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Abstract: Based on previous research results, we propose a new preprocessing HSS iteration method
(PHSS) for the generalized Lyapunov equation. At the same time, the corresponding inexact PHSS
algorithm (IPHSS) is given from the angle of application. All the new methods presented in this
paper have given the corresponding convergence proof. The numerical experiments are carried
out to compare the new method with the existing methods, and the improvement effect is obvious.
The feasibility and effectiveness of the proposed method are proved from two aspects of theory
and calculation.
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1. Introduction

We consider the system of large sparse linear equations

Ax = b, (1)

where A ∈ Cn×n is non-Hermite positive definite matrix and x, b ∈ Cn×n. The actual background of
such problems can be found in [1–7] and its references. For (1), Bai, Golub and Ng put forward the
HSS iteration method in 2003 [8].

Any matrix can be decomposed into the sum of symmetric matrices and skew symmetric matrices
so that we can get the formula:

A = H(A) + S(A) = (αI + H(A))− (αI − S(A)) = (αI + S(A))− (αI − H(A)),

where α is normal number, H(A) = 1
2 (A + A∗), S(A) = 1

2 (A− A∗), and H(A), S(A) ∈ Cn×n. As a
result, the HSS iterative format proposed by Bai and others is:

Let x(0) ∈ Cn be an initial guess. For k = 0, 1, 2, ..., until the sequence of iterates
{

x(k)
}

converges,

compute the next iterate x(k+1) through the following procedure:{
(αI + H(A))x(k+

1
2 ) = (αI − S(A))x(k) + b,

(αI + S(A))x(k+1) = (αI − H(A))x(k+
1
2 ) + b,

where α is normal number. Bai and others proved its unconditional convergence to the unique solution
of (1) in [8].
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In order to speed up the HSS iteration method, Bai and others put forward the PHSS iteration
method [9–11]. Decompose coefficient matrix A into the sum of symmetric matrices and skew
symmetric matrices and we can get the formula:

A = (αP(A) + H(A))− (αP(A)− S(A)) = (αP(A) + S(A))− (αP(A)− H(A)), (2)

where P(A) ∈ Cn×n is Hermite positive definite matrix. Therefore, we can get the HSS iterative format:{
(αP(A) + H(A))x(k+

1
2 ) = (αP(A)− S(A))x(k) + b,

(αP(A) + S(A))x(k+1) = (αP(A)− H(A))x(k+
1
2 ) + b,

where α is normal number. Bai and others proved its unconditional convergence to the unique solution
of (1) in [10].

2. The PHSS Iterative Method for the Generalized Lyapunov Equation

Many methods to solve the standard Lyapunov equation have been put forward in [12–19].
In the literature [12], Xu and others put forward the HSS iterative solution of the generalized
Lyapunov equation. Inspired by this, this paper proposes the PHSS iterative solution of the generalized
Lyapunov equation.

Consider the generalized Lyapunov equation as follows:

AX + XAT +
m

∑
j=1

NjXNj + C = 0, (3)

where A, Nj, C ∈ Rn×n, A is an asymmetric positive definite matrix, C is a symmetric matrix
and ‖Nj‖2 � ‖A‖2(j = 1, 2, ..., m). When a = b, the Equation (3) degenerates to the standard
Lyapunov equation.

Then we apply the PHSS iterative method to solve the generalized Lyapunov Equation (3):
Let us suppose that α is a normal number, then the decomposition of A is similar to (2):

A = (αP(A) + H(A))− (αP(A)− S(A)) = (αP(A) + S(A))− (αP(A)− H(A)),

AT = (αP(A) + H(A))− (αP(A) + S(A)) = (αP(A)− S(A))− (αP(A)− H(A)),

Then the iterative format can be obtained:

(αP(A) + H(A))Xk+ 1
2
+ Xk+ 1

2
(αP(A) + H(A)) =

(αP(A)− S(A))Xk + Xk(αP(A) + S(A))−
m
∑

j=1
NjXk Nj − C,

(αP(A) + S(A))Xk+1 + Xk+1(αP(A)− S(A)) =

(αP(A)− H(A))Xk+ 1
2
+ Xk+ 1

2
(αP(A)− H(A))−

m
∑

j=1
NjXk Nj − C,

(4)

According to the nature of Kronecker product, we can get

(I(A)⊗ (αP(A) + H(A)) + (αP(A) + H(A))⊗ I(A))xk+ 1
2
=

(I(A)⊗ (αP(A)− S(A)) + (αP(A)− S(A))⊗ I(A))xk −
m
∑

j=1
(Nj ⊗ Nj)xk − c,

(I(A)⊗ (αP(A) + S(A)) + (αP(A) + S(A))⊗ I(A))xk+1 =

(I(A)⊗ (αP(A)− H(A)) + (αP(A)− H(A))⊗ I(A))xk+ 1
2
−

m
∑

j=1
(Nj ⊗ Nj)xk − c,
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where xk = vec(Xk), c = vec(C), then, according to the nature of Kronecker product, we can get
(αP + H)xk+ 1

2
= (αP− S)xk −

m
∑

j=1
(Nj ⊗ Nj)xk − c,

(αP + S)xk+1 = (αP− H)xk+ 1
2
−

m
∑

j=1
(Nj ⊗ Nj)xk − c,

(5)

where 
P = I(A)⊗ P(A) + P(A)⊗ I(A),

H = I(A)⊗ H(A) + H(A)⊗ I(A),

S = I(A)⊗ S(A) + S(A)⊗ I(A).

The convergence of the iterative scheme (4) is equivalent to the convergence of the iterative
scheme (5) and their convergence factors are the same.

Theorem 1. Let us suppose that A ∈ Rn×n is an asymmetric positive definite matrix, K =

‖P−1‖2‖
m
∑

j=1
Nj ⊗ Nj‖

2

and the maximum and minimum eigenvalues of matrix P−1H are λmax and λmin,

respectively. Then the convergence factor of the PHSS iterative method (4) is the spectral radius of matrix

G = (αP + S)−1(αP− H)(αP + H)−1(αP− S)− 2αP(αP + S)−1(αP + H)−1
m

∑
j=1

(Nj ⊗ Nj).

Its upper bound is

σ0(α) = max
λi∈λ(P−1 H)

∣∣∣∣α− λi
α + λi

∣∣∣∣+ 2K
α + λmin

.

When λmin > K and α̃ =
√

λmin · λmax, σ0(α̃) reaches the minimum. It means that

σ0(α̃) =

√
λmin · λmax − λmin + 2K√

λmin · λmax + λmin
< 1

Therefore, the PHSS iterative method for solving the generalized Lyapunov equation is convergent.

Proof. The first form of the iteration format (5) is brought into the second form, and its iteration matrix
is obtained:

G = (αP + S)−1(αP− H)(αP + H)−1(αP− S)

−2αP(αP + S)−1(αP + H)−1 m
∑

j=1
(Nj ⊗ Nj),

Then the convergence factor of the iterative scheme (5) is ρ(G), which is the same as the
convergence factor of the iterative scheme (4).

Because P ∈ Rn×n is a symmetric positive definite matrix, we can suppose that

H̃ = P−
1
2 HP−

1
2 , S̃ = P−

1
2 SP−

1
2 .

Because G is similar to

G1 = (αP + S)G(αP− S)−1

= (αP− H)(αP + H)−1(αP− S)(αP + S)−1

−2α(αP + S)P(αP + S)−1(αP + H)−1 m
∑

j=1
(Nj⊗Nj)(αP + S)−1
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and G1 is similar to

G2 = P−
1
2 G1P

1
2

= P−
1
2 P

1
2 (αI − H̃)P

1
2 P−

1
2 (αI + H̃)

−1
P−

1
2 P

1
2 (αI − S̃)P

1
2 P−

1
2 (αI + S̃)

−1
P−

1
2 P

1
2

−2αP−
1
2 P

1
2 (αI + S̃)P

1
2 PP−

1
2 (αI + S̃)

−1
P−

1
2 P−

1
2 (αI + H̃)

−1
P−

1
2

m
∑

j=1
(Nj⊗Nj)

·P− 1
2 (αP + S)−1P−

1
2 P

1
2

= (αI − H̃)(αI + H̃)
−1

(αI − S̃)(αI + S̃)
−1

−2α(αI + S̃)P(αI + S̃)
−1

P−1(αI + H̃)
−1

P−
1
2

m
∑

j=1
(Nj⊗Nj)P−

1
2 (αI + S̃)

−1
,

we can get that

ρ(G) = ρ(G1) = ρ(G2) ≤ ‖G2‖

≤ ‖(αI − H̃)(αI + H̃)
−1

(αI − S̃)(αI + S̃)
−1‖2

−2α‖P‖2‖P−1‖2‖(αI + H̃)
−1‖2‖P−

1
2 ‖2‖

m
∑

j=1
(Nj⊗Nj)‖

2

‖P− 1
2 ‖2‖(αI + S̃)

−1‖2

= ‖(αI − H̃)(αI + H̃)
−1

(αI − S̃)(αI + S̃)
−1‖2

−2α‖(αI + H̃)
−1‖2‖P−1‖2‖

m
∑

j=1
(Nj⊗Nj)‖

2

‖(αI + S̃)
−1‖2.

(6)

Because H is positive definite matrix, S is a semi positive definite matrix. For any non-zero
column vector x ∈ Rn, we can get that

xTHx > 0, xTSx ≥ 0,

P is symmetric positive definite matrix, so P−1 is positive definite matrix. It is easy to prove that
P−

1
2 x is a non-zero column vector by means of proof of absurdity. Then we can see that

xTH̃x = xTP−
1
2 HP−

1
2 x =

(
P−

1
2 x
)T

H
(

P−
1
2 x
)
> 0,

xTS̃x = xTP−
1
2 SP−

1
2 x =

(
P−

1
2 x
)T

S
(

P−
1
2 x
)
≥ 0.

Therefore, H̃ is a positive definite matrix, S̃ is a semi positive definite matrix.
H is a real symmetric matrix and S is an antisymmetric matrix, so we can see that

H̃T =
(

P−
1
2 HP−

1
2

)T
= P−

1
2 HTP−

1
2 = P−

1
2 HP−

1
2 = H̃,

S̃T =
(

P−
1
2 SP−

1
2

)T
= P−

1
2 STP−

1
2 = −P−

1
2 SP−

1
2 = −S̃.

Therefore, H̃ is a symmetric positive definite matrix, S̃ is an antisymmetric semidefinite matrix.
Meanwhile, since

P−
1
2 H̃P

1
2 = P−

1
2 P−

1
2 HP−

1
2 P

1
2 = P−1H,

P−
1
2 S̃P

1
2 = P−

1
2 P−

1
2 SP−

1
2 P

1
2 = P−1S,

we can conclude that H̃ is similar to P−1H and S̃ is similar to P−1S.
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Let us suppose that Q = (αI − S̃)(αI + S̃)
−1

and we can see that

QQ∗ = (αI − S̃)(αI + S̃)
−1(

(αI − S̃)(αI + S̃)
−1)∗

= (αI − S̃)(αI + S̃)
−1

(αI − S̃)
−1

(αI + S̃)

= (αI − S̃)(αI − S̃)
−1

(αI + S̃)
−1

(αI + S̃)

= I.

It’s easy to deduce that Q∗Q = I and we can conclude that QQ∗ = Q∗Q = I. So Q is a unitary
matrix and we can deduce that

‖(αI − H̃)(αI + H̃)
−1

(αI − S̃)(αI + S̃)
−1‖2 = ‖(αI − H̃)(αI + H̃)

−1‖2. (7)

Let us suppose that L = (αI − H̃)(αI + H̃)
−1

and we can deduce through that

LL∗ = (αI − H̃)(αI + H̃)
−1(

(αI − H̃)(αI + H̃)
−1)∗

= (αI − H̃)(αI + H̃)
−1

(αI + H̃)
−1

(αI − H̃)

= (αI + H̃)
−1

(αI − H̃)(αI − H̃)(αI + H̃)
−1

= L∗L.

Therefore, L is a normal matrix and we can deduce through the Formula (7) that

‖(αI − H̃)(αI + H̃)
−1

(αI − S̃)(αI + S̃)
−1‖2 = ‖(αI − H̃)(αI + H̃)

−1‖2

= max
λi∈λ(H̃)

∣∣∣ α−λi
α−λi

∣∣∣. (8)

It is easy to see that

(αI + H̃)
−1(

(αI + H̃)
−1)∗

= (αI + H̃)
−1

(αI + H̃)
−1

=
(
(αI + H̃)

−1)∗
(αI + H̃)

−1
,

(αI + S̃)
−1(

(αI + S̃)
−1)∗

= (αI + S̃)
−1

(αI − S̃)
−1

= (αI − S̃)
−1

(αI + S̃)
−1

=
(
(αI + S̃)

−1)∗
(αI + S̃)

−1
,

so both (αI + H̃)
−1

and (αI + S̃)
−1

are normal matrices. Because H̃ is a positive definite matrix and S̃
is a semi positive definite matrix, we can easy to deduce that

‖(αI + H̃)
−1‖2 = max

λi∈λ(H̃)

∣∣∣ 1
α+λi

∣∣∣ = 1
α+λmin

,

‖(αI + S̃)
−1‖2 = max

µj∈λ(S̃)

∣∣∣ 1
α+µj

∣∣∣ ≤ 1
α .

(9)

Through the Formula (6), (8) and (9), we can see that

ρ(G) ≤ max
λi∈λ(H̃)

∣∣∣∣α− λi
α + λi

∣∣∣∣+ 2K
α + λmin

.

The following proves that when λmin > K and α =
√

λmin · λmin, σ0(α) reaches the minimum and
σ0(α) is less than 1 at this time.
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In fact, for fixed α, function α−λ
α+λ is monotonically decreasing with respect to λ. So we can see that

σ0(α) = max
{∣∣∣∣α− λmin

α + λmin

∣∣∣∣+ 2K
α + λmin

,
∣∣∣∣α− λmax

α + λmax

∣∣∣∣+ 2K
α + λmin

}
,

It’s easy to see that when λmin > K, monotonically decreases over (0, λmin) and increases
monotonously on (λmin,+∞),

∣∣∣ α−λmin
α+λmin

∣∣∣+ 2K
α+λmin

monotonically decreases over (0, λmax) and increases

monotonously on (λmax,+∞). Therefore, when λmin < α < λmax and α−λmin
α+λmin

+ 2K
α+λmin

= α−λmax
α+λmax

+
2K

α+λmin
,σ0(α), reaches the minimum. And we can conclude that when α =

√
λmin · λmax , α̃, we can

get that σ0(α̃) =
√

λmin·λmax−λmin+2K√
λmin·λmax+λmin

< 1.
Through the proof of the expression of σ0(α), we can see that on the one hand, when α→ +∞ ,

we can get that σ0(α)→ 1 and σ0(α) increases monotonously on (α̃,+∞), on the other hand, when
α→ −∞ , we can get that σ0(α)→ 1 and σ0(α) decreases monotonously on (α̃,+∞), Therefore, we can
see that on the one hand, when α ≥ α̃ =

√
λmin · λmax, we can get that σ0(α) < 1, on the other hand,

when 0 ≤ α ≤ α̃ =
√

λmin · λmax, we can get that σ0(α) < 1. Summing up the above, we can conclude
that the PHSS iterative method for the generalized Lyapunov equation is convergent and the upper

bound of the convergence factor is σ0(α) which is only associated with matrix ‖P−1‖2‖
m
∑

j=1
(Nj⊗Nj)‖

2
and the eigenvalues of matrix P−1H. In addition, when α = α̃, the upper bound σ0(α) of the
convergence factor of the PHSS iterative method of the generalized Lyapunov Equation (3) is minimal,
but the convergence factor ρ(G) does not necessarily reach the minimum at this time, that is to say,
when α = α̃, the PHSS iteration does not necessarily converge the fastest. How to obtain the optimal
parameters needs to be further studied.

The actual iterative parameter α is advisable to be α = α̃. Because H = I ⊗ H(A) + H(A)⊗ I,
we can get that

λmin = 2λmin(H(A)), λmax = 2λmax(H(A)).

Therefore, we can get that

α̃ =
√

λmin · λmax =
√

2λmin(H(A)) · 2λmax(H(A)) = 2
√

λmin(H(A)) · λmax(H(A)).

To sum up, the PHSS iterative method is convergent for the generalized Lyapunov Equation (3)
which satisfies the condition. �

3. Inexact PHSS (IPHSS) Iterative Algorithm

In order to reduce the computational complexity of the HSS iterative method for solving the
generalized Lyapunov equation, Xu Qingqing and others proposed an IHSS iteration method for
solving the generalized Lyapunov equation in [12]. Similarly, the IPHSS iteration method for solving
the generalized Lyapunov equation can be derived from the PHSS iteration method for solving the
generalized Lyapunov equation.

Taking Xk as the initial value, the following generalized Lyapunov equation is approximated by
iterative method, and Xk+ 1

2
is obtained:

(αP(A) + H(A))Xk+ 1
2
+ Xk+ 1

2
(αP(A) + H(A)) ≈

(αP(A)− S(A))Xk + Xk(αP(A) + S(A))−
m
∑

j=1
NjXNj − C.

(10)

Because the matrix of the Lyapunov Equation (10) is symmetric and positive definite,
the approximate solution can be obtained by the CG algorithm.
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Next, we use Xk+ 1
2

as initial value approximation to solve the following Lyapunov equation and
get Xk+1:

(αP(A) + S(A))Xk+1 + Xk+1(αP(A)− S(A)) ≈

(αP(A)− H(A))Xk+ 1
2
+ Xk+ 1

2
(αP(A)− H(A))−

m
∑

j=1
NjXk+ 1

2
Nj − C.

(11)

For Lyapunov Equation (11), the approximate solution can be obtained by CGNE algorithm.
Similar to the inexact HSS iterative method for solving the generalized Lyapunov equation in the
literature [12], the inexact PHSS iteration method for solving the generalized Lyapunov equation can
be summarized as Algorithm 1 as follow:

Algorithm 1. (Inexact PHSS Algorithm)

Let us give the initial value X0 ∈ Rn×n, k = 0, 1, ..., and calculate the Xk+1 until the accuracy requirement
is met.

(i) Let us approximate the solution of

(αP(A) + H(A))Zk+ 1
2
+ Zk+ 1

2
(αP(A) + S(A)) = −Rk,

where

Rk = AXk + Xk AT +
m

∑
j=1

NjXk Nj + C,

until Zk+ 1
2

makes the corresponding residual

Pk+ 1
2
= −Rk − (αP(A) + H(A))Zk+ 1

2
− Zk+ 1

2
(αP(A) + S(A))

satisfy ‖Pk+ 1
2
‖

2
≤ εk‖Rk‖2.

(ii) Let us approximate the solution of

(αP(A) + H(A))Zk+1 + Zk+1(αP(A) + S(A)) = 2α(P(A)Zk+ 1
2
+ Zk+ 1

2
P(A)),

until Zk+1 makes the corresponding residual

Qk+1 = 2α(P(A)Zk+ 1
2
+ Zk+ 1

2
P(A))− (αP(A) + H(A))Zk+1 − Zk+1(αP(A) + S(A))

satisfy ‖Qk+1‖2 ≤ 2αηk‖P(A)Zk+ 1
2
+ Zk+ 1

2
P(A)‖

2
.

(iii) Computing Xk+1 = Xk + Zk+1.

In Algorithm 1, εk and ηk is used to control the accuracy of internal iterations in the iterative
process, and the stopping criterion of the (ii) step only makes the following convergence theorem more
concise. In fact, the criterion can be changed to ‖qk+1‖2 ≤ ηk‖Pzk+1‖2.

Theorem 2. Let us suppose that A ∈ Rn×n is an asymmetrical positive definite matrix. According to Theorem
1, α is chosen to make the HSS iterative method converge. {Xk} is an iterative sequence generated by Algorithm
1, and X∗ is the exact solution of the generalized Lyapunov equation. Then we can get that

|‖xk+1 − x∗‖| ≤
[

σ0(α) +
2‖P−1‖2‖F‖2

α + λmin
(εk + ηk(1 + εk))

]
· |‖xk − x∗‖|,

where xk = vec(Xk) and x∗ = vec(X∗) Let us define the vector norm |‖ · ‖| as: For any vector y, we can define
that |‖y‖| = ‖(αI + P−1S)y‖2.
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In particular, if

σ0(α) +
2‖P−1‖2‖F‖2

α + λmin
(εmax + ηmax(1 + εmax)) < 1,

the iterative sequence {xk} converges to x∗ , that is, {Xk} converges to X∗ , where εmax = max{εk} and
ηmax = max{ηk}.

Proof. Because of Kronecker product, IPHSS iteration method is equivalent to [I ⊗ (αP(A) + H(A)) + (αP(A) + S(A))⊗ I]zk+ 1
2
= −rk

[I ⊗ (αP(A) + H(A)) + (αP(A) + S(A))⊗ I]zk+1 = 2α(I ⊗ P(A) + P(A)⊗ I)zk+ 1
2

where zk+ 1
2
= vec(Zk+ 1

2
), rk = vec(Rk). Then the above iteration scheme is equivalent to

 (αP + H)zk+ 1
2
= −rk,

(αP + S)zk+1 = 2αPzk+ 1
2
,

where P = I(A)⊗ P(A) + P(A)⊗ I(A), H = I(A)⊗ H(A) + H(A)⊗ I(A) and S = I(A)⊗ S(A) +

S(A)⊗ I(A). Order pk+ 1
2
= vec(Pk+ 1

2
), qk+1 = vec(Qk+1) and we can see that

 pk+ 1
2
= −rk − (αP + H)zk+ 1

2
,

qk+1 = 2αPzk+ 1
2
− (αP + S)zk+1

satisfies ‖pk+ 1
2
‖

2
≤ εk‖rk‖2 and ‖qk+1‖2 ≤ 2αηk‖Pzk+1‖2, then we can conclude that

xk+1 = xk + zk+1

= xk + (αP + S)−1(4αPzk+ 1
2
− qk+1)

= xk − 2α(αP + S)−1P(αP + H)−1(rk + pk+ 1
2
)− (αP + S)−1qk+1

= xk − 2α(αI + P−1S)−1
(αI + P−1H)

−1P−1(rk + pk+ 1
2
)− (αP + S)−1qk+1.

(12)

Because

rk = Fxk + c = (H + S +
m

∑
j=1

Nj ⊗ Nj)xk + c, (13)

we can bring the Formula (13) into the type (12) and see that

xk+1 = (αI + P−1S)−1
(αI + P−1H)

−1
[
(αI − P−1H)(αI − P−1S)− 2αP−1

m
∑

j=1
Nj ⊗ Nj

]
xk

−2α(αI + P−1S)−1
(αI + P−1H)

−1P−1(c + pk+ 1
2
)− (αP + S)−1qk+1.

Let X∗ be the exact solution of the generalized Lyapunov equation, that is, x∗ is the exact solution
of the following two equations:

(αP + H)x = (αP− S)x−
m
∑

j=1
(Nj ⊗ Nj)x− c,

(αP + S)x = (αP− H)x−
m
∑

j=1
(Nj ⊗ Nj)x− c.

(14)
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Through the first equation in Formula (14), we can see that

x∗ = (αP + H)−1(αP− S)x∗ − (αP + H)−1(
m

∑
j=1

Nj ⊗ Njx∗ + c), (15)

We can bring the Formula (15) into the second equation of the Formula (14) and see that

x∗ = (αI + P−1S)−1
(αI + P−1H)

−1
[
(αI − P−1H)(αI − P−1S)− 4αP−1

m
∑

j=1
Nj ⊗ Nj

]
x∗

−2α(αI + P−1S)−1
(αI + P−1H)

−1P−1c.

As a result, we can conclude that

xk+1 − x∗ = (αI + P−1S)−1
(αI + P−1H)

−1

·
[
(αI − P−1H)(αI − P−1S)− 2αP−1

m
∑

j=1
Nj ⊗ Nj

]
(xk − x∗)

−2α(αI + P−1S)−1
(αI + P−1H)

−1P−1 pk+ 1
2
− (αI + P−1S)−1P−1qk+1.

Let us suppose that vector norm is |‖y‖| = ‖(αI + P−1S)y‖2 and the matrix norm is

|‖Y‖| = ‖(αI + P−1S)Y(αI + P−1S)
−1‖2.

Because (αI + P−1H) and (αI − P−1H) can be exchanged, we conclude that (αI + P−1H)
−1 and

(αI − P−1H) can be exchanged. As a result, we can conclude that

|‖xk+1 − x∗‖| ≤
∣∣∣∣∣‖(αI + P−1S)−1

(αI + P−1H)
−1
[
(αI − P−1H)(αI − P−1S)− 2αP−1

m
∑

j=1
Nj ⊗ Nj

]
‖
∣∣∣∣∣

|‖xk − x∗‖|+2α
∣∣∣‖(αI + P−1S)−1

(αI + P−1H)
−1P−1 pk+ 1

2
‖
∣∣∣+ ∣∣∣‖(αI + P−1S)−1P−1qk+1‖

∣∣∣
= ‖(αI + P−1H)

−1
[
(αI − P−1H)(αI − P−1S)− 2αP−1

m
∑

j=1
Nj ⊗ Nj

]
(αI + P−1S)−1‖

2
|‖xk − x∗‖|+ 2α‖(αI + P−1H)

−1P−1 pk+ 1
2
‖

2
+ ‖P−1qk+1‖2

= ‖(αI − P−1H)(αI + P−1H)
−1

(αI − P−1S)(αI + P−1S)−1

−2α(αI + P−1H)
−1P−1

m
∑

j=1
Nj ⊗ Nj(αI + P−1S)−1‖

2

·|‖xk − x∗‖|+ 2α‖(αI + P−1H)
−1P−1 pk+ 1

2
‖

2
+ ‖P−1qk+1‖2

≤ ‖(αI − H̃)(αI + H̃)
−1

(αI − S̃)(αI + S̃)
−1‖2

−2α‖P−1‖2‖(αI + H̃)
−1‖2‖

m
∑

j=1
Nj ⊗ Nj‖

2

‖(αI + S̃)
−1‖2

·|‖xk − x∗‖|+ 2α‖(αI + P−1H)
−1P−1 pk+ 1

2
‖

2
+ ‖P−1qk+1‖2

≤ σ0(α)|‖xk − x∗‖|+ 2α‖P−1‖2‖(αI + P−1H)
−1‖2‖pk+ 1

2
‖

2
+ ‖P−1‖2‖qk+1‖2.
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Because ‖rk‖2 = ‖F(xk − x∗)‖2 ≤ ‖F(αI + P−1S)−1‖2|‖xk − x∗‖|, we can see that

‖pk+ 1
2
‖

2
≤ εk‖rk‖2 ≤ εk‖F(αI + P−1S)−1‖2|‖xk − x∗‖| ≤ εk‖F‖2‖(αI + P−1S)−1‖2|‖xk − x∗‖|,

‖qk+1‖2 ≤ 2αηk‖P‖2‖zk+ 1
2
‖

2
= 2αηk‖P‖2‖(αP + H)−1(−rk − pk+ 1

2
)‖

2

≤ 2αηk‖(αI + P−1H)
−1‖2(‖rk‖2 + ‖pk+ 1

2
‖

2
)

≤ 2αηk‖(αI + P−1H)
−1‖2(1 + εk)‖rk‖2

≤ 2αηk(1 + εk)‖(αI + P−1H)
−1‖2‖F‖2‖(αI + P−1S)−1‖2|‖xk − x∗‖|,

Through the Formula (9), we can see that

|‖xk+1 − x∗‖| ≤ σ0(α)|‖xk − x∗‖|+ 2α‖P−1‖2‖(αI + P−1H)
−1‖2‖pk+ 1

2
‖

2
+ ‖P−1‖2‖qk+1‖2

≤
[
σ0(α)+2α(εk + ηk(1 + εk))‖P−1‖2‖(αI + P−1H)

−1‖2‖F‖2‖(αI + P−1S)−1‖2

]
·|‖xk − x∗‖|

≤
[

σ0(α)+2α(εk + ηk(1 + εk))‖P−1‖2‖P−
1
2 (αI + P−

1
2 HP−

1
2 )
−1

P
1
2 ‖2

·‖F‖2‖P−
1
2 (αI + P−

1
2 SP−

1
2 )
−1

P
1
2 ‖2

]
|‖xk − x∗‖|

≤
[
σ0(α)+2α(εk + ηk(1 + εk))‖P−1‖2‖(αI + H̃)

−1‖2

·‖F‖2‖(αI + S̃)
−1‖2

]
|‖xk − x∗‖|

≤
[
σ0(α)+2α(εk + ηk(1 + εk))‖P−1‖2

1
α+λmin

‖F‖2
1
α

]
|‖xk − x∗‖|

≤
[
σ0(α) +

2‖P−1‖2‖F‖2
α+λmin

(εk + ηk(1 + εk))
]
|‖xk − x∗‖|.

If we accurately solve the Lyapunov Equations (10) and (11), the corresponding {εk} and {ηk}
should be zero, so both εmax and ηmax are zero. At this point, the convergence factor of the IPHSS
iteration method is the same as that of the PHSS iteration method. Theorem 3 shows that in order to
guarantee the convergence of the IPHSS iterative method, we only need the conditional

σ0(α) +
2‖P−1‖2‖F‖2

α + λmin
(εk + ηk(1 + εk)) < 1

to satisfy, and we do not need {εk} and {ηk} to go to zero with the increase of k. Therefore, when the
generalized Lyapunov equation is solved, the selection of {εk} and {ηk} should make the calculation
as small as possible, and the iterative factor of the IPHSS iterative method is as close to the convergence
factor of the PHSS iterative method as possible. �

4. Numerical Experiments

In this section, we test the IPHSS algorithm for solving the generalized Lyapunov equation by
numerical examples.

Here is a theoretical numerical example for a simple test of numerical performance about
the algorithm:
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Example 1. Now, we consider the generalized Lyapunov equation as follows:

AX + XAT + NXNT + C = 0,

where N is a random matrix that satisfies the condition of Theorem 1;

A = I ⊗ R + Q⊗ I

where ⊗ is Kronecker product. Let

R = tridiag((−2− h), 8, (−2 + h)) and Q = tridiag((−2− 2h), 8, (−2 + 2h))

are three diagonal matrices h = 1√
n ; x(0) = vec

(
X(0)

)
is taken as a zero vector; and the program is executed by

Matlab. The order of the coefficient matrix A is n. The relative error is Res = ‖r(k)‖2
‖b‖2

. The stopping criterion is

Res < 10−6 and Iter is the number of iterations. CPU is iterative time. The parameters of the IPHSS method
are taken as α = 0.8. The parameters of the IPHSS method are taken as α = β = 0.2. The preconditioned matrix
P is selected as the diagonal matrix of the coefficient matrix A. Through the IPHSS algorithm we can get Table 1
as follows.

Table 1. Comparison of calculation results between preprocessing HSS iteration method (PHSS) and
inexact PHSS algorithm (IPHSS) method.

n
IHSS IPHSS

Iter CPU Res Iter CPU Res

4 269 0.215 9.6357 × 10−7 4 0.070 7.4966 × 10−8

16 267 0.559 8.0967 × 10−7 4 0.077 1.6256 × 10−7

64 259 1.763 9.8830 × 10−7 5 0.169 8.1159 × 10−8

144 266 43.010 9.9025 × 10−7 5 0.792 1.5784 × 10−7

256 255 260.165 9.6540 × 10−7 5 4.029 2.0429 × 10−7

529 283 2502.291 9.2328 × 10−7 5 39.945 2.3134 × 10−7

1024 — — — 5 383.907 1.7833 × 10−7

The numerical results in the analysis Table 1 show that IPHSS method has faster convergence
speed, better stability and convergence than IHSS method in this example.

The following numerical examples are given to test the numerical performance of the algorithm
in practice:

Example 2. Considering the problem about the finite element discretization of self-heat conduction [20]:

.
x = Ax + Nxu + Bu

We need to solve the following generalized Lyapunov equation in solving its Kodamm matrix:

AX + XAT + NXNT + C = 0,

where

A = (aij)n×n =


1.6, i = j

0.3, |i− j| = 1

0, else

N = (nij)n×n =


0.05, i = j

−0.01, |i− j| = 1

0, else

B = −A−1

(
On1×n1 On1×n2

On2×n1 In2

)
A−1, n2 = n

100 , n1 = n− n2.
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The parameters of the IPHSS method are taken as α = 0.9 . The parameters of the IPHSS method are taken
as α = β = 0.2 . Through the IPHSS algorithm we can get Table 2 as follows.

Table 2. Comparison of calculation results between IHSS and IPHSS method.

n
IHSS IPHSS

Iter CPU Res Iter CPU Res

64 24 0.413 6.9964 × 10−6 4 0.092 2.1691 × 10−8

128 21 1.757 9.0778 × 10−6 4 0.382 4.6206 × 10−8

256 20 12.432 9.3266 × 10−6 4 2.290 1.0216 × 10−7

512 19 109.701 9.8608 × 10−6 4 21.917 2.8474 × 10−7

1024 19 1382.280 8.3162 × 10−6 4 291.388 3.8898 × 10−7

The numerical results in the analysis Table 2 show that the amplitude of the number of iterative
times for the IHSS iteration and the IPHSS iteration of the generalized Lyapunov equation is smaller,
which indicates that the two methods are very stable, but the number of iterations and times of the
IPHSS iteration are far smaller than that of the IHSS iteration, and the relative error of the IPHSS
iteration is also less than the relative error of the IHSS iteration. Not only that, it can be seen that
the gap between the iterative time of the IPHSS iterative method and the iteration time of the IHSS
iteration method is larger, as we can see the higher order of the matrix, and thus the IPHSS iterative
method for solving the generalized Lyapunov equation is more effective than the IHSS iteration.

5. Conclusions

In this paper, a new method of solving the generalized Lyapunov equation by PHSS iterative
method is proposed and its convergence is proved. Then, the IPHSS algorithm for solving the
generalized Lyapunov equation is put forward, and the convergence of the generalized Lyapunov
equation is proved. Finally, a numerical experiment is carried out to compare the new method with
the existing methods. It is found that compared with the IHSS iteration method, the IPHSS iteration
method has obvious improvement effect.
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