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Abstract: In this paper, we introduce a new continuous probability distribution with five parameters
called the modified beta Gompertz distribution. It is derived from the modified beta generator
proposed by Nadarajah, Teimouri and Shih (2014) and the Gompertz distribution. By investigating
its mathematical and practical aspects, we prove that it is quite flexible and can be used effectively
in modeling a wide variety of real phenomena. Among others, we provide useful expansions of
crucial functions, quantile function, moments, incomplete moments, moment generating function,
entropies and order statistics. We explore the estimation of the model parameters by the obtained
maximum likelihood method. We also present a simulation study testing the validity of maximum
likelihood estimators. Finally, we illustrate the flexibility of the distribution by the consideration of
two real datasets.
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MSC: 60E05; 62E15; 62F10

1. Introduction

The Gompertz distribution is a continuous probability distribution introduced by Gompertz [1].
The literature about the use of the Gompertz distribution in applied areas is enormous. A nice review
can be found in [2], and the references therein. From a mathematical point of view, the cumulative
probability density function (cdf) of the Gompertz distribution with parameters λ > 0 and α > 0 is
given by

G(x) = 1− e−
λ
α (e

αx−1), x > 0.

The related probability density function (pdf) is given by

g(x) = λeαxe−
λ
α (e

αx−1), x > 0.

It can be viewed as a generalization of the exponential distribution (obtained with α → 0) and
thus an alternative to the gamma or Weibull distribution. A feature of the Gompertz distribution is that
g(x) is unimodal and has positive skewness, whereas the related hazard rate function (hrf) given by
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h(x) = g(x)/(1− G(x)) is increasing. To increase the flexibility of the Gompertz distribution, further
extensions have been proposed. A natural one is the generalized Gompertz distribution introduced by
El-Gohary et al. [3]. By introducing an exponent parameter a > 0, the related cdf is given by

F(x) =
(

1− e−
λ
α (e

αx−1)
)a

, x > 0.

The related applications show that a plays an important role in term of model flexibility. This idea
was then extended by Jafari et al. [4] who used the so-called beta generator introduced by Eugene et al. [5].
The related cdf is given by

F(x) =
1

B(a, b)

∫ 1−e−
λ
α (eαx−1)

0
ta−1(1− t)b−1dt

= I
1−e−

λ
α (eαx−1)(a, b), x > 0. (1)

where a, b > 0, B(a, b) =
∫ 1

0 ta−1(1− t)b−1dt and Ix(a, b) = (1/B(a, b))
∫ x

0 ta−1(1− t)b−1dt, x ∈ [0, 1].
This distribution has been recently extended by Benkhelifa [6] with a five-parameter distribution. It is
based on the beta generator and the generalized Gompertz distribution.

Motivated by the emergence of complex data from many applied areas, other extended Gompertz
distributions have been proposed in the literature. See for instance, El-Damcese et al. [7] who considered
the Odd Generalized Exponential generator introduced by Tahir et al. [8]; Roozegar et al. [9] who used
the McDonald generator introduced by Alexander et al. [10]; Refs. [11,12] who applied the transmuted
generator introduced by Shaw and Buckley [13]; Chukwu and Ogunde [14] and Lima et al. [15] who
used the Kumaraswamy generator; and Benkhelifa [16] and Yaghoobzadeh [17] who considered the
Marshall–Olkin generator introduced by Marshall and Olkin [18]; and Shadrokh and Yaghoobzadeh [19]
who considered the Beta-G and Geometric generators.

In this paper, we present and study a distribution with five parameters extending the Gompertz
distribution. It is based on the modified beta generator developed by Nadarajah et al. [20]
(which can also be viewed as a modification of the beta Marshall–Olkin generator developed by
Alizadeh et al. [21]). The advantage of this generator is to nicely combine the advantages of the beta
generator of Eugene et al. [5] and the Marshall–Olkin generator of Marshall and Olkin [18]. To the
best of our knowledge, its application to the Gompertz distribution has never been considered before.
We provide a comprehensive description of its general mathematical properties (expansions of the cdf
and pdf, quantile function, various kinds of moments, moment generating function, entropies and
order statistics). The estimation of the model parameters by maximum likelihood is then discussed.
Finally, we explore applications to real datasets that illustrate the usefulness of the proposed model.

The structure of the paper is as follows. Section 2 describes the considered modified beta
Gompertz distribution. Some mathematical properties are investigated in Section 3. Section 4 provides
the necessary to the estimation of the unknown parameters with the maximum likelihood method.
A simulation study is presented, which tests validity of the obtained maximum likelihood estimators.
Applications to two real datasets are also given.

2. The Modified Beta Gompertz Distribution

Let c > 0, G(x) be a cdf and g(x) be a related pdf. The modified beta generator introduced
by Nadarajah et al. [20] is characterized by the cdf given by

F(x) = I cG(x)
1−(1−c)G(x)

(a, b), (2)
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By differentiation of F(x), a pdf is given by

f (x) =
cag(x) [G(x)]a−1 [1− G(x)]b−1

B(a, b) [1− (1− c)G(x)]a+b , x ∈ R. (3)

The hrf is given by

h(x) =
cag(x) [G(x)]a−1 [1− G(x)]b−1

B(a, b) [1− (1− c)G(x)]a+b
(

1− I cG(x)
1−(1−c)G(x)

(a, b)
) , x ∈ R.

Let us now present our main distribution of interest. Using the cdf G(x) of the Gompertz
distribution with parameters λ > 0 and α > 0 as baseline, the cdf given by Equation (2) becomes

F(x) = I
c
(

1−e−
λ
α (eαx−1)

)
1−(1−c)

(
1−e−

λ
α (eαx−1)

)
(a, b), x > 0. (4)

The related distribution is called the modified beta Gompertz distribution (MBGz distribution),
also denoted by MBGz(λ, α, a, b, c). The related pdf in Equation (3) is given by

f (x) =
caλeαxe−

λb
α (eαx−1)

(
1− e−

λ
α (e

αx−1)
)a−1

B(a, b)
[
1− (1− c)

(
1− e−

λ
α (e

αx−1)
)]a+b , x > 0. (5)

The hrf is given by

h(x) =

caλeαxe−
λb
α (eαx−1)

(
1− e−

λ
α (e

αx−1)
)a−1

B(a, b)
[
1− (1− c)

(
1− e−

λ
α (e

αx−1)
)]a+b

1− I
c
(

1−e−
λ
α (eαx−1)

)
1−(1−c)

(
1−e−

λ
α (eαx−1)

)
(a, b)


,

x > 0. (6)

Figure 1 shows the plots for f (x) and h(x) for selected parameter values λ, α, a, b, c. We observe
that these functions can take various curvature forms depending on the parameter values, showing
the increasing of the flexibility of the former Gompertz distribution.

A strong point of the MBGz distribution is to contain different useful distributions in the literature.
The most popular of them are listed below.

• When c = 1/(1− θ) with θ ∈ (0, 1) (θ is a proportion parameter), we obtain the beta Gompertz
geometric distribution introduced by Shadrokh and Yaghoobzadeh [19], i.e., with cdf

F(x) = I
1−e−

λ
α (eαx−1)

1−θe−
λ
α (eαx−1)

(a, b), x > 0.

However, this distribution excludes the case c ∈ (0, 1), which is of importance since it contains
well-known flexible distributions, as developed below. Moreover, the importance of small values
for c can also be determinant in the applications (see Section 4).
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• When c = 1, we get the beta Gompertz distribution with four parameters introduced by
Jafari et al. [4], i.e., with cdf

F(x) = I
1−e−

λ
α (eαx−1)(a, b), x > 0.

• When c = b = 1, we get the generalized Gompertz distribution studied by El-Gohary et al. [3],
i.e., with cdf

F(x) =
(

1− e−
λ
α (e

αx−1)
)a

, x > 0.

• When a = b = 1 and c = 1
θ with θ > 1, we get the a particular case of the Marshall–Olkin

extended generalized Gompertz distribution introduced by Benkhelifa [16], i.e., with cdf

F(x) =
1− e−

λ
α (e

αx−1)

θ + (1− θ)
(

1− e−
λ
α (e

αx−1)
) , x > 0.

• When a = b = c = 1, we get the Gompertz distribution introduced by Gompertz [1], i.e., with cdf

F(x) = 1− e−
λ
α (e

αx−1), x > 0.

• When c = 1 and α→ 0, we get beta exponential distribution studied by Nadarajah and Kotz [22],
i.e., with cdf

F(x) = I1−e−λx (a, b), x > 0.

• When b = c = 1 and α → 0, we get the generalized exponential distribution studied by Gupta
and Kundu [23], i.e., with cdf

F(x) =
(

1− e−λx
)a

, x > 0.

• When a = b = c = 1 and α→ 0 we get the exponential distribution, i.e., with cdf

F(x) = 1− e−λx, x > 0.
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Figure 1. Some plots of the pdf f (x) (a); and some plots for the hrf h(x) (b).
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3. Some Mathematical Properties

3.1. On the Shapes of the pdf

The shapes of f (x) given by Equation (5) can be described analytically. As usual, the critical
points x∗ of the pdf f (x) satisfies ∂

∂x ln( f (x∗)) = 0, with

∂

∂x
ln( f (x)) = α− bλeαx + (a− 1)

λeαxe−
λ
α (e

αx−1)

1− e−
λ
α (e

αx−1)
+ (a + b)(1− c)

λeαxe−
λ
α (e

αx−1)

c + (1− c)e−
λ
α (e

αx−1)
.

The point x∗ is a local maximum if ∂2

∂x2 ln( f (x∗)) < 0, a local minimum if ∂2

∂x2 ln( f (x∗)) > 0 and a

point of inflection if ∂2

∂x2 ln( f (x∗)) = 0.
Let us now study the asymptotic properties of f (x). We have

f (x) ∼ ca

B(a, b)
λaxa−1, x → 0.

Thus, for a ∈ (0, 1), we have limx→0 f (x) = +∞; for a = 1, we have limx→0 f (x) = bcλ; and,
for a > 1, we have limx→0 f (x) = 0. We have

f (x) ∼ 1
cbB(a, b)

λeαxe
λb
α e−

λb
α eαx

, x → +∞.

Thus, limx→+∞ f (x) = 0 in all cases. Figure 1a illustrates these points for selected parameters.

3.2. On the Shapes of the hrf

Similar to the pdf, the critical points x∗ of the hrf h(x) given by Equation (6) satisfy ∂
∂x ln(h(x∗)) =

0, with

∂

∂x
ln(h(x)) = α− bλeαx + (a− 1)

λeαxe−
λ
α (e

αx−1)

1− e−
λ
α (e

αx−1)
+ (a + b)(1− c)

λeαxe−
λ
α (e

αx−1)

c + (1− c)e−
λ
α (e

αx−1)

+
caλeαxe−

λb
α (eαx−1)

(
1− e−

λ
α (e

αx−1)
)a−1

B(a, b)
[
1− (1− c)

(
1− e−

λ
α (e

αx−1)
)]a+b

1− I
c
(

1−e−
λ
α (eαx−1)

)
1−(1−c)

(
1−e−

λ
α (eαx−1)

)
(a, b)


.

Again, the point x∗ is a local maximum if ∂2

∂x2 ln(h(x∗)) < 0, a local minimum if ∂2

∂x2 ln(h(x∗)) > 0

and a point of inflection if ∂2

∂x2 ln(h(x∗)) = 0.
We also have

h(x) ∼ ca

B(a, b)
λaxa−1, x → 0.

Thus, for a ∈ (0, 1), we have limx→0 h(x) = +∞; for a = 1, we have limx→0 h(x) = bcλ; and,
for a > 1, we have limx→0 h(x) = 0. We have

h(x) ∼ bλeαx, x → +∞.

Thus, limx→+∞ h(x) = +∞ in all cases. Figure 1b illustrates these points for selected parameters.
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3.3. Linear Representation

Let us determine useful linear representations for F(x) given by Equation (4) and f (x) given by
Equation (5). First, let us suppose that c ∈ (0, 1). It follows from the generalized binomial formula, i.e.,

(1 + z)γ =
+∞

∑
k=0

(
γ

k

)
zk for |z| < 1 and γ ∈ R, with

(
γ

k

)
=

γ(γ− 1) . . . (γ− k + 1)
k!

, that

F(x) =
1

B(a, b)

∫ cG(x)
1−(1−c)G(x)

0
ta−1(1− t)b−1dt

=
1

B(a, b)

+∞

∑
k=0

(
b− 1

k

)
(−1)k

∫ cG(x)
1−(1−c)G(x)

0
ta+k−1dt

=
1

B(a, b)

+∞

∑
k=0

(
b− 1

k

)
(−1)k

a + k

[
cG(x)

1− (1− c)G(x)

]a+k
.

On the other hand, using again the generalized binomial formula, we obtain[
cG(x)

1− (1− c)G(x)

]a+k
= ca+k

+∞

∑
`=0

(
−(a + k)

`

)
(−1)`(1− c)`[G(x)]`+a+k. (7)

In a similar manner, we have

[G(x)]`+a+k =
[
1− e−

λ
α (e

αx−1)
]`+a+k

=
+∞

∑
m=0

(
`+ a + k

m

)
(−1)m(1− Hm(x)),

where Hm(x) = 1− e−
mλ
α (eαx−1) is the cdf of a Gompertz distribution with parameters mλ and α.

Combining these equalities, we obtain the following series expansion:

F(x) =
+∞

∑
m=0

vm(1− Hm(x)), (8)

where

vm =
(−1)m

B(a, b)

+∞

∑
k=0

+∞

∑
`=0

(
`+ a + k

m

)(
−(a + k)

`

)(
b− 1

k

)
ca+k(−1)k+`(1− c)`

1
a + k

.

By derivation of F(x), f (x) can be expressed as

f (x) =
+∞

∑
m=0

wmhm(x), (9)

where wm = −vm and hm(x) is the pdf of a Gompertz distribution with parameters mλ and α.
For the case c > 1, we must do some transformation for Equation (7) to apply the generalized

binomial formula. We can write
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[
cG(x)

1− (1− c)G(x)

]a+k
=

[
G(x)

1− (1− 1
c )(1− G(x))

]a+k

= [G(x)]a+k
+∞

∑
`=0

(
−(a + k)

`

)
(−1)`(c− 1)`c−`[1− G(x)]`

=
+∞

∑
`=0

`

∑
q=0

(
−(a + k)

`

)(
`

q

)
(−1)`+q(c− 1)`c−`[G(x)]q+a+k.

On the other hand, we have

[G(x)]q+a+k =
+∞

∑
m=0

(
q + a + k

m

)
(−1)m(1− Hm(x)).

Therefore, we can write F(x) as Equation (8) with

v∗m =

(−1)m

B(a, b)

+∞

∑
k=0

+∞

∑
`=0

`

∑
q=0

(
−(a + k)

`

)(
`

q

)(
q + a + k

m

)(
b− 1

k

)
(−1)`+q+k(c− 1)`c−`

1
a + k

,

and f (x) as Equation (9) with wm = −v∗m (and still hm(x) is the pdf of a Gompertz distribution with
parameters mλ and α). For the sake of simplicity, we refer to the form in Equation (9) far all series
representation of f (x), whether c ∈ (0, 1) or c > 1.

Hereafter, we denote by X a random variable having the cdf F(x) given by Equation (4) (and the
pdf f (x) given by Equation (5)) and by Ym a random variable following the Gompertz distribution
with parameters mλ and α, i.e., having the cdf Hm(x) (and the pdf hm(x)).

3.4. Quantile Function

The quantile function of X is given by

Q(u) =
1
α

ln

(
1− α

λ
ln

(
1− I−1

u (a, b)
c + (1− c)I−1

u (a, b)

))
, u ∈ (0, 1),

where I−1
u (a, b) denotes the inverse of Iu(a, b). It satisfies F(Q(u)) = Q(F(u)) = u. Using [20], one can

show that
Q(u) ∼ 1

λc
a

1
a B(a, b)

1
a u

1
a , u→ 0.

From Q(u), we can simulate the MBGz distribution. Indeed, let U be a random variable
following the uniform distribution over (0, 1). Then, the random variable X = Q(U) follows the
MBGz distribution.

The median of X is given by M = Q(1/2). We can also use Q(u) to define skewness measures.
Let us just introduce the Bowley skewness based on quartiles and the Moors kurtosis respectively
defined by

B =
Q(3/4) + Q(1/4)− 2Q(1/2)

Q(3/4)−Q(1/4)
, Mo =

Q(7/8)−Q(5/8) + Q(3/8)−Q(1/8)
Q(6/8)−Q(2/8)

.

Contrary to γ1 and γ2, these quantities have the advantage to be always defined. We refer
to [24,25].
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3.5. Moments

Let r be a positive integer. The rth ordinary moment of X is defined by µ′r = E (Xr) =∫ +∞
−∞ xr f (x)dx. Using the linear representation given by Equation (9), we can express µ′r as

µ′r =
+∞

∑
m=0

wm

∫ +∞

−∞
xrhm(x)dx =

+∞

∑
m=0

wmE(Yr
m).

By doing the change of variables u = eαx, we obtain

E(Yr
m) =

mλ

αr+1 e
mλ
α

∫ +∞

1
(ln u)re−

mλ
α udu.

This integral has connections with the so-called generalized integro-exponential function.
Further developments can be found in [26,27]. Therefore, we have

µ′r =
+∞

∑
m=0

wm
mλ

αr+1 e
mλ
α

∫ +∞

1
(ln u)re−

mλ
α udu.

Obviously, the mean of X is given by E(X) = µ′1 and the variance of X is given by V(X) =

µ′2 − (µ′1)
2.

3.6. Skewness

The rth central moment of X is given by µr = E
[
(X− µ′1)

r]. It follows from the binomial
formula that

µr =
r

∑
k=0

(
r
k

)
(−1)k(µ′1)

kµ′r−k.

On the other side, the rth cumulants of X can be obtained via the equation:

κr = µ′r −
r−1

∑
k=1

(
r− 1
k− 1

)
κkµ′r−k,

with κ1 = µ′1. The skewness of X is given by γ1 = κ3/κ3/2
2 and the kurtosis of X is given by γ2 = κ4/κ2

2.
One can also introduce the MacGillivray skewness given by

ρ(u) =
Q(1− u) + Q(u)− 2Q(1/2)

Q(1− u)−Q(u)
, u ∈ (0, 1).

It illustrates the effects of the parameters a, b, α and λ on the skewness. Further details can be
found in [28].

3.7. Moment Generating Function

The moment generating function of X is given by MX(t) = E
(
etX) =

∫ +∞
−∞ etx f (x)dx.

Using Equation (9), we have

MX(t) =
+∞

∑
m=0

wm

∫ +∞

−∞
etxhm(x)dx =

+∞

∑
m=0

wm MYm(t),

where MYm(t) = E(etYm), the moment generating function of Ym. Doing successively the change of
variables u = eαx and the change of variable v = mλ

α u, we obtain
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MYm(t) =
mλ

α
e

mλ
α

∫ +∞

1
u

t
α e−

mλ
α udu = e

mλ
α

( α

mλ

) t
α
∫ +∞

mλ
α

v
t
α e−vdv

= e
mλ
α

( α

mλ

) t
α Γ
(

t
α
+ 1,

mλ

α

)
,

where Γ(d, x) denotes the complementary incomplete gamma function defined by Γ(d, x) =∫ +∞
x td−1e−tdt. Therefore, we can write

MX(t) =
+∞

∑
m=0

wme
mλ
α

( α

mλ

) t
α Γ
(

t
α
+ 1,

mλ

α

)
.

Alternatively, using the moments of X, one can write

MX(t) =
+∞

∑
r=0

tr

r!
µ′r =

+∞

∑
r=0

+∞

∑
m=0

tr

r!
wm

mλ

αr+1 e
mλ
α

∫ +∞

1
(ln u)re−

mλ
α udu.

3.8. Incomplete Moments and Mean Deviations

The rth incomplete moment of X is defined by mr(t) = E
(

Xr1{X≤t}

)
=
∫ t
−∞ xr f (x)dx.

Using Equation (9), we can express mr(t) as

mr(t) =
+∞

∑
m=0

wm

∫ t

−∞
xrhm(x)dx.

Doing successively the change of variables u = eαx, we obtain

∫ t

−∞
xrhm(x)dx =

mλ

αr+1 e
mλ
α

∫ eαt

1
(ln u)re−

mλ
α udu.

The mean deviation of X about the mean is given by

δ1 = E(|X− µ′1|) = 2µ′1F(µ′1)− 2m1(µ
′
1),

where m1(t) denote the first incomplete moment. The mean deviation of X about the median
M = Q(1/2) is given by

δ2 = E(|X−M|) = µ′1 − 2m1(M).

3.9. Entropies

Let us now investigate different kinds of entropies. For the sake of simplicity in exposition,
we suppose that c ∈ (0, 1) (the case c > 1 can be considered in a similar way). The Rényi entropy of X
is defined by

Iγ(X) =
1

1− γ
ln
[∫ +∞

−∞
[ f (x)]γ dx

]
,

with γ > 0 and γ 6= 1. It follows from (3) that

[ f (x)]γ =
caγ[g(x)]γ [G(x)]γ(a−1) [1− G(x)]γ(b−1)

B(a, b)γ [1− (1− c)G(x)]γ(a+b)
.
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The generalized binomial formula implies that

[G(x)]γ(a−1)

[1− (1− c)G(x)]γ(a+b)
=

+∞

∑
k=0

(
−γ(a + b)

k

)
(−1)k(1− c)k[G(x)]k+γ(a−1).

Similarly, we have

[G(x)]k+γ(a−1) =
+∞

∑
`=0

(
k + γ(a− 1)

`

)
(−1)`[1− G(x)]`.

Therefore,

[ f (x)]γ =

caγ

B(a, b)γ

+∞

∑
k=0

+∞

∑
`=0

(
−γ(a + b)

k

)(
k + γ(a− 1)

`

)
(−1)k+`(1− c)k[1− G(x)]`+γ(b−1)[g(x)]γ.

By doing the change of variable u = eαx and the change of variable v = (`+ γb) λ
α u, we get

∫ +∞

−∞
[1− G(x)]`+γ(b−1)[g(x)]γdx =

∫ +∞

0
e−(`+γb) λ

α (e
αx−1)λγeαγxdx

= λγ 1
α

e(`+γb) λ
α

∫ +∞

1
uγ−1e−(`+γb) λ

α udu

=
αγ−1

(`+ γb)γ
e(`+γb) λ

α

∫ +∞

(`+γb) λ
α

vγ−1e−vdv

=
αγ−1

(`+ γb)γ
e(`+γb) λ

α Γ
(

γ, (`+ γb)
λ

α

)
.

By putting the above equalities together, we have

Iγ(X) =

1
1− γ

[
αγ ln(c)− γ ln(B(a, b)) + (γ− 1) ln(α) +

γbλ

α

+ ln
[ +∞

∑
k=0

+∞

∑
`=0

(
−γ(a + b)

k

)(
k + γ(a− 1)

`

)
(−1)k+`(1− c)k e`

λ
α

(`+ γb)γ
Γ
(

γ, (`+ γb)
λ

α

) ]]
.

The Shannon entropy of X is defined by S(X) = E(− ln[ f (X)]). It can be obtained by the formula
S(X) = limγ→1+ Iγ(X).

The γ-entropy is defined by

Hγ(X) =
1

γ− 1
ln
[

1−
∫ +∞

−∞
[ f (x)]γ dx

]
.

Using the expansion above, we obtain

Hγ(X) =
1

γ− 1
ln
[

1− caγαγ−1eγb λ
α

B(a, b)γ
×

+∞

∑
k=0

+∞

∑
`=0

(
−γ(a + b)

k

)(
k + γ(a− 1)

`

)
(−1)k+`(1− c)k e`

λ
α

(`+ γb)γ
Γ
(

γ, (`+ γb)
λ

α

) ]
.
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3.10. Order Statistics

Let X1, . . . , Xn be the random sample from X and Xi:n be the ith order statistic. Then, the pdf of
Xi:n is given by

fi:n(x) =
n!

(i− 1)!(n− i)!
f (x)[F(x)]i−1 [1− F(x)]n−i

=
n!

(i− 1)!(n− i)!

n−i

∑
j=0

(
n− i

j

)
(−1)j f (x)[F(x)]j+i−1.

It follows from Equations (8) and (9) that

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i

∑
j=0

(
n− i

j

)
(−1)j

+∞

∑
m=0

wmhm(x)

[
+∞

∑
k=0

vk(1− Hk(x))

]j+i−1

.

Using a result from [29], power series raised to a positive power as follows(
+∞

∑
k=0

akxk

)n

=
+∞

∑
k=0

dn,kxk,

where the coefficients (dn,k)k∈N are determined from the recurrence equation: dn,0 = an
0 and,

for any m ≥ 1, dn,m = (1/(ma0))
m
∑

k=1
(k(n + 1)− m)akdn,m−k. Therefore, noticing that 1− Hk(x) =(

e−
λ
α (e

αx−1)
)k

, we have

[
+∞

∑
k=0

vk(1− Hk(x))

]j+i−1

=
+∞

∑
k=0

dj+i−1,k(1− Hk(x)),

where dj+i−1,0 = vj+i−1
0 and, for any m ≥ 1, dj+i−1,m = 1

mv0

m
∑

k=1
(k(j + i) − m)vkdj+i−1,m−k.

By combining the equalities above, we obtain

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i

∑
j=0

(
n− i

j

)
(−1)j

+∞

∑
m=0

+∞

∑
k=0

wmdj+i−1,khm(x)(1− Hk(x)).

Finally, one can observe that hm(x)(1 − Hk(x)) = mλeαxe−
(m+k)λ

α (eαx−1) = m
m+k um+k(x),

where um+k(x) denotes the pdf of the Gompertz distribution with parameters (m + k)λ and α. Thus,
the pdf of ith order statistic of the MBGz distribution can be expressed as a linear combination of
Gompertz pdfs, i.e.,

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i

∑
j=0

(
n− i

j

)
(−1)j

+∞

∑
m=0

+∞

∑
k=0

wmdj+i−1,k
m

m + k
um+k(x).

Let r be a positive integer. Then, the rth ordinary moment of Xi:n can be expressed as

E(Xr
i:n) =

∫ +∞

−∞
xr fi:n(x)dx

=
n!

(i− 1)!(n− i)!

n−i

∑
j=0

(
n− i

j

)
(−1)j

+∞

∑
m=0

+∞

∑
k=0

wmdj+i−1,k
mλ

αr+1 e
(m+k)λ

α

∫ +∞

1
(ln u)re−

(m+k)λ
α udu.
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4. Statistical Inference

4.1. Maximum Likelihood Estimation

We now investigate the estimation of the parameters of the MBGz distribution. Let x1, . . . , xn

be n observed values from the MBGz distribution and ξ = (λ, α, a, b, c) be the vector of unknown
parameters. The log likelihood function is given by

`(ξ) = an ln(c) + n ln(λ) + α
n

∑
i=1

xi −
λb
α

n

∑
i=1

(eαxi − 1) + (a− 1)
n

∑
i=1

ln
(

1− e−
λ
α (e

αxi−1)
)

− n ln(B(a, b))− (a + b)
n

∑
i=1

ln
[
1− (1− c)

(
1− e−

λ
α (e

αxi−1)
)]

.

The maximum likelihood estimators of the parameters are obtained by maximizing the log
likelihood function. They can be determined by solving the non-linear equations: ∂

∂λ `(ξ) = 0, ∂
∂α `(ξ) =

0, ∂
∂a `(ξ) = 0, ∂

∂b `(ξ) = 0, ∂
∂c `(ξ) = 0 with

∂`(ξ)

∂λ
=

n
λ
− b

α

n

∑
i=1

(eαxi − 1) + (a− 1)
n

∑
i=1

1
α (e

αxi − 1)e−
λ
α (e

αxi−1)

1− e−
λ
α (e

αxi−1)

+ (a + b)
n

∑
i=1

(1− c) 1
α (e

αxi − 1)e−
λ
α (e

αxi−1)

1− (1− c)
(

1− e−
λ
α (e

αxi−1)
) ,

∂`(ξ)

∂α
=

n

∑
i=1

xi −
λb
α

n

∑
i=1

[
xieαxi − 1

α
(eαxi − 1)

]

+ (a− 1)
n

∑
i=1

λ
α e−

λ
α (e

αxi−1)
[

xieαxi − 1
α (e

αxi − 1)
]

1− e−
λ
α (e

αxi−1)

+ (a + b)
n

∑
i=1

(1− c)e−
λ
α (e

αxi−1)
[

xieαxi − 1
α (e

αxi − 1)
]

1− (1− c)
(

1− e−
λ
α (e

αxi−1)
) ,

by setting B(1,0)(a, b) = ∂
∂a B(a, b) and B(0,1)(a, b) = ∂

∂b B(a, b) (one can remark that B(1,0)(a, b) = ψ(a)−
ψ(a + b) and B(0,1)(a, b) = ψ(b)− ψ(a + b), where ψ(x) denotes the so called digamma function),

∂`(ξ)

∂a
= n ln c +

n

∑
i=1

ln
(

1− e−
λ
α (e

αxi−1)
)
− n

B(1,0)(a, b)
B(a, b)

−
n

∑
i=1

ln
[
1− (1− c)

(
1− e−

λ
α (e

αxi−1)
)]

,

∂`(ξ)

∂b
= −λ

α

n

∑
i=1

(eαxi − 1)− n
B(0,1)(a, b)

B(a, b)
−

n

∑
i=1

ln
[
1− (1− c)

(
1− e−

λ
α (e

αxi−1)
)]

and

∂`(ξ)

∂c
=

an
c
− (a + b)

n

∑
i=1

1− e−
λ
α (e

αxi−1)

1 + (1− c)
(

1− e−
λ
α (e

αxi−1)
) .

We can solve the above non-linear equations simultaneously. A mathematical package can be used
to get the maximum likelihood estimators of the unknown parameters. In addition, all the second-order
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derivatives exist. As usual, the asymptotic normality of the maximum likelihood estimators can be used
to construct informative objects (approximate confidence intervals, confidence regions, and testing
hypotheses of λ, α, a, b, c, etc.).

4.2. Simulation

From a theoretical point of view, the performances of the different estimates (MLEs) for the MBGz
distribution are difficult to compare. We therefore propose a simulation study that uses their mean
square errors (MSEs) for different sample sizes as benchmarks. The software package Mathematica
(version 9) was used. Different sample sizes were considered through the experiments at size n = 50,
100 and 150. The experiment was repeated 3000 times. In each experiment, the estimates of the parameters
were obtained by maximum likelihood methods of estimation. The means and MSEs for the different
estimators can be found in Table 1. We observed that MSEs are decreasing with increasing n.

Table 1. The MLEs and MSEs of MBGz distribution.

n Parameters Initial MLE MSE Initial MLE MSE

50 a 3.0 3.0024 0.5057 2.5 2.6424 0.1737
b 1.5 1.6409 0.1499 1.5 1.5219 0.0400
c 0.5 0.4941 0.0008 0.5 0.5050 0.0004
α 0.5 0.5422 0.0198 0.5 0.5291 0.0116
λ 0.5 0.5241 0.0387 0.5 0.5235 0.0122

100 a 3.0 3.0778 0.2458 2.5 2.5060 0.0754
b 1.5 1.6083 0.0779 1.5 1.5373 0.0291
c 0.5 0.4986 0.0003 0.5 0.4991 0.0003
α 0.5 0.5572 0.0147 0.5 0.5123 0.0029
λ 0.5 0.4926 0.0126 0.5 0.5035 0.0070

150 a 3.0 2.9041 0.1015 2.5 2.5125 0.0284
b 1.5 1.6159 0.0485 1.5 1.5232 0.0088
c 0.5 0.4940 0.0002 0.5 0.5002 0.0001
α 0.5 0.5477 0.0094 0.5 0.5137 0.0015
λ 0.5 0.4694 0.0072 0.5 0.4968 0.0015

50 a 1.5 1.4706 0.0325 1.5 1.5435 0.0641
b 1.8 1.7764 0.0639 1.8 1.7838 0.0955
c 0.5 0.5054 0.0013 1.5 1.5285 0.0203
α 0.5 0.4833 0.0029 0.5 0.4895 0.0008
λ 0.5 0.5488 0.0160 0.5 0.5364 0.0118

100 a 1.5 1.5138 0.0201 1.5 1.5194 0.0224
b 1.8 1.8177 0.0380 1.8 1.8309 0.0451
c 0.5 0.5004 0.0007 1.5 1.5010 0.0047
α 0.5 0.5007 0.0023 0.5 0.5011 0.0005
λ 0.5 0.5106 0.0059 0.5 0.5036 0.0028

150 a 1.5 1.5313 0.0102 1.5 1.4690 0.0094
b 1.8 1.8152 0.0194 1.8 1.8396 0.0258
c 0.5 0.5055 0.0003 1.5 1.4864 0.0017
α 0.5 0.5173 0.0022 0.5 0.5007 0.0004
λ 0.5 0.5044 0.0034 0.5 0.4943 0.0009

4.3. Applications

This section provides an application to show how the MBGz distribution can be applied in
practice. We compared MBGz to Exponentaited Generalized Weibull–Gompertz distribution (EGWGz)
by El-Bassiouny et al. [30] and other well known distributions in literature, Kumaraswamy–Gompertz
(Kw-Gz), beta Gompertz (BGz) and Gompertz (Gz) models. The MLEs are computed using
Quasi-Newton Code for Bound Constrained Optimization and the log-likelihood function evaluated.
The goodness-of-fit measures, Anderson–Darling (A*), Cramer–von Mises (W*), Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), and log-likelihood ( ˆ̀) values are computed.
As usual, the lower are the values of these criteria, the better is the fit. In addition, the value for
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the Kolmogorov–Smirnov (KS) statistic and its p-value are reported. The required computations are
carried out in the R software (version 3).

4.3.1. Dataset 1

The first dataset was given in [31]. It represents the time to failure of turbocharger of a certain
type of engine. The dataset is as follows: 0.0312, 0.314, 0.479, 0.552, 0.700, 0.803, 0.861, 0.865, 0.944,
0.958, 0.966, 0.977, 1.006, 1.021, 1.027, 1.055, 1.063, 1.098, 1.140, 1.179, 1.224, 1.240, 1.253, 1.270, 1.272,
1.274, 1.301, 1.301, 1.359, 1.382, 1.382, 1.426, 1.434, 1.435, 1.478, 1.490, 1.511, 1.514, 1.535, 1.554, 1.566,
1.570, 1.586, 1.629, 1.633, 1.642, 1.648, 1.684, 1.697, 1.726, 1.770, 1.773, 1.800, 1.809, 1.818, 1.821, 1.848,
1.880, 1.954, 2.012, 2.067, 2.084, 2.090, 2.096, 2.128, 2.233, 2.433, 2.585, 2.585.

4.3.2. Dataset 2

The second dataset was considered in [32]. It corresponds to a single fiber with 20 and 101 mm of
gauge length, respectively. The dataset is as follows: 1.6, 2.0, 2.6, 3.0, 3.5, 3.9, 4.5, 4.6, 4.8, 5.0, 5.1, 5.3,
5.4, 5.6, 5.8, 6.0, 6.0, 6.1, 6.3, 6.5, 6.5, 6.7, 7.0, 7.1, 7.3, 7.3, 7.3, 7.7, 7.7, 7.8, 7.9, 8.0, 8.1, 8.3, 8.4, 8.4, 8.5, 8.7,
8.8, 9.0.

Tables 2 and 3 present the maximum likelihood estimates, with the corresponding standard errors
in parentheses, of the unknown parameters (λ, α, a, b, c) of the MBGz distribution for Datasets 1 and
2, respectively. Tables 4 and 5 show the statistics AIC, BIC, W*, A*, KS, and p-Value values for all the
considered models. We then see that the proposed MBGz model fits the considered data better than the
other models. Thus, the proposed MBGz model provides an interesting alternative to other existing
models for modeling positive real data. To complete this fact, PP, QQ, epdf and ecdf plots of the MBGz
distribution are given in Figures 2 and 3 for Datasets 1 and 2, respectively.

Table 2. MLEs (standard errors in parentheses) for Dataset 1.

Distribution Estimates

MBGz (λ, α, a, b, c) 0.0085 2.5537 1.0737 1.3153 5.0687
(0.0067) (0.5727) (0.3197) (0.8933) (3.3003)

EGWGz (λ, a, b, c, β) 3.2078 2.4598 0.0203 1.8974 0.5460
(1.2099) (0.6498) (0.0531) (1.8193) (0.2430)

KwGz (a, b, c, d, θ) 0.1861 1.4948 1.4909 0.9811
(0.3130) (0.5076) (0.4735) (2.4368)

BGz (a, b, θ, v) 0.3144 1.5591 1.4798 0.4966
(0.4283) (0.3658) (0.4543) (0.8692)

Gz (λ, α) 0.0841 1.8811
(0.0268) (0.2043)

Table 3. MLEs (standard errors in parentheses) for Dataset 2.

Distribution Estimates

MBGz (λ, α, a, b, c) 0.0098 0.5270 0.8768 4.5635 0.1561
(0.0116) (0.1599) (0.3893) (0.8862) (0.2442)

EGWGz (λ, a, b, c, β) 0.0101 0.6077 0.1078 1.6929 0.6613
(0.0141) (0.1506) (0.3427) (1.2539) (0.3379)

KwGz (a, b, θ, v) 0.0133 0.2923 2.0164 13.7085
(0.0120) (0.1641) (0.7880) (7.0208)

BGz (a, b, c, d, θ) 0.0125 0.1856 3.7622 2.0116
(0.0100) (0.1601) (2.5635) (3.3802)

Gz (λ, α) 0.0074) (0.6243)
(0.0035) (0.0748)
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Table 4. The AIC, BIC, W*, A*, KS, and p-Value values for Dataset 1.

Dist ˆ̀ AIC BIC W* A* KS p-Value

MBGz 50.0387 110.0776 118.2481 0.0328 0.2745 0.0539 0.9889
EGWGz 52.6888 115.3776 126.5482 0.0706 0.5341 0.0785 0.7885
KwGz 51.2042 110.4084 119.3448 0.0529 0.4125 0.0640 0.9396
BGz 51.1518 110.3026 119.2399 0.0518 0.4057 0.0627 0.9484
Gz 53.9686 111.9374 122.4056 0.0819 0.5921 0.0810 0.7547

Table 5. The AIC, BIC, W*, A*, KS, and p-Value values for Dataset 2.

Dist ˆ̀ AIC BIC W* A* KS p-Value

MBGz 78.2184 168.1770 176.0214 0.0222 0.1840 0.0707 0.9888
EGWGz 79.3744 168.5489 178.5933 0.0479 0.2922 0.0821 0.9623
KwGz 80.7197 169.4395 176.1950 0.0430 0.3326 0.0966 0.8489
BGz 82.9924 173.9849 180.7404 0.0922 0.6736 0.1080 0.7389
Gz 80.9566 168.9234 177.2911 0.0359 0.2335 0.0903 0.8299
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Figure 2. PP, QQ, epdf and ecdf plots of the MBGz distribution for Dataset 1.
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Figure 3. PP, QQ, epdf and ecdf plots of the MBGz distribution for Dataset 2.
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