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Abstract: The purpose of this article is to resolve a global optimization problem for quasi-noncyclic
relatively nonexpansive mappings by giving an algorithm that determines an optimal approximate
solution of the following minimization problem,

min
x∈A

d(x, Tx), min
y∈B

d(y, Ty) and min
(x,y)∈A×B

d(x, y);

also, we provide some illustrative examples to support our results. As an application, the existence of
a solution of the analytic complex function is discussed.

Keywords: best proximity point; noncyclic mapping; quasi-noncyclic relatively nonexpansive;
semi-sharp proximal pair

1. Introduction

The fixed point theorem is one of the most essential branches of functional analysis because it
is significantly useful for and capable of solving many problems. This can be seen from popular
applications of the fixed point theorem in the fields of science and technology, as well as other
disciplines. However, in the case that A and B are nonempty disjoint subsets of metric space X and T is
a mapping from A to B or T is a cyclic mapping on A∪ B, the equation Tx = x does not necessarily have
a solution. For this case, its approximate solution x is the minimum of d(x, Tx). This is the main idea
supporting the best approximation theory, which was introduced by Fan [1]. The necessary condition
to guarantee the existence of x in A is satisfying d(Tx, x) = d(Tx, A) := inf{d(Tx, y) : y ∈ A}, which is
called the best proximity point. After that, many authors studied and developed Fan’s theorem by
using different assumptions on various kinds of mappings in many directions; one can refer to [2–8].

In 2005, Eldred et al. [9] defined a mapping T : A ∪ B → A ∪ B with properties T(A) ⊆ A
and T(B) ⊆ B, which is called a noncyclic mapping, and studied the existence of the following
minimization problem to find x ∈ A and y ∈ B satisfying:

min
x∈A

d(x, Tx), min
y∈B

d(y, Ty) and min
(x,y)∈A×B

d(x, y), (1)

and a solution of (1) is an element (x, y) ∈ A× B with the property:

x = Tx, y = Ty and d(x, y) = dist(A, B).
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Later, many authors studied the existence of a solution of (1); see [10–13].

The aim of this paper is to establish the existence of a solution of the minimization problem (1) for
quasi-noncyclic relatively nonexpansive mappings, which was defined by Gabeleh and Otafudu [12],
and to provide some illustrative examples that support our results. Furthermore, we establish the
existence of a solution of the analytic complex functions by applying our new results.

2. Preliminaries

Let A and B be nonempty subsets of a metric space (X, d); we recall some basic concepts that will
be used in the next sections.

FA(T) := {x ∈ A : x = Tx}, FB(T) := {y ∈ B : y = Ty},

dist(A, B) := inf{d(x, y) : x ∈ A and y ∈ B},

A0 := {x ∈ A : d(x, y) = dist(A, B) for some y ∈ B},

B0 := {y ∈ B : d(x, y) = dist(A, B) for some x ∈ A},

ProxA×B(T) := {(x, y) ∈ A× B : x = Tx, y = Ty and d(x, y) = dist(A, B)}.

Definition 1. Let T : A ∪ B → A ∪ B be a mapping. A point x ∈ A is called a best proximity point if
it satisfies:

d(x, Tx) = dist(A, B)

Definition 2. A noncyclic mapping T : A ∪ B→ A ∪ B is called relatively nonexpansive if and only if:

d(Tx, Ty) ≤ d(x, y) for all x ∈ A and y ∈ B

Note that in Definition 2, if A = B, then the mapping T becomes to nonexpansive.

In 2016, Gabeleh and Otafudu [12] (see also [11]) defined the concept of quasi-noncyclic relatively
nonexpansive mappings, which includes the class of relatively nonexpansive mappings as follows.

Definition 3. Let A and B be nonempty subsets of metric space (X, d) such that A0 is nonempty. A mapping
T : A ∪ B→ A ∪ B is called quasi-noncyclic relatively nonexpansive if and only if:

(i) T is noncyclic
(ii) (FA0(T), FB0(T)) is nonempty
(iii) for each (a, b) ∈ (FA0(T), FB0(T)), we have:{

d(Tx, a) ≤ d(x, a) for all x ∈ A,
d(b, Ty) ≤ d(b, y) for all y ∈ B.

Note that in Definition 3, if A = B, then the mapping T becomes a quasi-nonexpansive mapping
(see [14]). For example, the class of quasi-noncyclic relatively nonexpansive mappings is not a subclass
of noncyclic relatively nonexpansive mappings, as we can see in [11].

Definition 4. A subset A of the metric spaces is said to be approximatively compact with respect to B if and only
if every sequence {xn} in A satisfying the condition that d(y, xn)→ d(y, A) for some y ∈ B has a convergent
subsequence.
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Remark 1. Let A and B be nonempty subsets of a metric space (X, d) and A0 and B0 be nonempty sets; we have:

(a) A is approximatively compact with respect to A
(b) if A is a compact set, then A is approximatively compact with respect to any set,
(c) if A is compact, then B is approximatively compact with respect to A.

Definition 5. [2] Let A and B be nonempty subsets of metric space (X, d). A pair (A, B) is called sharp
proximinal if and only if, for each x in A and y in B, there exist a unique element x′ in B and a unique element
y′ in A such that:

d(x, x′) = d(y′, y) = dist(A, B).

Definition 6. [2] Let A and B be nonempty subsets of metric space (X, d). A pair (A, B) is called semi-sharp
proximinal if and only if, for each x in A and y in B, there exists at most one element x′ in B and at most one
element y′ in A such that:

d(x, x′) = d(y′, y) = dist(A, B).

3. Main Result

In this section, we establish the existence theorems of the minimization problem (1) by using
different assumptions. Furthermore, we provide some illustrative examples to support our results.

Theorem 1. Let (X, d) be a complete metric space and A, B be nonempty subsets of X such that A is closed
and A0 6= ∅. Suppose that B is approximatively compact with respect to A and that T : A ∪ B→ A ∪ B is a
noncyclic mapping satisfying the following conditions.

(i) T|A is a contraction in the sense of Banach and T(A0) ⊆ A0,
(ii) T is quasi-noncyclic relatively nonexpansive,
(iii) the pair (A,B) is semi-sharp proximal.

Then, there exists (x?, y?) ∈ A× B, which is a solution of (1).

Proof. Let x1 ∈ A0. Since T(A0) ⊆ A0, there exists an element xn+1 ∈ A such that xn+1 = Txn for
n ∈ N. By the Banach contraction of T|A and A being closed, there exists x? ∈ A such that the sequence
{xn} converges to x? with x? = Tx?. From the fact that T(A0) ⊆ A0, we can find a point yn in B,

d(xn, yn) = dist(A, B) for each n ∈ N.

By the triangle inequality and the definition of dist(A, B), we have:

d(x?, yn) ≤ d(x?, xn) + d(xn, yn)

= d(x?, xn) + dist(A, B)
≤ d(x?, xn) + dist(x?, B),

then d(x?, yn)→ d(x?, B) as n→ ∞. By the hypothesis that B is approximatively compact with respect
to A, there exists a subsequence {ynk} of {yn} and y? ∈ B such that ynk → y? as k→ ∞. Therefore,

d(x?, y?) = lim
k→∞

d(xnk , ynk ) = dist(A, B). (2)

By Assumption (ii) , we get:
d(x?, Ty?) ≤ d(x?, y?) = dist(A, B)

and hence:
d(x?, Ty?) = dist(A, B). (3)
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By Assumption (iii), (2) and (3), we have Ty? = y?. Therefore, we get (x?, y?) ∈ ProxA×B(T), and
hence, the minimization problem (1) has a solution.

Next, we give an example to support Theorem 1.

Example 1. Let X = R2, and let d be the metric on X defined by:

d((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2|

for all (x1, x2), (y1, y2) ∈ X. Let A = {(0, a) : 0 ≤ a ≤ 1} and B = {(1, b) : 0 ≤ b ≤ 1}. Then, A0 = A,
B0 = B, and dist(A, B) = 1. Define T : A ∪ B→ A ∪ B by:

T(0, a) = (0,
a
2
) and T(1, b) = (1,

b
1 + b

).

Then, T is noncyclic mapping with T(A0) ⊆ A0, and p := (0, 0) ∈ A, q := (1, 0) ∈ B are the unique fixed
points of T in A and B, respectively. Moreover, the pair (A,B) is semi-sharp proximal. Now, let (0, a1), (0, a2) ∈ A,
we have:

d(T(0, a1), T(0, a2)) =
1
2

d((0, a1), (0, a2)).

This means that T is a contraction on A. Moreover, let a = (0, a) ∈ A and b = (1, b) ∈ B,

d(Ta, q) = 1 +
a
2
≤ 1 + a = d(a, q)

and:
d(p, Tb) = 1 +

b
1 + b

≤ 1 + b = d(p, b).

Then, Tis a quasi-noncyclic relatively nonexpansive mapping. On the other hand, since A0 6= ∅ and A is a
closed subset of R2, then A is compact. By Remark 1, we get that B is approximatively compact with respect to
A. Thus, all the conditions of Theorem 1 are satisfied, and (0, 0) ∈ A, (1, 0) ∈ B is a solution of Problem (1).
That is:

(0, 0) = T(0, 0), (1, 0) = T(1, 0) and d((0, 0), (1, 0)) = dist(A, B).

Next, we will remove the contraction of T on A by replacing the other conditions to prove a new
theorem of the minimization problem (1) as follows.

Theorem 2. Let (X, d) be a complete metric space and A, B be nonempty subsets of X such that B is
approximatively compact with respect to A with A0 6= ∅. Suppose that T : A ∪ B → A ∪ B is a noncyclic
mapping and the following conditions hold.

(i) T|A is continuous and T(A0) ⊆ A0,
(ii) T is quasi-noncyclic relatively nonexpansive,
(iii) the pair (A, B) is semi-sharp proximal.
(iv) for any sequence {xn} in A, if d(xn, yn) = dist(A, B) for some yn ∈ B, then there exists subsequence

{xnk} of {xn} and x ∈ A such that xnk → x as k→ ∞.

Then, there exists (x?, y?) ∈ A× B, which is a solution of (1).

Proof. Let x1 ∈ A0; by the same method as Theorem 1, there exists a sequence {xn} in A and a
sequence {yn} in B such that:

d(xn, yn) = dist(A, B) for all n ∈ N.

By Assumption (iv), there exists there exists subsequence {xnk} of {xn} and x? ∈ A such that
xnk → x? as k→ ∞. Consequently, x? = Tx? because T|A is continuous. Using the same argument as
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the proof of Theorem 1 and the hypothesis that B is approximatively compact with respect to A, there
exists a subsequence {ynk} of {yn} such that ynk → y? for some y? ∈ B. Therefore,

d(x?, y?) = lim
k→∞

d(xnk , ynk ) = dist(A, B).

By Assumption (ii), we get:
d(x?, Ty?) ≤ d(x?, y?) = dist(A, B). (4)

and thus:
d(x?, Ty?) = dist(A, B). (5)

By Assumption (iii), (4), and (5), we have Ty? = y?. This completes the proof.

Now, we give an example to illustrate Theorem 2.

Example 2. Let X = R with the usual metric, and let A = [−1, 0] and B = [2, 3]. Obviously, dist(A, B) = 2
and A0 = {0} and B0 = {2}. Define the noncyclic mapping T : A ∪ B→ A ∪ B by:

T(x) =


x +

x2

2
x ∈ A

x + 2
2

x ∈ B.

Then, T is continuous on A and 0 ∈ A, 2 ∈ B are unique fixed points of T in A and B, respectively. Moreover,
for each x1, x2 ∈ A with x1 6= x2, if

d(Tx1, Tx2) ≤ λd(x1, x2)

for some λ ∈ [0, 1), then:

|(x1 +
x2

1
2
)− (x2 +

x2
2

2
)| ≤ λ|x1 − x2|.

Letting x1 < 0 and x2 = 0, we have:

1 = lim
x1→0−

∣∣1 + x1

2

∣∣ = lim
x1→0−

∣∣x1 +
x2

1
2

∣∣
|x1|

≤ λ < 1,

which is a contradiction. Therefore, T is not a contraction on A. Now, for x ∈ A and y ∈ B,

d(Tx, 2) = |x +
x2

2
− 2| ≤ |x− 2| = d(x, 2), because x < 0

and:
d(0, Ty) =

y + 2
2
≤ y = d(0, y).

Then, Tis a quasi-noncyclic relatively nonexpansive mapping. It is easy to check that the other conditions of
Theorem 2 are satisfied and that (0, 2) ∈ A× B is a solution of Problem (1). This example is interesting because
T|A is not a contraction. Therefore, Theorem 1 cannot be applied to this example.

4. Application to Analytic Complex Function Theory

In this section, we will apply Theorem 1 to show the existence theorem of (1) in analytic complex
functions. First, we give some properties of our consideration as follow.

Recall that a Banach space X is said to be:
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(1) uniformly convex if there exists δ : (0, 2]→ [0, 1], which is a strictly increasing function such
that, for all x, y, l ∈ X, L > 0 and r ∈ [0, 2L],

‖x− l‖ ≤ L
‖y− l‖ ≤ L
‖x− y‖ ≥ r

 =⇒
∥∥∥∥ x + y

2
− l
∥∥∥∥ ≤ (1− δ

( r
L
))

L;

(2) strictly convex if, for all x, y, l in X and L > 0,

‖x− l‖ ≤ L
‖y− l‖ ≤ L
x 6= y

 =⇒
∥∥∥∥ x + y

2
− l
∥∥∥∥ < L.

Remark 2. It is well known that:

(a) Every uniformly convex Banach space is strictly convex.
(b) Banach space X is strictly convex if and only if ‖x1 + x2‖ < 2 whenever x1 and x2 are different points

such that ‖x1‖ = ‖x2‖ = 1.

Proposition 1. Let A and B be nonempty closed subsets of a strictly convex Banach space X. Then, (A, B) is
semi-sharp proximal pair.

Proof. Let x ∈ A and y1, y2 ∈ B such that:

‖y1 − x‖ = dist(A, B) and ‖y2 − x‖ = dist(A, B).

If y1 6= y2, then:

dist(A, B) ≤ ‖
y1 + y2

2
− x‖

≤
1
2
(
‖y1 − x‖+ ‖y2 − x‖

)
= dist(A, B)

which is a contradiction, and hence, y1 = y2. Similarly, if x1, x2 ∈ A and y ∈ B
such that:

‖x1 − y‖ = dist(A, B) and ‖x2 − y‖ = dist(A, B),

hence, x1 = x2. Therefore, (A, B) is semi-sharp proximal pair.

Proposition 2. The complex plane C with the usual norm ‖x + iy‖ =
√

x2 + y2 for all x, y ∈ C is
strictly convex.

Proof. Let z1 = x1 + iy1, z2 = x2 + iy2 ∈ C be a point such that z1 6= z2 and:

‖z1‖ = ‖z2‖ = 1.

Since z1 6= z2, we know that either:

(x1 − x2)
2 > 0 or (y1 − y2)

2 > 0,

which further yields:

2x1x2 < x2
1 + x2

2 or 2y1y2 < y2
1 + y2

2.
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Hence,
2x1x2 + 2y1y2 < x2

1 + x2
2 + y2

1 + y2
2

and thus:
‖z1 + z2‖ =

√
(x1 + x2)2 + (y1 + y2)2

=
√

x2
1 + x2

2 + y2
1 + y2

2 + 2(x1x2 + y1y2)

<
√

2(x2
1 + y2

1) + 2(x2
1 + y2

2)

= 2.

Therefore, C is strictly convex.

Theorem 3. Let A and B be nonempty, compact, and convex subsets of a domain D of the complex plane with
the usual norm. Let f and g be functions in D such that f is an analytic function. Suppose that FB(g) is
nonempty and the following hold.

(i) f (A) ⊆ A and f (B) ⊆ B,
(ii) | f ′(z)| < 1 for all z ∈ A,
(iii) for z1 ∈ FA( f ) and z2 ∈ FB(g), | f x− z2| ≤ |x− z2| and |z1 − gy| ≤ |z1 − y| for all x ∈ A, y ∈ B.

Then, the problem (1) has a solution.

Proof. Since f is an analytic function, then f is continuous, and since A is a compact and convex
subset of a domain D, by applying Brouwer’s fixed point theorem, this implies that FA( f ) is nonempty.
Again, since A is a compact set and | f ′| is continuous on A, there exists ẑ ∈ A such that maximum
point and f (ẑ) = λ < 1. Therefore, | f ′(z)| ≤ λ < 1. Let z, v ∈ A; we have:

| f (z)− f (v)| = |
∫ z

v
f ′(z)| ≤ λ|z− v|.

This means that f is a contraction mapping on A. Let T : A ∪ B→ A ∪ B with:

T(z) =

{
f (z) if z ∈ A
g(z) if z ∈ B.

Therefore, we have that T|A is a contraction. Further, by (iii), if z1 ∈ FA( f ) and z2 ∈ FB(g), we have:

|Tx− z2| = | f x− z2| ≤ |x− z2|

and:
|z1 − Ty| = |z1 − gy| ≤ |z1 − y|

for all x ∈ A and y ∈ B. Hence, T is a quasi-noncyclic relatively nonexpansive mapping. Since A and
B are nonempty, compact subsets of a domain D, then A is closed, A0 6= ∅, and B is approximatively
compact with respect to A. On the other hand, by Proposition 1 and Proposition 2, (A, B) have the
semi-sharp proximal property. Therefore, all conditions of Theorem 1 are satisfied, and the conclusion
of this theorem follows from Theorem 1.

5. Conclusions

The existence of the minimization problem (1) for a noncyclic mapping was first studied by
Eldred et al. [9]. Later, many authors studied the existence of a solution of (1); see [10–13]. This article
resolves a minimization problem (1) for quasi-noncyclic relatively nonexpansive mappings by giving
necessary and sufficient conditions with an approximate algorithm for finding the existence of the
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minimization problem (1). Furthermore, we provide some illustrative examples that support our results.
Finally, we apply our results to show the existence of the solution of the analytic complex function.
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