) Mean 8987 9264 8873 8875 9161 9131 8642 8733 9154 8694 9261 9240

T09 Best 10,208 10,549 10,131 10,094 10,115 10,201 9866 10,005 10,450 9989 10,660 10,539
(10823) Mean 9856 10,205 9753 9711 9949 9771 9506 9714 9985 9332 10,350 10,190

Mathematics 2019, 7, 17 12 of 25

In Table 4, it can be easily observed that MSO4 outperforms the eleven other discrete MS
algorithms and demonstrates the best comprehensive performance when solving all fifteen SUKP
instances. In addition, MSS2 and MSO3 show comparable performance.

To evaluate the performance of each algorithm, the relative percentage deviation (RPD) was
defined to represent the similarity between the best value obtained by each algorithm and the best
solution 5. The RPD of each SUKP instance is calculated as follows.

RPD = (Best∗ − Best)/Best∗ × 100 (16)

where Best∗ is the best solution provided in [5]. Clearly, if the value of RPD is less than 0, the algorithm
updates the best solution of the SUKP test instance in [5]. The statistical results are shown in Table 5.

Table 5. The effect of twelve transfer functions on the performance of discrete MS algorithm
(RPD values).

Number MSS1 MSS2 MSS3 MSS4 MSV1 MSV2 MSV3 MSV4 MSO1 MSO2 MSO3 MSO4

F01 4.17 −0.24 2.94 1.46 1.87 1.87 1.56 1.56 2.10 4.32 −0.24 −0.24
F03 3.62 −0.34 7.74 7.95 2.76 4.55 9.73 7.36 0.50 7.45 −0.61 −2.11
F05 3.89 −1.09 5.49 4.79 5.56 9.39 7.59 10.36 0.13 8.50 −0.85 −5.44
F07 2.88 −5.16 9.04 7.07 1.31 11.40 7.89 8.84 −1.30 8.96 −5.16 −6.21
F09 3.28 −3.44 3.53 5.17 2.84 2.77 3.93 6.74 −2.25 11.09 −1.28 0.00
S01 4.55 0.00 6.86 3.08 4.61 1.64 2.30 2.30 2.74 6.00 0.29 0.00
S03 5.04 6.26 7.95 4.65 4.36 8.81 11.52 8.76 0.75 5.90 −0.23 −4.25
S05 5.32 1.89 6.76 6.87 4.10 5.02 7.18 7.51 3.59 10.21 0.52 −2.39
S07 2.79 −3.43 3.84 5.20 4.23 9.01 6.30 6.11 −0.23 5.83 −0.90 −0.95
S09 6.33 2.42 7.07 6.68 7.60 6.79 6.62 6.54 5.17 11.18 3.72 3.72
T01 5.40 0.78 4.34 2.85 2.03 5.46 4.40 5.04 4.02 4.33 1.24 −0.61
T03 6.23 −1.99 5.29 6.98 4.84 3.17 7.73 9.34 1.91 7.37 −2.54 −4.60
T05 1.19 −0.13 −0.08 3.52 3.08 3.88 6.03 −0.73 −0.22 7.70 −0.61 −2.09
T07 4.06 4.72 9.37 9.08 4.87 7.75 10.27 11.11 4.07 8.80 2.99 3.43
T09 5.68 2.53 6.39 6.74 6.54 5.75 8.84 7.56 3.45 7.71 1.51 2.62

Mean 4.30 0.19 5.77 5.47 4.04 5.82 6.79 6.56 1.63 7.69 −0.14 −1.28

In Table 5, it can be seen that, in all twelve discrete MS algorithms, MSS2, MSS3, MSV4, MSO1,
MSO3, and MSO4 all update the best solutions [5]. However, MSS3 and MSV4 update only one SUKP
instance, T05. MSO1 updates the instances F07, F09, S07, and T05. Moreover, MSO4 still keeps the
best performance because its total average RPD is only −1.28. The total average RPD of MSO3 is
−0.14, which implies that MSO3 is slightly worse than MSO4 but outperforms the ten other discrete
MS algorithms. Obviously, MSS2 is the third best of the twelve discrete MS algorithms. Indeed, it can
also be seen that MSO4 updates and obtains the best solutions [5] ten and two times (out of 15), i.e.,
66.67% and 13.33% of the whole instance set, respectively. MSO3 updates and fails to find the best
solutions 5 nine and six times (out of 15), i.e., 60.00% and 40.00% of the whole instance set, respectively.
MSS2 updates and obtains the best solutions 5 eight (53.33%) and one times (6.60%), respectively.

To further evaluate the comprehensive performance of twelve discrete MS algorithms in solving
fifteen SUKP instances, the average ranking based on the best values are displayed in Table 6 and
Figure 3, respectively. In Table 6 and Figure 3, the average ranking value of MSO4 is 1.60 and it still
ranks first. In addition, MSO3 and MSS2 are the second and the third best algorithms, respectively,
which is very consistent with the previous analysis. The ranking of twelve discrete MS algorithms
based on the best values are as follows:

MSO4 � MSO3 � MSS2 � MSO1 � MSS1 � MSV1 � MSS4 � MSS3
= MSV2 � MSV4 � MSV3 � MSO2

(17)

Mathematics 2019, 7, 17 13 of 25

Table 6. Ranks of twelve discrete MS algorithms based on the best values.

Number MSS1 MSS2 MSS3 MSS4 MSV1 MSV2 MSV3 MSV4 MSO1 MSO2 MSO3 MSO4

F01 11 1 10 4 7 7 5 5 9 12 1 1
F03 6 3 10 11 5 7 12 8 4 9 2 1
F05 5 2 7 6 8 11 9 12 4 10 3 1
F07 5 1 6 8 7 12 11 10 4 9 3 2
F09 7 1 8 10 6 5 9 11 2 12 3 4
S01 9 1 12 8 10 4 5 5 7 11 3 1
S03 6 8 9 5 4 11 12 10 3 7 2 1
S05 7 3 8 9 5 6 10 11 4 12 2 1
S07 5 1 6 8 7 12 11 10 4 9 3 2
S09 6 1 10 8 11 9 7 6 4 12 2 2
T01 11 2 8 5 4 12 9 10 6 7 3 1
T03 8 3 7 9 6 5 11 12 4 10 2 1
T05 7 5 6 9 8 10 11 2 4 12 3 1
T07 3 5 10 9 6 7 11 12 4 8 1 2
T09 5 2 7 9 8 6 12 10 4 11 1 3

Mean 6.67 2.60 8.27 7.87 6.80 8.27 9.67 8.93 4.47 10.07 2.27 1.60

By looking closely at Figures 2 and 3, it is not difficult to see that V3, V4, and O2 exhibit the worst
performance, which is consistent in the two figures. Similar to the previous analysis in Figure 2, O1,
O3, and O4 show satisfactory performance among 12 transfer functions. Thus, it can be inferred that
PR value can be used as a criterion for selecting transfer functions.

Mathematics 2018, 6, x FOR PEER REVIEW 14 of 26

Table 6. Ranks of twelve discrete MS algorithms based on the best values.

NumberMSS1MSS2MSS3 MSS4MSV1MSV2 MSV3MSV4MSO1MSO2MSO3MSO4
F01 11 1 10 4 7 7 5 5 9 12 1 1
F03 6 3 10 11 5 7 12 8 4 9 2 1
F05 5 2 7 6 8 11 9 12 4 10 3 1
F07 5 1 6 8 7 12 11 10 4 9 3 2
F09 7 1 8 10 6 5 9 11 2 12 3 4
S01 9 1 12 8 10 4 5 5 7 11 3 1
S03 6 8 9 5 4 11 12 10 3 7 2 1
S05 7 3 8 9 5 6 10 11 4 12 2 1
S07 5 1 6 8 7 12 11 10 4 9 3 2
S09 6 1 10 8 11 9 7 6 4 12 2 2
T01 11 2 8 5 4 12 9 10 6 7 3 1
T03 8 3 7 9 6 5 11 12 4 10 2 1
T05 7 5 6 9 8 10 11 2 4 12 3 1
T07 3 5 10 9 6 7 11 12 4 8 1 2
T09 5 2 7 9 8 6 12 10 4 11 1 3

Mean 6.67 2.60 8.27 7.87 6.80 8.27 9.67 8.93 4.47 10.07 2.27 1.60

By looking closely at Figures 2 and 3, it is not difficult to see that V3, V4, and O2 exhibit the worst
performance, which is consistent in the two figures. Similar to the previous analysis in Figure 2, O1, O3,
and O4 show satisfactory performance among 12 transfer functions. Thus, it can be inferred that PR
value can be used as a criterion for selecting transfer functions.

Figure 3. Comparison of the average rank of 12 discrete MS algorithms for 15 SUKP instances.

To analyze the experimental results for statistical purposes, we selected three representative
instances (F09, S09, and T09) and provided boxplots in Figures 4–6. In Figure 4, the boxplot of MSS2
has greater value and less height than those of other eleven algorithms. In Figures 5 and 6, MSO3
exhibits a similar phenomenon as MSS2 in Figure 4. Additionally, the performance of MSO2 is the
worst. In Figures 4–6, we can also observe that MSO3 performs slightly better than MSO4 in solving
large-scale instances.

Figure 3. Comparison of the average rank of 12 discrete MS algorithms for 15 SUKP instances.

To analyze the experimental results for statistical purposes, we selected three representative
instances (F09, S09, and T09) and provided boxplots in Figures 4–6. In Figure 4, the boxplot of MSS2
has greater value and less height than those of other eleven algorithms. In Figures 5 and 6, MSO3
exhibits a similar phenomenon as MSS2 in Figure 4. Additionally, the performance of MSO2 is the
worst. In Figures 4–6, we can also observe that MSO3 performs slightly better than MSO4 in solving
large-scale instances.

Mathematics 2019, 7, 17 14 of 25
Mathematics 2018, 6, x FOR PEER REVIEW 15 of 26

Figure 4. Boxplot of the best values on F09 in 100 runs.

Figure 5. Boxplot of the best values on S09 in 100 runs.

Figure 6. Boxplot of the best values on T09 in 100 runs.

Figure 4. Boxplot of the best values on F09 in 100 runs.

Mathematics 2018, 6, x FOR PEER REVIEW 15 of 26

Figure 4. Boxplot of the best values on F09 in 100 runs.

Figure 5. Boxplot of the best values on S09 in 100 runs.

Figure 6. Boxplot of the best values on T09 in 100 runs.

Figure 5. Boxplot of the best values on S09 in 100 runs.

Mathematics 2018, 6, x FOR PEER REVIEW 15 of 26

Figure 4. Boxplot of the best values on F09 in 100 runs.

Figure 5. Boxplot of the best values on S09 in 100 runs.

Figure 6. Boxplot of the best values on T09 in 100 runs. Figure 6. Boxplot of the best values on T09 in 100 runs.

Moreover, optimization process of each algorithm in solving F09, S09, and T09 instances is given
in Figures 7–9, respectively. In these three figures, all the function values are the average best values
achieved from 100 runs. In Figure 7, the initial value of MSS2 is greater than that of other algorithms

Mathematics 2019, 7, 17 15 of 25

and then it quickly converges to the global optimum. For MSO3, the same scene appears in Figures 8
and 9. Overall, MSS2 and MSO3 have stronger optimization ability and faster convergence speed than
the other discrete MS algorithms.

Mathematics 2018, 6, x FOR PEER REVIEW 16 of 26

Moreover, optimization process of each algorithm in solving F09, S09, and T09 instances is given
in Figures 7–9, respectively. In these three figures, all the function values are the average best values
achieved from 100 runs. In Figure 7, the initial value of MSS2 is greater than that of other algorithms
and then it quickly converges to the global optimum. For MSO3, the same scene appears in Figures 8
and 9. Overall, MSS2 and MSO3 have stronger optimization ability and faster convergence speed
than the other discrete MS algorithms.

Figure 7. The convergence graph of twelve discrete MS algorithms on F09.

Figure 8. The convergence graph of twelve discrete MS algorithms on S09.

Figure 7. The convergence graph of twelve discrete MS algorithms on F09.

Mathematics 2018, 6, x FOR PEER REVIEW 16 of 26

Moreover, optimization process of each algorithm in solving F09, S09, and T09 instances is given
in Figures 7–9, respectively. In these three figures, all the function values are the average best values
achieved from 100 runs. In Figure 7, the initial value of MSS2 is greater than that of other algorithms
and then it quickly converges to the global optimum. For MSO3, the same scene appears in Figures 8
and 9. Overall, MSS2 and MSO3 have stronger optimization ability and faster convergence speed
than the other discrete MS algorithms.

Figure 7. The convergence graph of twelve discrete MS algorithms on F09.

Figure 8. The convergence graph of twelve discrete MS algorithms on S09. Figure 8. The convergence graph of twelve discrete MS algorithms on S09.

Mathematics 2018, 6, x FOR PEER REVIEW 17 of 26

Figure 9. The convergence graph of twelve discrete MS algorithms on T09.

Through the above experimental analysis, the following conclusions can be drawn: (1) For S-shaped
transfer functions, the combination of S2 and MS (MSS2) is the most effective. (2) As far as V-shaped
transfer functions are concerned, the combination of V1 and MS (MSV1) shows the best performance.
(3) In the case of other shapes transfer functions, the more effective algorithms are MSO4, MSO3, and
MSO1. (4) By comparing the family of S-shaped transfer functions and V-shaped transfer functions,
the family of S-shaped transfer functions with MS is suitable for solving SUKP problem. (5) MSO4
has advantages over other algorithms in terms of the quality of solutions. (6) As far as the stability
and convergence rate are concerned, MSO3 and MSS2 perform better than other algorithms.

Overall, it is evident that MSO4 has the best results (considering RPD values and average
ranking values) on fifteen SUKP instances. Therefore, it appears that the proposed other-shapes
family of transfer functions, particularly the O4 function, has many advantages combined with other
algorithms to solve binary optimization problems. Additionally, the O3 function and S2 function are
also suitable functions that can be considered for selection. In brief, these results demonstrate that the
transfer function plays a very important role in solving SUKP using discrete MS algorithm. Thus, by
carefully selecting the appropriate transfer function, the performance of discrete MS algorithm can
be improved obviously.

4.2. Estimation of the Solution Space

SUKP is a binary coded problem and the solution space can be represented as a graph G = (V, E),
in which vertex set V = S, where S is the set of solutions for a SUKP instance, S = {0, 1}n and edge set

{(, ') (, ') }minE s s S S d s s d= ∈ × = , where dmin is the minimum distance between two points in the
search space. Especially, hamming distance is used to describe the similarity between individuals.
Obviously, the minimum distance is 0 when all bits have the same value and the maximum distance
is n, where n is the dimension of SUKP instance.

Here, MSO4 is specially selected to analyze the solution space for F01, S01, and T01 SUKP
instance. The distribution of fitness at generation 0 and generation 100 is presented in Figures 10–12.
The distance between each individual and the best individual is given in Figures 13–15. In Figures
10–12, we can see that, at generation 0, the fitness values are more dispersed and worse than that at
generation 100. In Figure 13, it can be observed that the hamming distance varies from 0 to 35 at
generation 0 while the range is 0 to 12 at generation 100. Moreover, the hamming distance can be
divided into eight levels at generation 100, which demonstrates that all individuals tend to some
superior individuals. However, this phenomenon is not evident in S01 and T01.

Figure 9. The convergence graph of twelve discrete MS algorithms on T09.

Mathematics 2019, 7, 17 16 of 25

Through the above experimental analysis, the following conclusions can be drawn: (1) For
S-shaped transfer functions, the combination of S2 and MS (MSS2) is the most effective. (2) As far
as V-shaped transfer functions are concerned, the combination of V1 and MS (MSV1) shows the best
performance. (3) In the case of other shapes transfer functions, the more effective algorithms are MSO4,
MSO3, and MSO1. (4) By comparing the family of S-shaped transfer functions and V-shaped transfer
functions, the family of S-shaped transfer functions with MS is suitable for solving SUKP problem.
(5) MSO4 has advantages over other algorithms in terms of the quality of solutions. (6) As far as the
stability and convergence rate are concerned, MSO3 and MSS2 perform better than other algorithms.

Overall, it is evident that MSO4 has the best results (considering RPD values and average
ranking values) on fifteen SUKP instances. Therefore, it appears that the proposed other-shapes
family of transfer functions, particularly the O4 function, has many advantages combined with other
algorithms to solve binary optimization problems. Additionally, the O3 function and S2 function are
also suitable functions that can be considered for selection. In brief, these results demonstrate that
the transfer function plays a very important role in solving SUKP using discrete MS algorithm. Thus,
by carefully selecting the appropriate transfer function, the performance of discrete MS algorithm can
be improved obviously.

4.2. Estimation of the Solution Space

SUKP is a binary coded problem and the solution space can be represented as a graph G = (V, E),
in which vertex set V = S, where S is the set of solutions for a SUKP instance, S = {0, 1}n and edge set
E = {(s, s′) ∈ S× S|d(s, s′) = dmin }, where dmin is the minimum distance between two points in the
search space. Especially, hamming distance is used to describe the similarity between individuals.
Obviously, the minimum distance is 0 when all bits have the same value and the maximum distance is
n, where n is the dimension of SUKP instance.

Here, MSO4 is specially selected to analyze the solution space for F01, S01, and T01 SUKP instance.
The distribution of fitness at generation 0 and generation 100 is presented in Figures 10–12. The distance
between each individual and the best individual is given in Figures 13–15. In Figures 10–12, we can
see that, at generation 0, the fitness values are more dispersed and worse than that at generation 100.
In Figure 13, it can be observed that the hamming distance varies from 0 to 35 at generation 0 while the
range is 0 to 12 at generation 100. Moreover, the hamming distance can be divided into eight levels at
generation 100, which demonstrates that all individuals tend to some superior individuals. However,
this phenomenon is not evident in S01 and T01.Mathematics 2018, 6, x FOR PEER REVIEW 18 of 26

Figure 10. The distribution graph of fitness on MSO4 for F01.

Figure 11. The distribution graph of fitness on MSO4 for S01.

Figure 12. The distribution graph of fitness on MSO4 for T01.

Figure 10. The distribution graph of fitness on MSO4 for F01.

Mathematics 2019, 7, 17 17 of 25

Mathematics 2018, 6, x FOR PEER REVIEW 18 of 26

Figure 10. The distribution graph of fitness on MSO4 for F01.

Figure 11. The distribution graph of fitness on MSO4 for S01.

Figure 12. The distribution graph of fitness on MSO4 for T01.

Figure 11. The distribution graph of fitness on MSO4 for S01.

Mathematics 2018, 6, x FOR PEER REVIEW 18 of 26

Figure 10. The distribution graph of fitness on MSO4 for F01.

Figure 11. The distribution graph of fitness on MSO4 for S01.

Figure 12. The distribution graph of fitness on MSO4 for T01. Figure 12. The distribution graph of fitness on MSO4 for T01.Mathematics 2018, 6, x FOR PEER REVIEW 19 of 26

Figure 13. The distance to the best individual for F01.

Figure 14. The distance to the best individual for S01.

Figure 15. The distance to the best individual for T01.

Figure 13. The distance to the best individual for F01.

Mathematics 2019, 7, 17 18 of 25

Mathematics 2018, 6, x FOR PEER REVIEW 19 of 26

Figure 13. The distance to the best individual for F01.

Figure 14. The distance to the best individual for S01.

Figure 15. The distance to the best individual for T01.

Figure 14. The distance to the best individual for S01.

Mathematics 2018, 6, x FOR PEER REVIEW 19 of 26

Figure 13. The distance to the best individual for F01.

Figure 14. The distance to the best individual for S01.

Figure 15. The distance to the best individual for T01. Figure 15. The distance to the best individual for T01.

To intuitively understand the similarity of the solutions, the spatial structure of the solutions at
generation 100 is illustrated in Figures 16–18. In Figure 16, the first node (denoting the first individual)
has the maximum degree which also shows more individuals have approached the better individual.
However, the value of degree is not much different in Figures 17 and 18. This result is consistent with
the previous analysis.

Mathematics 2019, 7, 17 19 of 25

Mathematics 2018, 6, x FOR PEER REVIEW 20 of 26

To intuitively understand the similarity of the solutions, the spatial structure of the solutions at
generation 100 is illustrated in Figures 16–18. In Figure 16, the first node (denoting the first
individual) has the maximum degree which also shows more individuals have approached the better
individual. However, the value of degree is not much different in Figures 17 and 18. This result is
consistent with the previous analysis.

Figure 16. The spatial structure graph for F01 at generation 100.

Figure 17. The spatial structure graph for S01 at generation 100.

Figure 18. The spatial structure graph for T01 at generation 100.

Figure 16. The spatial structure graph for F01 at generation 100.

Mathematics 2018, 6, x FOR PEER REVIEW 20 of 26

To intuitively understand the similarity of the solutions, the spatial structure of the solutions at
generation 100 is illustrated in Figures 16–18. In Figure 16, the first node (denoting the first
individual) has the maximum degree which also shows more individuals have approached the better
individual. However, the value of degree is not much different in Figures 17 and 18. This result is
consistent with the previous analysis.

Figure 16. The spatial structure graph for F01 at generation 100.

Figure 17. The spatial structure graph for S01 at generation 100.

Figure 18. The spatial structure graph for T01 at generation 100.

Figure 17. The spatial structure graph for S01 at generation 100.

Mathematics 2018, 6, x FOR PEER REVIEW 20 of 26

To intuitively understand the similarity of the solutions, the spatial structure of the solutions at
generation 100 is illustrated in Figures 16–18. In Figure 16, the first node (denoting the first
individual) has the maximum degree which also shows more individuals have approached the better
individual. However, the value of degree is not much different in Figures 17 and 18. This result is
consistent with the previous analysis.

Figure 16. The spatial structure graph for F01 at generation 100.

Figure 17. The spatial structure graph for S01 at generation 100.

Figure 18. The spatial structure graph for T01 at generation 100. Figure 18. The spatial structure graph for T01 at generation 100.

4.3. Discrete MS Algorithm vs. Other Optimization Algorithms

To further verify the performance of discrete MS algorithm, we chose MSO4 algorithm to compare
with five other optimization algorithms. These comparison algorithms include PSO [12], DE [8],

Mathematics 2019, 7, 17 20 of 25

global harmony search (GHS) [30], firefly algorithm (FA) [31], and monarch butterfly optimization
(MBO) [32,33]. In DE, the DE/rand/1/bin scheme was adopted. PSO, FA, and MBO are classical or
novel swarm intelligence algorithms that simulate the social behavior of birds, firefly, and monarch
butterfly, respectively. DE is derived from evolutionary theory in nature and has been proved to be
one of the most promising stochastic real-value optimization algorithms. GHS is an efficient variant of
HS, which imitates the music improvisation process. It is also noteworthy that all five comparison
algorithms adopt the discretization method introduced in this paper and combine with O4, respectively.
The parameter setting for each algorithm are shown in Table 7.

Table 7. The parameter settings of six algorithms on SUKP.

Algorithm Parameters Value

PSO
Cognitive constant C1 1.0

Social constant C2 1.0
Inertial constant W 0.3

DE
Weighting factor F 0.9

Crossover constant CR 0.3

GHS
Harmony memory considering rate HMCR 0.9

Pitch adjusting rate PAR 0.3

FA
Alpha 0.2
Beta 1.0

Gamma 1.0

MBO

Migration ratio 3/12
Migration period 1.4

Butterfly adjusting rate 1/12
Max step 1.0

MSO4
Max step Smax 1.0

Acceleration factor ϕ 0.618
Lévy distribution parameter β 1.5

The best results and average results obtained by six methods over 100 independent runs as well
the average time cost of each computation (unit: second, represented as “time”) are summarized in
Table 8. The frequency (TBest and TMean) and average ranking (RBest and RMean) of each algorithm
with the best performance based on the best values and average values are also recorded in Table 8.
The average time cost of each computation for solving fifteen SUKP instances is illustrated in Figure 19.
In Table 8, on best, MSO4 outperforms other methods on eight of fifteen instances (F01, F03, F05, F07,
S01, S03, S05, and T03). MBO is the second most effective. In terms of average ranking, there is little
difference between the performance of MSO4 and MBO. In terms of the average time cost, it can be
observed in Figure 19 that DE has the slowest computing speed. However, GHS has surprisingly fast
solving speed. In addition, MSO4 is second among the six algorithms. Overall, the computing speed
of PSO, FA, MBO and MSO4 shows little difference.

Mathematics 2019, 7, 17 21 of 25

Table 8. Computational results and comparisons on the Best and Mean on 15 SUKP instances.

Number Criterion PSO DE GHS FA MBO MSO4

F01 Best 13,283 13,125 13,251 13,283 13,283 13,283
(13251) Mean 12,981 12,923 12,492 13,041 12,941 13,062

Time 1.297 1.923 0.330 1.627 3.684 1.398
F03 Best 13,319 13,172 12,323 13,282 13,381 13,521

(13241) Mean 12,697 12,443 11,231 12,544 12,886 13,193
Time 8.643 13.381 0.603 11.552 11.676 7.901

F05 Best 10,408 10,214 10,512 10,191 10,786 11,127
(10553) Mean 9825 9420 10,179 9092 10,210 10,302

Time 28.628 41.633 0.928 45.647 40.938 24.912
F07 Best 11,091 10,135 11,255 9740 11,142 11,435

(10766) Mean 10,613 9573 10,642 9226 10,463 10,411
Time 63.290 124.504 1.637 97.102 61.588 56.838

F09 Best 11,046 11,016 11,536 11,099 11,546 11,031
(11031) Mean 10,473 10,443 11,199 10,473 10,736 10,716

Time 138.551 225.749 3.179 170.035 157.478 124.378
S01 Best 13,814 13,519 13,522 13,814 14,044 14,044

(14044) Mean 13,575 12,964 12,656 13,472 13,612 13,649
Time 1.608 2.800 0.358 1.805 2.617 1.646

S03 Best 11,914 11,085 11,531 11,406 11,955 12,350
(11846) Mean 10,978 10,408 10,925 10,833 11,056 11,508

Time 8.437 14.543 0.476 10.753 9.371 8.112
S05 Best 12,574 12,071 12,104 11,398 12,369 12,598

(12304) Mean 11,709 11,251 11,492 10,993 11,604 11,541
Time 35.259 46.302 1.014 37.130 26.551 28.612

S07 Best 10,669 10,267 10,952 10,241 10,906 10,727
(10626) Mean 10,217 9753 10,497 9827 10,237 10,343

Time 79.622 101.118 1.718 77.458 76.049 58.433
S09 Best 10,352 10,100 10,434 10,057 10,633 10,355

(10755) Mean 10,104 9708 10,239 9766 10,139 9919
Time 144.377 242.428 3.013 167.492 153.835 121.622

T01 Best 11,752 11,469 11,434 11,755 11,748 11,735
(11664) Mean 11,152 10,930 10,370 11,226 11,207 11,287

Time 1.517 1.892 0.407 1.722 1.668 1.354
T03 Best 13,100 9624 12,618 11,487 13,008 13,647

(13047) Mean 12,091 9,122 11,855 10,880 12,189 13,000
Time 7.964 12.708 0.507 11.958 10.702 7.642

T05 Best 11,032 10,669 11,071 11,557 11,090 11,391
(11158) Mean 10,656 10,490 10,722 10,983 10,686 10,816

Time 31.753 41.176 0.822 32.175 25.044 24.539
T07 Best 9790 9250 9857 9,392 9770 9739

(10085) Mean 9636 8897 9447 8,895 9322 9240
Time 62.079 113.779 1.639 79.984 67.675 57.000

T09 Best 10,482 10,260 10,643 10,207 10,661 10,539
(10823) Mean 10,111 9717 10,306 9783 10,249 10,190

Time 121.926 195.754 2.896 144.926 136.766 114.066
TBest 1 0 2 3 5 8

TMean 2 0 5 1 0 6
RBest 3.27 5.47 3.40 4.40 2.20 2.27

RMean 3.17 5.47 3.27 4.43 2.53 2.13

Mathematics 2019, 7, 17 22 of 25
Mathematics 2018, 6, x FOR PEER REVIEW 23 of 26

Figure 19. The average time cost of each computation for solving fifteen SUKP instances.

To investigate the difference between the results obtained by MSO4 and those by the comparison
algorithm from the perspective of statistics, Wilcoxon’s rank sum tests with the 5% significance level
were performed. The results of rank sum tests are recorded in Table 9. In Table 9, “1” and “−1”
indicate that MSO4 is superior or inferior to the corresponding comparison algorithm, respectively,
while “0” shows that there is no statistical difference at 5% significance level between the two
comparison algorithms. The statistical result is shown in Table 9.

In Table 8, MSO4 outperforms PSO and DE on all fifteen instances. In addition, MSO4 performs
better than GHS and FA on most of the instances except for S05 and F01, respectively. Meanwhile,
MSO4 is superior to MBO on eleven instances except for F07, F09, S01, and S05. Statistically, there is
no difference between the performance of MSO4 and that of MBO for these four instances.

Considering the results shown in Tables 8 and 9, a conclusion can be drawn that the performance
of MSO4 is superior to or at least quite competitive with the five other methods.

Table 9. Results of rank sum tests for MSO4 with the comparison algorithms.

MSO4 PSO DE GHS FA MBO
F01 1 1 1 0 1
F03 1 1 1 1 1
F05 1 1 1 1 1
F07 1 1 1 1 0
F09 1 1 1 1 0
S01 1 1 1 1 0
S03 1 1 1 1 1
S05 1 1 0 1 0
S07 1 1 1 1 1
S09 1 1 1 1 1
T01 1 1 1 1 1
T03 1 1 1 1 1
T05 1 1 1 1 1
T07 1 1 1 1 1
T09 1 1 1 1 1

1 15 15 14 14 11
0 0 0 1 1 4
−1 0 0 0 0 0

5. Conclusions

Figure 19. The average time cost of each computation for solving fifteen SUKP instances.

To investigate the difference between the results obtained by MSO4 and those by the comparison
algorithm from the perspective of statistics, Wilcoxon’s rank sum tests with the 5% significance level
were performed. The results of rank sum tests are recorded in Table 9. In Table 9, “1” and “−1” indicate
that MSO4 is superior or inferior to the corresponding comparison algorithm, respectively, while
“0” shows that there is no statistical difference at 5% significance level between the two comparison
algorithms. The statistical result is shown in Table 9.

In Table 8, MSO4 outperforms PSO and DE on all fifteen instances. In addition, MSO4 performs
better than GHS and FA on most of the instances except for S05 and F01, respectively. Meanwhile,
MSO4 is superior to MBO on eleven instances except for F07, F09, S01, and S05. Statistically, there is no
difference between the performance of MSO4 and that of MBO for these four instances.

Considering the results shown in Tables 8 and 9, a conclusion can be drawn that the performance
of MSO4 is superior to or at least quite competitive with the five other methods.

Table 9. Results of rank sum tests for MSO4 with the comparison algorithms.

MSO4 PSO DE GHS FA MBO

F01 1 1 1 0 1
F03 1 1 1 1 1
F05 1 1 1 1 1
F07 1 1 1 1 0
F09 1 1 1 1 0
S01 1 1 1 1 0
S03 1 1 1 1 1
S05 1 1 0 1 0
S07 1 1 1 1 1
S09 1 1 1 1 1
T01 1 1 1 1 1
T03 1 1 1 1 1
T05 1 1 1 1 1
T07 1 1 1 1 1
T09 1 1 1 1 1

1 15 15 14 14 11
0 0 0 1 1 4
−1 0 0 0 0 0

Mathematics 2019, 7, 17 23 of 25

5. Conclusions

In this paper, twelve different transfer functions-based discrete MS algorithms are proposed for
solving SUKP. These transfer functions can be divided into three families, S-shaped, V-shaped, and
other-shaped transfer functions. To investigate the performance of twelve discrete MS algorithms,
three groups of fifteen SUKP instances were employed and the experimental results were compared
and analyzed comprehensively. From the experimental results, we found that MSO4 has the best
performance. Furthermore, the relative percentage deviation (RPD) was calculated to evaluate the
similarity between the best value obtained by each algorithm and the best solution provided in [5].
The results show that six algorithms update the best solutions [5] for 11 SUKP instances. The results
also indicate that four other shapes transfer functions, especially the O4 function combined with MS,
have merits for solving discrete optimization problems.

The comparison results on the fifteen SUKP instances among MSO4 and five state-of-the-art
algorithms show that MSO4 performs competitively.

There are several possible directions for further study. First, we will investigate some new
transfer functions on other algorithms such as krill herd algorithm (KH) [34–38], fruit fly optimization
algorithm (FOA) [39], earthworm optimization algorithm (EWA) [40], and cuckoo search (CS) [41,42].
Second, we will study other techniques to discrete continuous optimization algorithms such as k-means
framework [43]. Third, we will apply these twelve transfer functions-based discrete MS algorithms
to other related and more complicated binary optimization problems including multidimensional
knapsack problem (MKP) [39] and flow shop scheduling problem (FSSP) [44]. Finally, we will
incorporate other strategies, namely, information feedback [45] and chaos theory [46], into MS to
improve the performance of the algorithm.

Author Contributions: Writing and methodology, Y.F.; supervision, H.A.; review and editing, X.G.

Funding: This research was funded by National Natural Science Foundation of China, grant number 61806069,
Key Research and Development Projects of Hebei Province, grant number 17210905.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms; MIT Press: Cambridge, MA,
USA, 2009.

2. Du, D.Z.; Ko, K.I. Theory of Computational Complexity; John Wiley & Sons: Hoboken, NJ, USA, 2011.
3. Goldschmidt, O.; Nehme, D.; Yu, G. Note: On the set-union knapsack problem. Naval Res. Logist. (NRL)

1994, 41, 833–842. [CrossRef]
4. Arulselvan, A. A note on the set union knapsack problem. Discret. Appl. Math. 2014, 169, 214–218. [CrossRef]
5. He, Y.; Xie, H.; Wong, T.L.; Wang, X. A novel binary artificial bee colony algorithm for the set-union knapsack

problem. Future Gener. Comput. Syst. 2017, 78, 77–86. [CrossRef]
6. Yang, X.; Vernitski, A.; Carrea, L. An approximate dynamic programming approach for improving accuracy

of lossy data compression by Bloom filters. Eur. J. Oper. Res. 2016, 252, 985–994. [CrossRef]
7. Schneier, B. Applied Cryptography: Protocols, Algorithms, and Source Code in C; John Wiley & Sons: Hoboken,

NJ, USA, 2007.
8. Engelbrecht, A.P.; Pampara, G. Binary differential evolution strategies. In Proceedings of the IEEE Congress

on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 1942–1947.
9. Ozsoydan, F.B.; Baykasoglu, A. A swarm intelligence-based algorithm for the set-union knapsack problem.

Future Gener. Comput. Syst. 2018, 93, 560–569. [CrossRef]
10. Wang, G.G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems.

Memetic Comput. 2016. [CrossRef]
11. Feng, Y.; Wang, G.G. Binary moth search algorithm for discounted 0-1 knapsack problem. IEEE Access 2018,

6, 10708–10719. [CrossRef]

http://dx.doi.org/10.1002/1520-6750(199410)41:6<833::AID-NAV3220410611>3.0.CO;2-Q
http://dx.doi.org/10.1016/j.dam.2013.12.015
http://dx.doi.org/10.1016/j.future.2017.05.044
http://dx.doi.org/10.1016/j.ejor.2016.01.042
http://dx.doi.org/10.1016/j.future.2018.08.002
http://dx.doi.org/10.1007/s12293-016-0212-3
http://dx.doi.org/10.1109/ACCESS.2018.2809445

Mathematics 2019, 7, 17 24 of 25

12. Kennedy, J.; Eberhart, R.C. A discrete binary version of the particle swarm algorithm. In Proceedings of the
1997 IEEE International Conference on Systems, Man, and Cybernetics—Computational Cybernetics and
Simulation, Orlando, FL, USA, 12–15 October 1997; Volume 5, pp. 4104–4108.

13. Karthikeyan, S.; Asokan, P.; Nickolas, S.; Page, T. A hybrid discrete firefly algorithm for solving
multi-objective flexible job shop scheduling problems. Int. J. Bio-Inspired Comput. 2015, 7, 386–401. [CrossRef]

14. Kong, X.; Gao, L.; Ouyang, H.; Li, S. A simplified binary harmony search algorithm for large scale 0-1
knapsack problems. Expert Syst. Appl. 2015, 42, 5337–5355. [CrossRef]

15. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. BGSA: Binary gravitational search algorithm. Nat. Comput.
2010, 9, 727–745. [CrossRef]

16. Saremi, S.; Mirjalili, S.; Lewis, A. How important is a transfer function in discrete heuristic algorithms.
Neural Comput. Appl. 2015, 26, 625–640. [CrossRef]

17. Mirjalili, S.; Lewis, A. S-shaped versus V-shaped transfer functions for binary particle swarm optimization.
Swarm Evol. Comput. 2013, 9, 1–14. [CrossRef]

18. Pampara, G.; Franken, N.; Engelbrecht, A.P. Combining particle swarm optimisation with angle modulation
to solve binary problems. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation,
Edinburgh, UK, 2–5 September 2005; Volume 1, pp. 89–96.

19. Leonard, B.J.; Engelbrecht, A.P.; Cleghorn, C.W. Critical considerations on angle modulated particle swarm
optimisers. Swarm Intell. 2015, 9, 291–314. [CrossRef]

20. Costa, M.F.P.; Rocha, A.M.A.C.; Francisco, R.B.; Fernandes, E.M.G.P. Heuristic-based firefly algorithm for
bound constrained nonlinear binary optimization. Adv. Oper. Res. 2014, 2014, 215182. [CrossRef]

21. Burnwal, S.; Deb, S. Scheduling optimization of flexible manufacturing system using cuckoo search-based
approach. Int. J. Adv. Manuf. Technol. 2013, 64, 951–959. [CrossRef]

22. Pampará, G.; Engelbrecht, A.P. Binary artificial bee colony optimization. In Proceedings of the 2011 IEEE
Symposium on Swarm Intelligence (SIS), Paris, France, 11–15 April 2011; pp. 1–8.

23. Zhu, H.; He, Y.; Wang, X.; Tsang, E.C.C. Discrete differential evolutions for the discounted {0-1} knapsack
problem. Int. J. Bio-Inspired Comput. 2017, 10, 219–238. [CrossRef]

24. Changdar, C.; Mahapatra, G.S.; Pal, R.K. An improved genetic algorithm based approach to solve constrained
knapsack problem in fuzzy environment. Expert Syst. Appl. 2015, 42, 2276–2286. [CrossRef]

25. Lim, T.Y.; Al-Betar, M.A.; Khader, A.T. Taming the 0/1 knapsack problem with monogamous pairs genetic
algorithm. Expert Syst. Appl. 2016, 54, 241–250. [CrossRef]

26. Cao, L.; Xu, L.; Goodman, E.D. A neighbor-based learning particle swarm optimizer with short-term and
long-term memory for dynamic optimization problems. Inf. Sci. 2018, 453, 463–485. [CrossRef]

27. Chih, M. Three pseudo-utility ratio-inspired particle swarm optimization with local search for
multidimensional knapsack problem. Swarm Evol. Comput. 2017, 39. [CrossRef]

28. Michalewicz, Z.; Nazhiyath, G. Genocop III: A co-evolutionary algorithm for numerical optimization
problems with nonlinear constraints. In Proceedings of the 1995 IEEE International Conference on
Evolutionary Computation, Perth, Western Austrilia, 29 November–1 December 1995; Volume 2, pp. 647–651.

29. Liu, X.J.; He, Y.C.; Wu, C.C. Quadratic greedy mutated crow search algorithm for solving set-union knapsack
problem. Microelectro. Comput. 2018, 35, 13–19.

30. Omran, M.G.H.; Mahdavi, M. Global-best harmony search. Appl. Math. Comput. 2008, 198, 643–656.
[CrossRef]

31. Yang, X.S. Firefly Algorithm, Lévy Flights and Global Optimization. In Research and Development in Intelligent
Systems XXVI; Springer: London, UK, 2010; pp. 209–218.

32. Wang, G.-G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 2015, 1–20. [CrossRef]
33. Feng, Y.; Wang, G.G.; Li, W.; Li, N. Multi-strategy monarch butterfly optimization algorithm for discounted

{0-1} knapsack problem. Neural Comput. Appl. 2017, 1–18. [CrossRef]
34. Wang, G.-G.; Gandomi, A.H.; Alavi, A.H. An effective krill herd algorithm with migration operator in

biogeography-based optimization. Appl. Math. Model. 2014, 38, 2454–2462. [CrossRef]
35. Wang, G.-G.; Gandomi, A.H.; Alavi, A.H. Stud krill herd algorithm. Neurocomputing 2014, 128, 363–370.

[CrossRef]
36. Wang, G.; Guo, L.; Wang, H.; Duan, H.; Liu, L.; Li, J. Incorporating mutation scheme into krill herd algorithm

for global numerical optimization. Neural Comput. Appl. 2014, 24, 853–871. [CrossRef]

http://dx.doi.org/10.1504/IJBIC.2015.073165
http://dx.doi.org/10.1016/j.eswa.2015.02.015
http://dx.doi.org/10.1007/s11047-009-9175-3
http://dx.doi.org/10.1007/s00521-014-1743-5
http://dx.doi.org/10.1016/j.swevo.2012.09.002
http://dx.doi.org/10.1007/s11721-015-0114-x
http://dx.doi.org/10.1155/2014/215182
http://dx.doi.org/10.1007/s00170-012-4061-z
http://dx.doi.org/10.1504/IJBIC.2017.087924
http://dx.doi.org/10.1016/j.eswa.2014.09.006
http://dx.doi.org/10.1016/j.eswa.2016.01.055
http://dx.doi.org/10.1016/j.ins.2018.04.056
http://dx.doi.org/10.1016/j.swevo.2017.10.008
http://dx.doi.org/10.1016/j.amc.2007.09.004
http://dx.doi.org/10.1007/s00521-015-1923-y
http://dx.doi.org/10.1007/s00521-017-2903-1
http://dx.doi.org/10.1016/j.apm.2013.10.052
http://dx.doi.org/10.1016/j.neucom.2013.08.031
http://dx.doi.org/10.1007/s00521-012-1304-8

Mathematics 2019, 7, 17 25 of 25

37. Wang, H.; Yi, J.-H. An improved optimization method based on krill herd and artificial bee colony with
information exchange. Memetic Comput. 2017. [CrossRef]

38. Wang, G.-G.; Deb, S.; Gandomi, A.H.; Alavi, A.H. Opposition-based krill herd algorithm with Cauchy
mutation and position clamping. Neurocomputing 2016, 177, 147–157. [CrossRef]

39. Wang, L.; Zheng, X.L.; Wang, S.Y. A novel binary fruit fly optimization algorithm for solving the
multidimensional knapsack problem. Knowl.-Based Syst. 2013, 48, 17–23. [CrossRef]

40. Wang, G.-G.; Deb, S.; Coelho, L.D.S. Earthworm optimization algorithm: A bio-inspired metaheuristic
algorithm for global optimization problems. Int. J. Bio-Inspired Comput. 2015. [CrossRef]

41. Cui, Z.; Sun, B.; Wang, G.-G.; Xue, Y.; Chen, J. A novel oriented cuckoo search algorithm to improve DV-Hop
performance for cyber-physical systems. J. Parallel. Distr. Comput. 2017, 103, 42–52. [CrossRef]

42. Wang, G.-G.; Gandomi, A.H.; Zhao, X.; Chu, H.E. Hybridizing harmony search algorithm with cuckoo search
for global numerical optimization. Soft Comput. 2016, 20, 273–285. [CrossRef]

43. García, J.; Crawford, B.; Soto, R.; Castro, C.; Paredes, F. A k-means binarization framework applied to
multidimensional knapsack problem. Appl. Intell. 2018, 48, 357–380. [CrossRef]

44. Deng, J.; Wang, L. A competitive memetic algorithm for multi-objective distributed permutation flow shop
scheduling problem. Swarm Evolut. Comput. 2016, 32, 107–112. [CrossRef]

45. Wang, G.-G.; Tan, Y. Improving metaheuristic algorithms with information feedback models. IEEE Trans.
Cybern. 2017. [CrossRef] [PubMed]

46. Wang, G.-G.; Guo, L.; Gandomi, A.H.; Hao, G.-S.; Wang, H. Chaotic krill herd algorithm. Inf. Sci. 2014, 274,
17–34. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s12293-017-0241-6
http://dx.doi.org/10.1016/j.neucom.2015.11.018
http://dx.doi.org/10.1016/j.knosys.2013.04.003
http://dx.doi.org/10.1504/IJBIC.2015.10004283
http://dx.doi.org/10.1016/j.jpdc.2016.10.011
http://dx.doi.org/10.1007/s00500-014-1502-7
http://dx.doi.org/10.1007/s10489-017-0972-6
http://dx.doi.org/10.1016/j.swevo.2016.06.002
http://dx.doi.org/10.1109/TCYB.2017.2780274
http://www.ncbi.nlm.nih.gov/pubmed/29990274
http://dx.doi.org/10.1016/j.ins.2014.02.123
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Set-Union Knapsack Problem
	Moth Search Algorithm

	Discrete MS Optimization Method for SUKP
	Transfer Functions
	Solution Representation
	Repair Mechanism and Greedy Optimization
	The Main Scheme of Discrete MS for SUKP
	Computational Complexity of the Discrete MS Algorithm

	Results and Discussion
	The Performance of Discrete MS Algorithm with Different Transfer Functions
	Estimation of the Solution Space
	Discrete MS Algorithm vs. Other Optimization Algorithms

	Conclusions
	References

