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Abstract: The position vectors of regular rectifying curves always lie in their rectifying planes.
These curves were well investigated by B.Y.Chen. In this paper, the concept of framed rectifying
curves is introduced, which may have singular points. We investigate the properties of framed
rectifying curves and give a method for constructing framed rectifying curves. In addition, we reveal
the relationships between framed rectifying curves and some special curves.
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1. Introduction

Curves, which are the basic objects of study, have attracted much attention from many
mathematicians and physicists [1–3]. Due to the need to observe the properties of special curves, a
renewed interest in curves has developed, such as rectifying curves in different spaces. The space curves
whose position vectors always lie in their rectifying planes are called rectifying curves. B.Y. Chen gave
the notion of rectifying curves in [4]. In [5], the relationship between centrodes of space curves and
rectifying curves was revealed by F. Dillen and B.Y. Chen. In kinematics, the centrode is the path
traced by the instantaneous center of rotation of a rigid plane figure moving in a plane, and it has wide
applications in mechanics and joint kinematics (see [6–9]).

Since B.Y. Chen’s important work, the notion of rectifying curves was extended to other ambient
spaces [10–13]. As we know, regular curves determine the curvature functions and torsion functions,
which can provide valuable geometric information about the curves by the Frenet frames of the original
curves. If space curves have singular points, the Frenet frames of these curves cannot be constructed.
However, S. Honda and M. Takahashi [14] gave the definition of framed curves. Framed curves are
space curves with moving frames, and they may have singular points. They are the generalizations of
not only Legendrian curves in unit tangent bundles, but also regular curves with linear independent
conditions (see [15]).

Inspired by the above work, in order to investigate the properties of rectifying curves with
singular points, we should give the concept of framed rectifying curves. The difficulties arise because
tangent vectors vanish at singular points, so it is impossible to normalize tangent vectors, principal
normal vectors, and binormal vectors in the usual way. Here, we define the generalized tangent vector,
the generalized principle normal vector, and the generalized binormal vector, respectively. Actually,
at regular points, they are just the usual tangent vector, principle vector, and binormal vector. We
obtain moving adapted frames for framed rectifying curves, and some smooth functions similar to
the curvature of regular curves are defined by using moving adapted frames. These functions are
referred to as framed curvature, which is very useful to analyze framed rectifying curves. On this
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basis, we investigate the properties of framed rectifying curves and give some sufficient and necessary
conditions for the judgment of framed rectifying curves. Moreover, we give a method for constructing
framed rectifying curves. In this paper, framed helices are also defined. We discuss the relationship
between framed rectifying curves and framed helices in terms of the ratio of framed curvature. In
particular, the ratio of framed curvature for framed rectifying curves has extrema at singular points. In
addition, we give the notions of the centrodes of the framed curves and circular rectifying curves and
reveal the relationships between framed rectifying curves and these special curves.

The organization of this paper is as follows. We review the concept of the framed curve and define
an adapted frame and framed curvature for the framed curve in Section 2. We provide some sufficient
and necessary conditions for the judgment of framed rectifying curves in Section 3. An important
result, which explicitly determines all framed rectifying curves, is given in Section 4. Moreover, the
relationships between framed rectifying curves and framed helices and framed rectifying curves and
centrodes are given in Sections 5 and 6, respectively. At last, we consider the contact between framed
rectifying curves and model curves (circular rectifying curves) in Section 7.

2. Framed Curve and Adapted Frame

Let R3 be the three-dimensional Euclidean space, and let γ : I → R3 be a curve with singular
points. In order to investigate this curve, we will introduce the framed curve (cf., [14]). We denote the
set ∆2 as follows:

∆2 = {µ = (µ1, µ2) ∈ R3 ×R3|µi · µj = δij, i, j = 1, 2}.

Then, ∆2 is a three-dimensional smooth manifold. Let µ = (µ1, µ2) ∈ ∆2. We define a unit vector
ν = µ1 × µ2 in R3. This means that ν is orthogonal to µ1 and µ2.

Definition 1. We say that (γ, µ) : I → R3 × ∆2 is a framed curve if 〈γ′(s), µi(s)〉 = 0 for all s ∈ I and
i = 1, 2. We also say that γ : I → R3 is a framed base curve if there exists µ : I → ∆2 such that (γ, µ) is a
framed curve.

Let (γ, µ1, µ2) : I → R3 × ∆2 be a framed curve and ν(s) = µ1(s)× µ2(s). Then, we have the
following Frenet–Serret formula:

µ′1(s) = l(s)µ2(s) + m(s)ν(s)
µ′2(s) = −l(s)µ1(s) + n(s)ν(s)
ν′(s) = −m(s)µ1(s)− n(s)µ2(s).

Here, l(s) = 〈µ′1(s), µ2(s)〉, m(s) = 〈µ′1(s), ν(s)〉 and n(s) = 〈µ′2(s), ν(s)〉. In addition, there exists
a smooth mapping α : I → R such that:

γ′(s) = α(s)ν(s).

The four functions (l(s), m(s), n(s), α(s)) are called the curvature of γ. If m(s) = n(s) = 0,
then ν′(s) = 0. In this paper, we consider the case ν′(s) 6= 0. Obviously, α(s0) = 0 if and only if s0 is a
singular point of γ. We can use the curvature of the framed curve to analyze the singular points.

In [14], the theorems of the existence and uniqueness for framed curves were shown as follows:

Theorem 1. Let (l, m, n, α) : I → R4 be a smooth mapping. There exists a framed curve (γ, µ) : I → R3×∆2

whose associated curvature of the framed curve is (l, m, n, α).

Theorem 2. Let (γ, µ) and (γ, µ) : I → R3 × ∆2 be framed curves whose curvatures of the framed curves
(l, m, n, α) and (l, m, n, α) coincide. Then, (γ, µ) and (γ, µ) are congruent as framed curves.
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Let (γ, µ1, µ2) : I → R3 × ∆2 be a framed curve with the curvature (l(s), m(s), n(s), α(s)). µ1 and
µ2 are the base vectors of the normal plane of γ(s), as a case similar to the Bishop frame for regular
curves [16]. We define (µ1, µ2) ∈ ∆2 by:(

µ1(s)
µ2(s)

)
=

(
cos θ(s) − sin θ(s)
sin θ(s) cos θ(s)

)(
µ1(s)
µ2(s)

)
.

Here, θ(s) is a smooth function. Obviously, (γ, µ1, µ2)→ R3×∆2 is also a framed curve, and we have:

ν(s) = µ1(s)× µ2(s) = µ1(s)× µ2(s) = ν(s).

By straightforward calculations, we have:

µ′1(s) =(l(s)− θ′(s)) sin θ(s)µ1(s) + (l(s)− θ′(s)) cos θ(s)µ2(s)

+ (m(s) cos θ(s)− n(s) sin θ(s))ν(s),

µ′2(s) =− (l(s)− θ′(s)) cos θ(s)µ1(s) + (l(s)− θ′(s)) sin θ(s)µ2(s)

+ (m(s) sin θ(s) + n(s) cos θ(s))ν(s).

Let θ : I → R be a smooth function that satisfies m(s) sin θ(s) = −n(s) cos θ(s). Assume that
m(s) = −p(s) cos θ(s), n(s) = p(s) sin θ(s), then we have:

ν′(s) = −m(s)µ1(s)− n(t)µ2(s) = p(s)(cos θ(s)µ1(s)− sin θ(s)µ2(s)) = p(s)µ1(s),

µ′1(s) =(l(s)− θ′(s)) sin θ(s)µ1(s) + (l(s)− θ′(s)) cos θ(s)µ2(s) + (m(s) cos θ(s)− n(s) sin θ(s))ν(s)

=− p(s)ν(s) + (l(s)− θ′(s))µ2(s)

and:

µ′2(s) =− (l(s)− θ′(s)) cos θ(s)µ1(s) + (l(s)− θ′(s)) sin θ(s)µ2(s) + (m(s) sin θ(s) + n(s) cos θ(s))ν(s)

=− (l(s)− θ′(s))µ1(s).

The vectors ν(s), µ1(s), µ2(s) form an adapted frame along γ(s), and we have the following
Frenet–Serret formula:  ν′(s)

µ′1(s)
µ′2(s)

 =

 0 p(s) 0
−p(s) 0 q(s)

0 −q(s) 0


 ν(s)

µ1(s)
µ2(s)

 .

We call the vectors ν(s), µ1(s), µ2(s) the generalized tangent vector, the generalized principle
normal vector, and the generalized binormal vector of the framed curve, respectively, where p(s) =
|ν′(s)| > 0 and q(s) = l(s) − θ′(s). The functions (p(s), q(s), α(s)) are referred to as the framed
curvature of γ(s).

Proposition 1. Let (γ, µ1, µ2) : I → R3 × ∆2 be a framed curve. The relationships among the curvature κ(s),
the torsion τ(s), and the framed curvature (p(s), q(s), α(s)) of a regular curve are given by:

κ(s) =
p(s)
|α(s)| , τ(s) =

q(s)
α(s)

.

Proof. By straightforward calculations, we have:

γ′(s) = α(s)ν(s),
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γ′′(s) = α′(s)ν(s) + α(s)p(s)µ1(s),

γ′′′(s) = (α′′(s)− α(s)p2(s))ν(s) + (2α′(s)p(s) + α(t)p′(s))µ1(s) + α(s)p(s)q(s)µ2(s).

It follows:

|γ′(s)| = |α(s)|,

|γ′(s)× γ′′(s)| = α2(s)p(s),

det(γ′(s), γ′′(s), γ′′′(s)) = α3(s)p2(s)q(s).

Therefore, the relationships are shown by:

κ(s) =
|γ′(s)× γ′′(s)|
|γ′(s)|3 =

p(s)
|α(s)| ,

τ(s) =
det(γ′(s), γ′′(s), γ′′′(s))
|γ′(s)× γ′′(s)|2 =

q(s)
α(s)

.

3. Framed Rectifying Curves

In this section, the framed rectifying curves are defined, and we investigate their properties.

Definition 2. Let (γ, µ1, µ2) : I → R3 × ∆2 be a framed curve. We call γ a framed rectifying curve if its
position vector γ satisfies:

γ(s) = λ(s)ν(s) + ξ(s)µ2(s)

for some functions λ(s) and ξ(s).

Some properties of the framed rectifying curves are shown in the following theorem.

Theorem 3. Let (γ, µ1, µ2) : I → R3 × ∆2 be a framed curve with p(s) > 0. The following statements
are equivalent.

(i) The relation between the framed curvature and the framed curve is as follows:

〈γ(s), ν(s)〉′ = α(s).

(ii) The distance squared function satisfies f (s) = 〈γ(s), γ(s)〉 = 〈γ(s), ν(s)〉2 + C for some positive
constant C.

(iii) 〈γ(s), µ2(s)〉 = ξ, ξ is a constant.

(iv) γ(s) is a framed rectifying curve.
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Proof. Let γ(s) be a framed rectifying curve. By definition, there exist some functions λ(s) and ξ(s)
such that:

γ(s) = λ(s)ν(s) + ξ(s)µ2(s). (1)

By using the Frenet–Serret formula and taking the derivative of (1) with respect to s, we have:

λ′(s) = α(s), λ(s)p(s) = ξ(s)q(s), ξ ′(s) = 0. (2)

From the first and third equalities of (2), we have that 〈γ(s), ν(s)〉′ = λ′(s) = α(s). This proves
Statement (i). Since ξ ′(s) = 0, we can obtain Statement (iii). From (1) and (2), we have that
〈γ(s), γ(s)〉 = λ2(s) + ξ2 = 〈γ(s), ν(s)〉2 + C, C = ξ2 is positive. This proves Statement (ii).

Conversely, let us assume that Statement (i) holds.

〈γ(s), ν(s)〉′ = 〈α(s)ν(s), ν(s)〉+ p(s)〈γ(s), µ1(s)〉 = α(s).

Since p(s) > 0, by assumption, we have 〈γ(s), µ1(s)〉 = 0. This means the curve is a framed
rectifying curve.

If Statement (ii) holds, 〈γ(s), γ(s)〉 = 〈γ(s), ν(s)〉2 + C, where C is a positive constant.
Then, we have:

2〈γ(s), α(s)ν(s)〉 = 2〈γ(s), ν(s)〉(α(s) + p(s)〈γ(s), µ1(s)〉)

and 〈γ(s), µ1(s)〉 = 0. Therefore, γ(s) is a framed rectifying curve. Statement (iii) implies that the
curve is a framed rectifying curve by an appeal to the Frenet–Serret formula.

Remark 1. s0 is a singular point of the framed rectifying curve γ if and only if α(s0) = 0. From (2) and
Statement (ii), we know that the ratio q(s)/p(s) and the distance squared function f (s) have extrema at s0.

4. Construction Approach of Framed Rectifying Curves

In [4], the construction approach of regular rectifying curves is given by B. Y. Chen in Theorem 3,
but it is not suitable for the non-regular case. In this section, a new construction approach is provided,
which can be applied to both regular rectifying curves and non-regular rectifying curves. Moreover,
it explicitly determines all framed rectifying curves in Euclidean three-space. First, we introduce the
notion of the framed spherical curve.

Definition 3. Let (γ, µ1, µ2) : I → R3 × ∆2 be a framed curve. We call γ a framed spherical curve if the
framed base curve γ is a curve on S2.

We show the key theorem in this section as follows.

Theorem 4. Let (γ, µ1, µ2) : I → R3 × ∆2 be a framed curve with p(s) > 0. Then, γ is a framed rectifying
curve if and only if:

γ(s) = ρ(tan2(
∫
|g′(s)|ds + C) + 1)

1
2 g(s), (3)

where C is a constant, ρ is a positive number, and g(s) is a framed spherical curve.

Proof. Let γ be a framed rectifying curve. From Theorem 3, we have 〈γ(s), γ(s)〉 = λ2(s) + ρ2,
where ρ is a positive number. The framed rectifying curve γ(s) can be written as:

γ(s) = (λ2(s) + ρ2)
1
2 g(s), (4)
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where g(s) is a framed spherical curve. By taking the derivative of (4), we have:

γ′(s) =
λ(s)α(s)

(λ2(s) + ρ2)
1
2

g(s) + (λ2(s) + ρ2)
1
2 g′(s). (5)

As γ′(s) = α(s)ν(s), g′(s) is orthogonal to g(s). Therefore, Equality (5) implies:

|g′(s)| = | ρα(s)
λ2(s) + ρ2 |,

and we have ∫
|γ′(s)|ds + C = arctan(

λ(s)
ρ

).

Then, λ(s) = ρ tan(
∫
|g′(s)|ds + C), and substituting this equality into (4) yields (3).

Conversely, assume γ(s) is a framed curve defined by:

γ(s) = ρ(tan2(
∫
|g′(s)|ds + C) + 1)

1
2 g(s) (6)

for a constant C, a positive number ρ, and a framed curve g(s) on S2. Let λ̃(s) = ρ tan(
∫
|g′(s)|ds + C)

and λ̃′(s) = α̃′(s). Then,
∫
|g′(s)|ds + C = arctan( λ̃(s)

ρ ). By taking the derivative of this equality,
we get:

ρα̃(s)
λ̃2(s) + ρ2

= |g′(s)| (7)

and:

γ′(s) =
λ̃(s)α̃(s)

(λ̃2(s) + ρ2)
1
2

g(s) + (λ̃2(s) + ρ2)
1
2 g′(s). (8)

Equality (7) and Equality (8) imply that |g′(s)| = α̃(s), since g′(s) = λ(s)ν(s). We have
α̃(s) = ±λ(s), λ̃(s) = ±λ(s). Then:

γ(s) = (λ2(s) + ρ2)
1
2 g(s), (9)

which shows that the distance squared function satisfies Statement (ii) in Theorem 3. It follows that
γ(s) is a framed rectifying curve.

Framed rectifying curves include regular rectifying curves and non-regular rectifying curves.
We will give two examples.

Example 1. Let g1(s) = ( 1
2 cos 2s, 1

2 sin 2s,
√

3
2 ), s ∈ (−π

2 , π
2 ), then g1(s) is a space curve on S2. We have

|g′1(s)| = 1. Let ρ = 1 and C = 0. By Theorem 4, we know that the curve:

γ1(s) = (
cos 2s
2 cos s

, sin s,

√
3

2 cos s
), s ∈ (−π

2
,

π

2
)

is a regular rectifying curve in R3 (Figure 1).
If γ(s) is a framed curve with singular points, this is different from the case that γ(s) is a regular curve.

Example 2. Let g2(s) = (cos s2 cos s3, sin s2 cos s3, sin s3), then g2(s) is a curve in S2 and |g′2(s)| =
(4s2 cos2 s3 + 9s4)

1
2 . Let ρ = 1 and C = 0. By Theorem 4, we know that the curve:

γ2(s) = (tan2(
∫
(4s2 cos2 s3 + 9s4)

1
2 ds) + 1)

1
2 (cos s2 cos s3, sin s2 cos s3, sin s3)
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is a framed rectifying curve with a cusp in R3 (Figure 2).

Figure 1. The red curve γ1(s) is the regular rectifying curve, and the green curve g1(s) is a curve on S2.

Figure 2. The red curve γ2(s) is the framed rectifying curve, and the green curve g2(s) is a curve on S2.

5. Framed Rectifying Curves versus Framed Helices

In this section, we define the framed helices and investigate the relations between framed helices
and framed rectifying curves.

Definition 4. Let (γ, µ1, µ2) : I → R3 × ∆2 be a framed curve with p(s) > 0. We call γ a framed helix if
there exists a fixed unit vector ζ satisfying:

〈ν(s), ζ〉 = cos ω

for some constant ω.

We now consider the ratio (q/p)(s) of the framed helix.

〈ν(s), ζ〉 = cos ω. (10)

By taking the derivative of (10), as p(s) > 0 and 〈ν(s), ζ〉′ = p(s)〈µ1(s), ζ〉, we have:

〈µ1(s), ζ〉 = 0. (11)

We know that ζ is in the plane whose basis vectors are ν(s) and µ2(s). As 〈ν(s), ζ〉 = cos ω, we
have 〈µ2(s), ζ〉 = ± sin ω. By taking the derivative of (11), we get:

−p(s)〈ν(s), ζ〉+ q(s)〈µ2(s), ζ〉 = 0,

then:

q(s)
p(s)

= ± cot ω. (12)
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For framed rectifying curves, a simple characterization in terms of the ratio q(s)/p(s) is shown in
the following theorem.

Theorem 5. Let (γ, µ1, µ2) : I → R3 × ∆2 be a framed curve with p(s) > 0, then γ(s) is a framed rectifying
curve if and only if q(s)/p(s) = c1

∫
α(s)ds + c2 for some constants c1 and c2, with c1 6= 0.

Proof. The proof is similar to that of Theorem 2 in [4]. If γ(s) is a framed rectifying curve, from (2),
we have that q(s)/p(s) = λ(s)/ξ(s) = λ(s)/ξ for some constant ξ. Since λ′(s) = α(s) and ξ 6= 0,
then the ratio of q(s) and p(s) satisfies q(s)/p(s) = c1

∫
α(s)ds + c2 for some constants c1 and c2,

with c1 6= 0.
Conversely, suppose that (γ, µ1, µ2) : I → R3 × ∆2 is a framed curve with p(s) > 0,

and q(s)/p(s) = c1
∫

α(s)ds + c2 for some constants c1 and c2, with c1 6= 0. If we put ξ = 1/c1

and λ(s) =
∫

α(s)ds + c2/c1, hence, by invoking the Frenet–Serret formula, we obtain:

d
ds

[γ(s)− λ(s)ν(s)− ξµ2(s)] = (ξq(s)− λ(s)p(s))µ1(s) = 0.

This means that γ(s) is congruent to a framed rectifying curve.

Remark 2. If γ is a framed rectifying curve, we have λ(s)p(s) = ξq(s) for some constant ξ. If ξ = 0,
then λ(s)p(s) = 0, as p(s) > 0, so λ(s) ≡ 0. This means that γ(s) is a point.

After that, we reveal the relationship between the framed rectifying curves and the framed helices.
We have the following theorem:

Theorem 6. Let (γ, µ1, µ2) : I → R3 × ∆2 be a framed curve with p(s) > 0, the framed curvature functions
satisfying (q/p)(s) = c1

∫
α(s)ds + c2, for some constants c1 and c2. If c1 = 0, we will get framed helices;

otherwise, we get framed rectifying curves.

6. Framed Rectifying Curves versus Centrodes

The centrodes play important roles in joint kinematics and mechanics (see [5]). We can define the
centrodes of framed curves. For a framed curve γ in R3, the curve defined by the vector d = qν + pµ2,
which is called the centrode of framed curve γ.

The following results establish some relationships between framed rectifying curves
and centrodes.

Theorem 7. The centrode of a framed curve with nonzero constant framed curvature function p(s) and
nonconstant framed curvature function q(s) is a framed rectifying curve. Conversely, the framed rectifying
curve in R3 is the centrode of some framed curve with nonconstant framed curvature function q(s) and nonzero
constant framed curvature function p(s).

Proof. Let γ(s) be a framed curve with nonzero constant framed curvature p(s) and nonconstant
framed curvature q(s). Consider the centrode of γ(s):

d(s) = q(s)ν(s) + p(s)µ2(s).

d(s) can also be seen as a framed curve. Let the vectors µd,1(s), µd,2(s), νd(s) be the adapted frame
along d(s). By differentiating the centrode, then we have d′(s) = q′(s)ν(s), which implies that unit
vector νd(s) and unit vector ν(s) at the corresponding points are parallel. Then, the first equality
in Frenet–Serret formula implies that µd,1(s) and µ1(s) at the corresponding points are also parallel.
Hence, µd,2(s) and µ2(s) are parallel, as well. Therefore, by definition, the centrode d(s) is a framed
rectifying curve.
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Conversely, let γ(s) be a framed rectifying curve in R3. From Theorem 3, we have:

λ′(s) = α(s), λ(s)p(s) = cq(s) (13)

for some constant c.
Let f (s) = 1

c
∫ s

s0
p(u)du. There exists a framed curve β(t) whose framed curvature satisfies

pβ(t) = c and qβ(t) = λ(t).
Let us consider the centrode of β, which is given by dβ(t) = λ(t)νβ(t) + cµβ,2(t), and its

reparametrization χ(s) = dβ( f (s)). Then:

χ(s) = λ( f (s))νβ( f (s)) + cµβ,2( f (s)).

This means that χ′(s) = α(s)νβ( f (s)); thus, νχ(s) = νβ( f (s)). Differentiating twice, the
framed curvature functions of χ are given by αχ(s) = α(s), pχ(s) = pβ(s) f ′(s) = p(s) and
qχ(s) = qβ(s) f ′(s) = q(s).

Therefore, the framed curves γ(s) and χ(s) have the same framed curvature functions. From
the existence theorem and the uniqueness theorem, it follows that χ is congruent to γ. Consequently,
the framed rectifying curve γ is the centrode of a framed curve with nonconstant framed curvature
q(s) and nonzero constant framed curvature p.

The framed curve in Theorem 7 can be replaced by a framed curve with nonzero constant framed
curvature q and nonconstant framed curvature p(s). In fact, we also have the following theorem:

Theorem 8. The centrode of a framed curve with nonzero constant framed curvature function q(s) and
nonconstant framed curvature function p(s) is a framed rectifying curve. Conversely, one framed rectifying
curve in R3 is the centrode of some framed curve with nonconstant framed curvature function p(s) and nonzero
constant framed curvature function q(s).

The proof can be given in as similar way as Theorem 7.

Remark 3. The centrode of a framed curve with nonzero constant framed curvature function p(s) and nonzero
constant framed curvature function q(s) is a point.

7. Contact between Framed Rectifying Curves

In this section, the contact between framed rectifying curves is considered. We now introduce the
notion of circular rectifying curves as follows.

Definition 5. Let γ(s) be a framed rectifying curve and:

γ(s) = ρ(tan2(
∫
|g′(s)|ds + C) + 1)

1
2 g(s),

where ρ is a positive number and C is a constant. We call γ a circular rectifying curve if g(s) is a circle on S2.

Let (γ, µ1, µ2) : I → S2 × ∆2 be a framed spherical curve. We choose µ1 = γ, then ν = γ× µ2 and
γ′(s) = α(s)ν(s). We show that the spherical Frenet–Serret formula of γ is as follows:

γ′(s) = α(s)ν(s)
µ′2(s) = l(s)ν(s)
ν′(s) = −α(s)γ(s)− l(s)µ2(s),

where 〈µ′2(s), ν(s)〉 = l(s). By the curvature functions α(s) and l(s), we show the following proposition
for framed spherical curves:
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Proposition 2. Let (γ, γ, µ2) : I → S2 × ∆2 be a framed spherical curve, then γ is a circle if and only if
α(s) 6= 0 and l(s)/α(s) = constant.

Proof. If α(s) 6= 0 and (l/α)(s) = k, where k is a constant, then we consider a normal vector field
N(s) = k2

k2+1 γ(s)− k
k2+1 µ2(s). By taking the derivative of N(s), we have N ′(s) = k2

k2+1 (α(s)ν(s)−
α(s)ν(s)) = 0. This means that N(s) is a constant vector. Moreover, we have:

〈N(s), γ(s)− N(s)〉 = 〈 k2

k2 + 1
γ(s)− k

k2 + 1
µ2(s),

1
k2 + 1

γ(s) +
k

k2 + 1
µ2(s)〉 = 0.

This means that γ is the intersection of a plane and S2, so γ is a circle.
Let γ be a circle on S2. Obviously, γ is a plane curve and α(s) 6= 0, so that 〈γ′(s), γ′′(s)×γ′′′(s)〉 =

0. Then, we can calculate that 〈γ′(s), γ′′(s) × γ′′′(s)〉 = α4(s)l′(s) − α3(s)α′(s)l(s). Since α(s) 6= 0,
we have α(s)l′(s)− α′(s)l(s) = 0. This is equivalent to (l/α)′(s) = 0. Thus, l(s)/α(s) = constant. �

As a corollary of Proposition 2, we have the following result:

Corollary 1. Let (γ, γ, µ2) : I → S2 × ∆2 be a framed spherical curve, then γ is a great circle on S2 if and
only if α(s) 6= 0 and l(s) = 0.

Now, we review the notions of contact between framed curves [14]. Let (γ, µ1, µ2) : I → R3 × ∆2;
s → (γ(s), µ1(s), µ2(s)) and (γ̃, µ̃1, µ̃2) : Ĩ → R3 × ∆2; u → (γ̃(u), µ̃1(u), µ̃2(u)) be framed curves.
We say that (γ, µ1, µ2) and (γ̃, µ̃1, µ̃2) have kth order contact at s = s0, u = u0 if:

(γ, µ1, µ2)(s0) = (γ̃, µ̃1, µ̃2)(u0),
d
ds

(γ, µ1, µ2)(s0) =
d

du
(γ̃, µ̃1, µ̃2)(u0), . . . ,

dk−1

dsk−1 (γ, µ1, µ2)(s0) =
dk−1

duk−1 (γ̃, µ̃1, µ̃2)(u0),
dk

dsk (γ, µ1, µ2)(s0) 6=
dk

duk (γ̃, µ̃1, µ̃2)(u0).

In addition, we say that (γ, µ1, µ2) and (γ̃, µ̃1, µ̃2) have at least kth order contact at s = s0, u = u0

if:

(γ, µ1, µ2)(s0) = (γ̃, µ̃1, µ̃2)(u0),
d
ds

(γ, µ1, µ2)(s0) =
d

du
(γ̃, µ̃1, µ̃2)(u0), . . . ,

dk−1

dsk−1 (γ, µ1, µ2)(s0) =
dk−1

duk−1 (γ̃, µ̃1, µ̃2)(u0).

We generally say that (γ, µ1, µ2) and (γ̃, µ̃1, µ̃2) have at least first order contact at any point s = s0,
u = u0, up to congruence as framed curves. As a conclusion of Theorem 3.7 in [14], we show the
following proposition:

Proposition 3. Let (γ, γ, µ2) : I → S2 × ∆2, s → (γ(s), γ(s), µ2(s)) and (γ̃, γ̃, µ̃2) : Ĩ → S2 × ∆2,
u→ (γ̃(u), γ̃(u), µ̃2(u)) be framed spherical curves. If (γ, γ, µ2) and (γ̃, γ̃, µ̃2) have at least (k + 1)th order
contact at s = s0, u = u0, we have:

α(s0) = α̃(u0),
d
ds

α(s0) =
d

du
α̃(u0), . . . ,

dk−1

dsk−1 α(s0) =
dk−1

duk−1 α̃(u0), (14)

l(s0) = l̃(u0),
d
ds

l(s0) =
d

du
l̃(u0), . . . ,

dk−1

dsk−1 l(s0) =
dk−1

duk−1 l̃(u0). (15)

Conversely, if the conditions (14) and (15) hold, then (γ, γ, µ2) and (γ̃, γ̃, µ̃2) have at least (k + 1)th order
contact at s = s0, u = u0, up to congruence as framed spherical curves.
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Now, we consider the contact between circles and framed spherical curves. We have a corollary
of Propositions 2 and 3 as follows:

Corollary 2. Let (γ, γ, µ2) : I → S2 × ∆2 be a framed spherical curve. γ and a circle have at least (k + 1)th

order contact at s = s0 if and only if there exists a constant σ such that:

l(s0) = σα(s0),
d
ds

l(s0) = σ
d
ds

α(s0), . . . ,
dk−1

dsk−1 l(s0) = σ
dk−1

dsk−1 α(s0).

For the construction of the framed rectifying curve in Theorem 4, we fix positive number ρ and
constant C. Let gi : I → S2 (i = 1, 2) be framed spherical curves. We know γ1, γ2 have kth order contact
at s0 if and only if g1, g2 have kth order contact at s0. By Corollary 2, we have the following theorem,
which can describe the contact between framed rectifying curves and circular rectifying curves.

Theorem 9. Let γ be a framed rectifying curve and α(s) and l(s) be curvature functions of the corresponding
framed spherical curve. Then, γ and a circular rectifying curve have at least kth order (k ≥ 2) contact at s0 if
and only if there exists a constant σ such that:

l(s0) = σα(s0),
d
ds

l(s0) = σ
d
ds

α(s0), . . . ,
dk−2

dsk−2 l(s0) = σ
dk−2

dsk−2 α(s0).
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