
mathematics

Article

System of Variational Inclusions and Fixed Points of
Pseudocontractive Mappings in Banach Spaces

Lu-Chuan Ceng 1, Mihai Postolache 2,3,4,* , Xiaolong Qin 5 and Yonghong Yao 6

1 Department of Mathematics, Shanghai Normal University, Shanghai 200234, China; zenglc@hotmail.com
2 Center for General Education, China Medical University, Taichung 40402, Taiwan
3 Romanian Academy, Gh. Mihoc-C. Iacob Institute of Mathematical Statistics and Applied Mathematics,

Bucharest 050711, Romania
4 University "Politehnica" of Bucharest, Department of Mathematics and Informatics, Bucharest 060042, Romania
5 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China,

Chengdu 611731, China; qxlxajh@163.com
6 School of Mathematical Sciences, Tianjin Polytechnic University, Tianjin 300387, China;

yaoyonghong@aliyun.com
* Correspondence: emscolar@yahoo.com

Received: 9 December 2018; Accepted: 18 December 2018; Published: 20 December 2018

Abstract: The purpose of this paper is to solve the general system of variational inclusions (GSVI) with
hierarchical variational inequality (HVI) constraint, for an infinite family of continuous pseudocontractive
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1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H equipped with inner product
〈·, ·〉 and norm ‖ · ‖. Let S : C → C be nonexpansive, with its fixed point set F(S) 6= ∅. Let A, B : C → H
be α-inverse-strongly monotone and β-inverse-strongly monotone, respectively. In 2008, Ceng et al. [1]
introduced and considered the following general system of variational inequality problems of finding
(x∗, y∗) ∈ C× C, such that {

〈ρAy∗ + x∗ − y∗, x− x∗〉 ≥ 0, ∀x ∈ C,

〈ηBx∗ + y∗ − x∗, x− y∗〉 ≥ 0, ∀x ∈ C.
(1)
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They first transformed problem (1) into a fixed point problem for the mapping G = PC(I − ρA)PC(I − ηB),
and then proved strong convergence of the following relaxed extragradient method for solving the
problem (1), and the fixed point problem of S:{

yn = PC(xn − ηBxn), n ≥ 0,

xn+1 = αnu + βnxn + γnSPC(yn − ρAyn),
(2)

where ρ ∈ (0, 2α), η ∈ (0, 2β), and {αn}, {βn}, {γn} are sequences in [0, 1].
Let E be a real Banach space with the dual E∗ and C a nonempty closed convex subset of E.

A self-mapping f : C → C is said to be k-Lipschitz on C if k ∈ R+ = [0,+∞) and ‖ f (x)− f (y)‖ ≤ k‖x− y‖
for all x, y ∈ C. If f is k-Lipschitz with k < 1, then f is called a k-contraction mapping (or a contraction
mapping with coefficient k). A self-mapping f : C → C is said to be nonexpansive if it is Lipschitz with
k = 1. Also, recall that a mapping T with domain D(T) and range R(T) in E is called pseudocontractive if
the following inequality holds

‖x− y‖ ≤ ‖x− y + r((I − T)x− (I − T)y)‖, ∀x, y ∈ D(T), r > 0,

which is equivalent to the inequality (see [2]) that for each x, y ∈ D(T) there exists j(x− y) ∈ J(x− y)
such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2. (3)

It is known that the class of pseudocontractive mappings is an important and significant generator of
nonexpansive mappings [3]. Moreover, interest in pseudocontractive mappings stems mainly from their
firm connection with the class of accretive mappings.

Let A1, A2 : C → E and M1, M2 : C → 2E be nonlinear mappings. The general system of variational
inclusions (GSVI) is to find (x∗, y∗) ∈ C× C such that{

0 ∈ x∗ − y∗ + ρ1(A1y∗ + M1x∗),

0 ∈ y∗ − x∗ + ρ2(A2x∗ + M2y∗),
(4)

where ρ1 and ρ2 are two positive constants.
In 2010, Qin et al. [4] introduced a relaxed extragradient-type method for solving GSVI (4), and proved

a strong convergence theorem for the proposed method (for its related results in the literature, see,
e.g., [1,5–18]). Furthermore, Aoyama et al. [19] considered the following variational inequality: Find
x∗ ∈ C, such that

〈Ax∗, j(x− x∗)〉 ≥ 0, ∀x ∈ C. (5)

They proved that the problem (5) is equivalent to a fixed point problem; that is, the element x∗ ∈ C is a
solution of problem (5) if and only if x∗ ∈ C satisfies the following equation:

x∗ = ΠC(x∗ − ηAx∗), (6)

where η > 0 is a constant and ΠC is a sunny nonexpansive retraction from E onto C. In particular, if E = H
a Hilbert space, then ΠC coincides with the metric projection PC from H onto C. Recently, many authors
have studied the problem of finding a common element of the set of fixed points of nonlinear mappings and
the set of solutions to variational inequalities by iterative methods (see, e.g., [1–3,5,6,8–10,12,14–16,18–24]).
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In particular, Ceng et al. [22] introduced an implicit viscosity approximation method for computing
approximate fixed points of a pseudocontractive mapping T, and derived strong convergence of the
proposed implicit method to a point in F(T), which solves a certain variational inequality.

The purpose of this paper is to solve the GSVI (4) with the hierarchical variational inequality (HVI)
constraint, for an infinite family of continuous pseudocontractive mappings {Tn}∞

n=1 in a uniformly convex
and two-uniformly smooth Banach space E. By utilizing the equivalence between the GSVI (4) and the
fixed point problem, we construct an implicit multiple-viscosity approximation method for solving the
GSVI (4) with the HVI constraint, for infinitely many pseudocontractions {Tn}∞

n=1. Under very mild
conditions, we prove the strong convergence of the proposed method to a solution of the GSVI (4) with
the HVI constraint, for infinitely many pseudocontractions {Tn}∞

n=1. Our results improve and extend the
corresponding results announced by some others; for example, Yao et al. [13] and Ceng et al. [22].

2. Preliminaries

Let E be a real Banach space with dual E∗. Throughout this paper, we write xn ⇀ x (respectively,
xn → x) to indicate that the sequence {xn} converges weakly (respectively, strongly) to x. Let C be a
nonempty closed convex subset of E. Recall that a mapping T : C → E is said to be

(a) accretive if, for each x, y ∈ C, ∃j(x− y) ∈ J(x− y) such that 〈Tx− Ty, j(x− y)〉 ≥ 0, where J is the
normalized duality mapping;

(b) α-strongly accretive if, for each x, y ∈ C, ∃j(x − y) ∈ J(x − y) such that 〈Tx − Ty, j(x − y)〉 ≥
α‖x− y‖2 for some α ∈ (0, 1);

(c) β-inverse-strongly accretive if, for each x, y ∈ C, ∃j(x− y) ∈ J(x− y) such that 〈Tx− Ty, j(x− y)〉 ≥
β‖Tx− Ty‖2 for some β > 0.

Let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then E is said to be strictly convex if for any

x, y ∈ U, x 6= y ⇒ ‖ x + y
2
‖ < 1. It is also said to be uniformly convex if for each ε ∈ (0, 2], there exists

δ > 0 such that for any x, y ∈ U, ‖x− y‖ ≥ ε ⇒ ‖ x + y
2
‖ ≤ 1− δ. It is known that a uniformly convex

Banach space is reflexive and strictly convex. Also, it is known that if a Banach space E is reflexive, then E
is strictly convex if and only if E∗ is smooth, as well as that E is smooth if and only if E∗ is strictly convex.

A Banach space E is said to have a Gateaux differentiable norm if the limit lim
t→0

‖x + ty‖ − ‖x‖
t

exists for

each x, y ∈ U and, in this case, we call E smooth. E is said to have a uniformly Fréchet differentiable norm
if the limit is attained uniformly for x, y ∈ U and, in this case, we call E uniformly smooth. E is also said to
have a Fréchet differentiable norm if for each x ∈ U, the limit is attained uniformly for y ∈ U and, in this
case, we call E strongly smooth. The modulus of smoothness of E is defined by

$(τ) = sup{1
2
(‖x + y‖+ ‖x− y‖)− 1 : x, y ∈ E, ‖x‖ = 1, ‖y‖ = τ},

where $ : [0, ∞)→ [0, ∞) is a function. It is known that E is uniformly smooth if and only if lim
τ→0

$(τ)

τ
= 0.

Let q be a fixed real number with 1 < q ≤ 2. A Banach space E is said to be q-uniformly smooth if there
exists a constant κ > 0, such that $(τ) ≤ κτq for all τ > 0.

Let q be a real number with 1 < q ≤ 2 and let E be a Banach space. Then E is q-uniformly smooth if
and only if there exists a constant c > 0 such that

‖x + y‖q + ‖x− y‖q ≤ 2(‖x‖q + ‖cy‖q), ∀x, y ∈ E.
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The best constant c in the above inequality is called the q-uniformly smooth constant of E; see [11] for more
details. Note that no Banach space is q-uniformly smooth for q > 2; see [25].

For q > 1, the generalized duality mapping Jq : E→ 2E∗ is defined by

Jq(x) = {ϕ ∈ E∗ : 〈x, ϕ〉 = ‖x‖q, ‖ϕ‖ = ‖x‖q−1}, ∀x ∈ E.

In particular, J = J2 is called the normalized duality mapping. It is known that Jq(x) = ‖x‖q−2 J(x), ∀x ∈ E.
If E is a Hilbert space, then J = I the identity mapping. Recall that

(1) if E is smooth, then J is single-valued and norm-to-weak∗ continuous on E;
(2) if E is uniformly smooth, then J is single-valued and norm-to-norm uniformly continuous on

bounded subsets of E;
(3) all Hilbert spaces, Lp (or lp) spaces (p ≥ 2) and the Sobolev spaces Wp

m (p ≥ 2), are two-uniformly
smooth, while Lp (or lp) and Wp

m spaces (1 < p ≤ 2) are p-uniformly smooth;
(4) typical examples of both uniformly convex and uniformly smooth Banach space are Lp, where p > 1.

More precisely, Lp is min{p, 2}-uniformly smooth for any p > 1.

Proposition 1 ([26]). Let E be a smooth and uniformly convex Banach space, and let r > 0. Then there exists
a strictly increasing, continuous and convex function g : [0, 2r] → R, g(0) = 0 such that g(‖x − y‖) ≤
‖x‖2 − 2〈x, j(y)〉+ ‖y‖2, ∀x, y ∈ Br, where Br = {x ∈ E : ‖x‖ ≤ r}.

Proposition 2 ([27]). If E is a two-uniformly smooth Banach space, then ‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x)〉 +
2‖cy‖2, ∀x, y ∈ E, where c is the two-uniformly smooth constant of E. In particular, if E is a Hilbert space, then
the duality pairing 〈·, ·〉 reduces to the inner product, j = I the identity mapping, and c = 1/

√
2.

Let D be a subset of C and let Π be a mapping of C into D. Then Π is said to be sunny if Π[Π(x) +
t(x−Π(x))] = Π(x), whenever Π(x) + t(x−Π(x)) ∈ C for x ∈ C and t ≥ 0. A mapping Π of C into
itself is called a retraction if Π2 = Π. If a mapping Π of C into itself is a retraction, then Π(z) = z for each
z ∈ R(Π), where R(Π) is the range of Π. A subset D of C is called a sunny nonexpansive retract of C if
there exists a sunny nonexpansive retraction from C onto D.

Proposition 3 ([28]). Let C be a nonempty closed convex subset of a smooth Banach space E, D be a nonempty
subset of C and Π be a retraction of C onto D. Then the following are equivalent:

(i) Π is sunny and nonexpansive;
(ii) ‖Π(x)−Π(y)‖2 ≤ 〈x− y, j(Π(x)−Π(y))〉, ∀x, y ∈ C;

(iii) 〈x−Π(x), j(y−Π(x))〉 ≤ 0, ∀x ∈ C, y ∈ D.

Let C be a nonempty closed convex subset of a uniformly convex and uniformly smooth Banach space E and let
T be a nonexpansive mapping of C into itself with the fixed point set F(T) 6= ∅. Then the set F(T) is a sunny
nonexpansive retract of C; see [29].

Proposition 4 ([30]). Let C be a nonempty closed convex subset of a Banach space E and T : C → C be a continuous
and strong pseudocontraction mapping. Then, T has a unique fixed point in C.

Recall that a possibly multivalued operator M ⊂ E× E with domain D(M) and range R(M) in E
is accretive if, for each xi ∈ D(M) and yi ∈ Mxi (i = 1, 2), there exists j(x1 − x2) ∈ J(x1 − x2) such
that 〈y1 − y2, j(x1 − x2)〉 ≥ 0. An accretive operator M is said to satisfy the range condition if D(M) ⊂
R(I + rM) for all r > 0. An accretive operator M is m-accretive if R(I + rM) = E for each r > 0. If M is
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an accretive operator which satisfies the range condition, then we can define, for each r > 0, a mapping
JM
r : R(I + rM)→ D(M) by JM

r = (I + rM)−1, which is called the resolvent of M. It is well known that JM
r

is nonexpansive and F(JM
r ) = M−10, ∀r > 0; see [31]. Hence, F(JM

r ) = M−10 = {x ∈ D(M) : 0 ∈ Mx}.
If M−10 6= ∅, then the inclusion 0 ∈ Mx is solvable. We below present some lemmas which will be used
in the sequel. Some of them are known, and others are not hard to prove.

Lemma 1 ([24]). Let C be a nonempty closed convex subset of a smooth Banach space E and M : C → 2E be
an m-accretive mapping. Then for any given r > 0, the inequality holds: ‖JM

r x − JM
r y‖2 ≤ 〈x − y, j(JM

r x −
JM
r y)〉, ∀x, y ∈ E. This means that JM

r : E→ C is nonexpansive.

Lemma 2 ([24]). Let M : C → 2E be an m-accretive mapping and A : C → E is a mapping. Then x∗ ∈ C
is a solution of the variational inclusion 0 ∈ Ax + Mx if and only if x∗ = JM

ρ (x∗ − ρAx∗), for all ρ > 0,
that is, VI(C, A, M) = F(JM

ρ (I − ρA)), ∀ρ > 0, where VI(C, A, M) denotes the set of solutions to this
variational inclusion.

Lemma 3 ([24]). Let M1, M2 : C → 2E be two m-accretive mappings and A1, A2 : C → E be two mappings.
For given x∗, y∗ ∈ C, (x∗, y∗) is a solution of the GSVI (1.4) if and only if x∗ is a fixed point of the mapping
Q := JM1

ρ1 (I − ρ1 A1)JM2
ρ2 (I − ρ2 A2), where y∗ = JM2

ρ2 (I − ρ2 A2)x∗.

Lemma 4 ([32]). Let C be a nonempty closed convex subset of a strictly convex Banach space E. Let T1, T2 : C→ E
be nonexpansive mappings with F(T1) ∩ F(T2) 6= ∅. Define a mapping S : C → E by Sx = νT1x + (1− ν)T2x,
∀x ∈ C, where ν is a constant in (0, 1). Then S is nonexpansive and F(S) = F(T1)∩ F(T2).

Lemma 5 ([24]). Let C be a nonempty closed convex subset of a two-uniformly smooth Banach space E. Let the
mapping A : C → E be α-inverse-strongly accretive. Then,

‖(I − λA)x− (I − λA)y‖2 ≤ ‖x− y‖2 + 2λ(c2λ− α)‖Ax− Ay‖2.

In particular, if 0 ≤ λ ≤ α
c2 , then I − λA is nonexpansive.

Lemma 6 ([24]). Let C be a nonempty closed convex subset of a two-uniformly smooth Banach space E. Let
M1, M2 : C → 2E be two m-accretive mappings and Ai : C → E be ζi-inverse-strongly accretive for i = 1, 2. Let
the mapping Q : C → C be defined as Q := JM1

ρ1 (I − ρ1 A1)JM2
ρ2 (I − ρ2 A2). If 0 ≤ ρi ≤ ζi

c2 for i = 1, 2, then
Q : C → C is nonexpansive.

Lemma 7 ([33]). Let J be the normalized duality mapping on a real Banach space E. Then for all x, y ∈ E,
the inequality holds: ‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, ∀j(x + y) ∈ J(x + y).

Lemma 8 ([33]). Let C be a nonempty closed convex subset of a uniformly smooth Banach space E, A : C →
C be a nonexpansive mapping with F(A) 6= ∅, and f : C → C be a fixed contraction mapping. For each
t ∈ (0, 1), let zt ∈ C be the unique fixed point of the contraction C 3 z 7→ t f (z) + (1− t)Az on C, that is,
zt = t f (zt) + (1− t)Azt. Then {zt} converges strongly to a point x∗ ∈ F(A), which solves the variational
inequality: 〈(I − f )x∗, j(x∗ − x)〉 ≤ 0, ∀x ∈ F(A).

Lemma 9 ([33]). Let {an}∞
n=0 be a sequence of nonnegative real numbers satisfying an+1 ≤ (1 − λn)an +

λnσn, ∀n ≥ 0, where {λn}∞
n=0 and {σn}∞

n=0 are real sequences such that (i) {λn}∞
n=0 ⊂ (0, 1), ∑∞

n=0 λn = ∞,
and (ii) either lim supn→∞ σn ≤ 0 or ∑∞

n=0 |λnσn| < ∞. Then limn→∞ an = 0.



Mathematics 2019, 7, 5 6 of 14

Lemma 10 ([34]). Let C be a nonempty closed convex subset of a Banach space E. Let T0, T1, ... be a sequence of
mappings of C into itself. Suppose that ∑∞

n=1 sup{‖Tnx− Tn−1x‖ : x ∈ C} < ∞. Then for each y ∈ C, {Tny}
converges strongly to some point of C. Moreover, let T be a mapping of C into itself defined by Ty = limn→∞ Tny
for all y ∈ C. Then limn→∞ sup{‖Tx− Tnx‖ : x ∈ C} = 0.

3. Main Results

Now, we are in a position to state and prove our main result.

Theorem 1. Let C be a nonempty closed convex subset of a uniformly convex and two-uniformly smooth Banach
space E. Let M1, M2 : C → 2E be two m-accretive mappings and Ai : C → E be ζi-inverse-strongly accretive
for i = 1, 2. Let the mapping Q : C → C be defined as Q := JM1

ρ1 (I − ρ1 A1)JM2
ρ2 (I − ρ2 A2), where 0 < ρi <

ζi
c2 , i = 1, 2, for c the 2-uniformly smooth constant of E. Let f : C → C be a fixed contraction mapping with
coefficient k ∈ [0, 1), S : C → C be a nonexpansive mapping, and {Tn}∞

n=1 be an infinite family of continuous
pseudocontractive mappings of C into itself, such that Ω :=

⋂∞
n=1 F(Tn) ∩ F(Q) 6= ∅. Let {αn}, {βn} and {γn}

be three real sequences in (0, 1) satisfying the following conditions:

(i) αn + βn + γn ≤ 1, ∀n ≥ 1;

(ii) limn→∞ αn = 0 and lim
n→∞

βn

αn
= 0;

(iii) limn→∞ γn = 1;
(iv) ∑∞

n=1 αn = ∞.

For arbitrary initial value x0 ∈ C, compute the sequences {xn} and {yn} such that
yn = JM2

ρ2 (xn − ρ2 A2xn),

xn = (1− αn − βn − γn)xn−1 + αn f (xn−1) + βnSxn−1

+ γn[µTnxn + (1− µ)JM1
ρ1 (yn − ρ1 A1yn)], ∀n ≥ 1,

(7)

where µ ∈ (0, 1), and JMi
ρi is the resolvent of Mi for i = 1, 2. Assume that ∑∞

n=1 supx∈D ‖Tn+1x− Tnx‖ < ∞
for any bounded subset D of C, let T be a mapping of C into itself defined by Tx = limn→∞ Tnx for all
x ∈ C, and suppose that F(T) =

⋂∞
n=1 F(Tn). Then {xn} and {yn} converge strongly to x∗ (∈ Ω) and y∗,

respectively, where

(a) (x∗, y∗) solves the GSVI (4);
(b) x∗ solves the variational inequality: 〈(I − f )x∗, j(x∗ − x)〉 ≤ 0, ∀x ∈ Ω (i.e., x∗ = ΠΩ f (x∗) where ΠΩ

is a sunny nonexpansive retraction from C onto Ω).

Proof. Note that the mapping Q : C → C is defined as Q := JM1
ρ1 (I − ρ1 A1)JM2

ρ2 (I − ρ2 A2), where
0 < ρi <

ζi
c2 , i = 1, 2, for c the two-uniformly smooth constant of E. So, by Lemma 6, we know that Q is

nonexpansive. It is easy to see that the implicit iterative scheme (7) can be rewritten as

xn = (1− αn − βn − γn)xn−1 + αn f (xn−1) + βnSxn−1 + γn(µTnxn + (1− µ)Qxn), ∀n ≥ 1. (8)

Consider the mapping

Fnx = (1− αn − βn − γn)xn−1 + αn f (xn−1) + βnSxn−1 + γn(µTnx + (1− µ)Qx), ∀x ∈ C.
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Since Q : C → C is a nonexpansive mapping and Tn : C → C is a continuous pseudocontraction mapping,
we deduce that all x, y ∈ C,

〈Fnx− Fny, j(x− y)〉 = γn[µ〈Tnx− Tny, j(x− y)〉+ (1− µ)〈Qx−Qy, j(x− y)〉]
≤ γn[µ‖x− y‖2 + (1− µ)‖Qx−Qy‖‖x− y‖] ≤ γn‖x− y‖2.

Hence Fn is a continuous and strong pseudocontraction mapping of C into itself (due to γn ∈ (0, 1)).
By Proposition 4, we know that for each n ≥ 1 there exists a unique element xn ∈ C, satisfying (8).

Next, we divide the rest of the proof into several steps.
Step 1. We claim that {xn}, {yn}, { f (xn)}, {Sxn}, {Tnxn} and {Qxn} are bounded. Indeed, take an

arbitrarily given p ∈ Ω. Then we have Tn p = p and Qp = p. Putting Wn := µTn + (1− µ)Q, we know
that Wn is a continuous pseudocontraction mapping of C into itself. Then it follows that Wn p = p and

‖xn − p‖2 = 〈xn − p, j(xn − p)〉
≤ (1− αn − βn − γn)‖xn−1 − p‖‖xn − p‖+ αn‖ f (xn−1)− p‖‖xn − p‖
+ βn‖Sxn−1 − p‖‖xn − p‖+ γn‖xn − p‖2,

which hence implies that

‖xn − p‖ ≤ (1− αn − βn − γn)‖xn−1 − p‖+ αn(‖ f (xn−1)− f (p)‖+ ‖ f (p)− p‖)
+ βn(‖Sxn−1 − Sp‖+ ‖Sp− p‖) + γn‖xn − p‖
≤ (1− (1− k)αn − γn)‖xn−1 − p‖+ αn‖ f (p)− p‖+ βn‖Sp− p‖+ γn‖xn − p‖.

Since lim
n→∞

βn

αn
= 0, we may assume, without loss of generality, that βn ≤ αn for all n ≥ 1. This implies that

‖xn − p‖ ≤ [1− (1− k)
αn

1− γn
]‖xn−1 − p‖+ αn

1− γn
‖ f (p)− p‖+ βn

1− γn
‖Sp− p‖

≤ [1− (1− k)
αn

1− γn
]‖xn−1 − p‖+ αn

1− γn
(‖ f (p)− p‖+ ‖Sp− p‖)

≤ max{‖xn−1 − p‖, 1
1− k

(‖ f (p)− p‖+ ‖Sp− p‖)}.

(9)

By induction, we derive ‖xn − p‖ ≤ max{‖x0 − p‖, 1
1−k (‖ f (p) − p‖ + ‖Sp − p‖)}, ∀n ≥ 0. So, {xn}

is bounded. Observe that ‖ f (xn)‖ ≤ ‖ f (xn) − f (p)‖ + ‖ f (p)‖ ≤ k‖xn − p‖ + ‖ f (p)‖ and ‖Sxn‖ ≤
‖Sxn − Sp‖+ ‖Sp‖ ≤ ‖xn − p‖+ ‖Sp‖. This implies that { f (xn)} and {Sxn} are bounded. Similarly, by
the nonexpansivity of Q we know that {Qxn} is bounded. Note that limn→∞ γn = 1. Hence there exist
n0 ≥ 1 and ε0 ∈ (0, 1), such that γn ≥ ε0 for all n ≥ n0. Consequently, we have

ε0‖Wnxn‖ ≤ γn‖Wnxn‖ = ‖xn − (1− αn − βn − γn)xn−1 − αn f (xn−1)− βnSxn−1‖
≤ ‖xn‖+ ‖xn−1‖+ ‖ f (xn−1)‖+ ‖Sxn−1‖.

This means that {Wnxn} is bounded. Since Wnxn = µTnxn + (1− µ)Qxn, we get

µ‖Tnxn‖ = ‖Wnxn − (1− µ)Qxn‖ ≤ ‖Wnxn‖+ (1− µ)‖Qxn‖ ≤ ‖Wnxn‖+ ‖Qxn‖.
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Hence {Tnxn} is bounded. In addition, from Lemma 3 and p ∈ Ω ⊂ F(Q), it follows that (p, q) is a solution
of GSVI (4) where q = JM2

ρ2 (I − ρ2 A2)p. So, by Lemmas 1 and 5 we get ‖yn‖ ≤ ‖JM2
ρ2 (I − ρ2 A2)xn − q‖+

‖q‖ ≤ ‖xn − p‖+ ‖q‖. That is, {yn} is bounded.
Step 2. We show that ‖xn −Qxn‖ → 0 and ‖xn − Txn‖ → 0 as n→ ∞, where T : C → C is defined

as Tx = limn→∞ Tnx, ∀x ∈ C. For simplicity, put q = JM2
ρ2 (p− ρ2 A2 p) and zn = JM1

ρ1 (yn − ρ1 A1yn). Then
zn = Qxn, ∀n ≥ 1. From Lemmas 1 and 5, we have

‖yn − q‖2 = ‖JM2
ρ2 (xn − ρ2 A2xn)− JM2

ρ2 (p− ρ2 A2 p)‖2

≤ ‖xn − p‖2 − 2ρ2(ζ2 − c2ρ2)‖A2xn − A2 p‖2.
(10)

Similarly, we get

‖zn − p‖2 ≤ ‖yn − q‖2 − 2ρ1(ζ1 − c2ρ1)‖A1yn − A1q‖2. (11)

Substituting (10) into (11), we obtain

‖zn − p‖2 ≤ ‖xn − p‖2 − 2ρ2(ζ2 − c2ρ2)‖A2xn − A2 p‖2 − 2ρ1(ζ1 − c2ρ1)‖A1yn − A1q‖2. (12)

From (8) and (12), we conclude

‖xn − p‖2 ≤ (1− αn − βn − γn)‖xn−1 − p‖‖xn − p‖
+ αn[〈 f (xn−1)− f (p), j(xn − p)〉+ 〈 f (p)− p, j(xn − p)〉]
+ βn(‖Sxn−1 − Sp‖+ ‖Sp− p‖)‖xn − p‖
+ γn(µ‖xn − p‖+ (1− µ)‖zn − p‖)‖xn − p‖
≤ (1− αn − βn − γn)‖xn−1 − p‖‖xn − p‖
+ αn[k‖xn−1 − p‖‖xn − p‖+ 〈 f (p)− p, j(xn − p)〉] + βn(‖xn−1 − p‖

+ ‖Sp− p‖)‖xn − p‖+ γn
(µ‖xn − p‖+ (1− µ)‖zn − p‖)2 + ‖xn − p‖2

2

≤ [1− (1− k)αn − γn]
‖xn−1 − p‖2 + ‖xn − p‖2

2
+ αn〈 f (p)− p, j(xn − p)〉

+ βn‖Sp− p‖‖xn − p‖+ γn‖xn − p‖2 − γn(1− µ)[ρ2(ζ2 − c2ρ2)‖A2xn − A2 p‖2

+ ρ1(ζ1 − c2ρ1)‖A1yn − A1q‖2],

(13)

which together with αn + βn + γn ≤ 1, immediately yields

γn(1− µ)[ρ2(ζ2 − c2ρ2)‖A2xn − A2 p‖2 + ρ1(ζ1 − c2ρ1)‖A1yn − A1q‖2]

≤ [1− (1− k)αn − γn]
‖xn−1 − p‖2 + ‖xn − p‖2

2
+ αn‖ f (p)− p‖‖xn − p‖+ βn‖Sp− p‖‖xn − p‖.

From αn → 0,
βn

αn
→ 0, γn → 1, ρi ∈ (0,

ζi
c2 ) and the boundedness of {xn}, we deduce that

limn→∞ ‖A2xn − A2 p‖ = 0 and limn→∞ ‖A1yn − A1q‖ = 0. (14)
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Also, utilizing Lemma 1 and Proposition 1, we have

‖yn − q‖2 ≤ 〈xn − p, j(yn − q)〉+ ρ2〈A2 p− A2xn, j(yn − q)〉

≤ 1
2
[‖xn − p‖2 + ‖yn − p‖2 − g1(‖xn − yn − (p− q)‖)] + ρ2‖A2 p− A2xn‖‖yn − q‖,

which implies that

‖yn − q‖2 ≤ ‖xn − p‖2 − g1(‖xn − yn − (p− q)‖) + 2ρ2‖A2 p− A2xn‖‖yn − q‖. (15)

Similarly, we get

‖zn − p‖2 ≤ ‖yn − q‖2 − g2(‖yn − zn + (p− q)‖) + 2ρ1‖A1q− A1yn‖‖zn − p‖. (16)

Substituting (15) into (16), we get

‖zn − p‖2 ≤ ‖xn − p‖2 − g1(‖xn − yn − (p− q)‖)− g2(‖yn − zn + (p− q)‖)
+ 2ρ2‖A2 p− A2xn‖‖yn − q‖+ 2ρ1‖A1q− A1yn‖‖zn − p‖.

(17)

From (13) and (17), we have

‖xn − p‖2 ≤ [1− (1− k)αn − γn]
‖xn−1 − p‖2 + ‖xn − p‖2

2
+ αn〈 f (p)− p, j(xn − p)〉

+ βn‖Sp− p‖‖xn − p‖+ γn

2
{‖xn − p‖2 + µ‖xn − p‖2 + (1− µ)[‖xn − p‖2

− g1(‖xn − yn − (p− q)‖)− g2(‖yn − zn + (p− q)‖) + 2ρ2‖A2 p− A2xn‖‖yn − q‖
+ 2ρ1‖A1q− A1yn‖‖zn − p‖]}

= [1− (1− k)αn − γn]
‖xn−1 − p‖2 + ‖xn − p‖2

2
+ αn〈 f (p)− p, j(xn − p)〉

+ βn‖Sp− p‖‖xn − p‖+ γn‖xn − p‖2 − γn(1− µ)

2
[g1(‖xn − yn − (p− q)‖)

+ g2(‖yn − zn + (p− q)‖)] + γn(1− µ)(ρ2‖A2 p− A2xn‖‖yn − q‖
+ ρ1‖A1q− A1yn‖‖zn − p‖),

which together with αn + βn + γn ≤ 1, leads to

γn(1− µ)

2
[g1(‖xn − yn − (p− q)‖) + g2(‖yn − zn + (p− q)‖)]

≤ [1− (1− k)αn − γn]
‖xn−1 − p‖2 + ‖xn − p‖2

2
+ αn‖ f (p)− p‖‖xn − p‖+ βn‖Sp− p‖‖xn − p‖

+ ρ2‖A2 p− A2xn‖‖yn − q‖+ ρ1‖A1q− A1yn‖‖zn − p‖.

Since αn → 0,
βn

αn
→ 0 and γn → 1 as n → ∞ (from (14)), and by the boundedness of {yn} and {zn},

we deduce that limn→∞ g1(‖xn − yn − (p− q)‖) = 0 and limn→∞ g2(‖yn − zn + (p− q)‖) = 0. Utilizing
the properties of g1 and g2, we conclude that

limn→∞ ‖xn − yn − (p− q)‖ = 0 and limn→∞ ‖yn − zn + (p− q)‖ = 0. (18)
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From (18), we get ‖xn − zn‖ ≤ ‖xn − yn − (p− q)‖+ ‖yn − zn + (p− q)‖ → 0 as n→ ∞. That is,

lim
n→∞

‖xn −Qxn‖ = 0. (19)

Note that

γn‖xn −Wnxn‖ ≤ (1− αn − βn − γn)‖xn−1 − xn‖+ αn‖ f (xn−1)− xn‖+ βn‖Sxn−1 − xn‖.

From αn → 0,
βn

αn
→ 0, γn → 1, and the boundedness of {xn}, { f (xn)}, and {Sxn}, we know that

lim
n→∞

‖xn −Wnxn‖ = 0. (20)

Observe that µ‖Tnxn − xn‖ = ‖Wnxn − xn − (1− µ)(Qxn − xn)‖ ≤ ‖Wnxn − xn‖+ ‖Qxn − xn‖. In terms
of (19) and (20), we obtain

lim
n→∞

‖xn − Tnxn‖ = 0. (21)

It is easy to see that conv{xn} is a nonempty bounded closed convex subset of C, where conv{xn} is the
closed convex hull of the set {xn}. By assumption, we get ∑∞

n=1 supx∈conv{xn} ‖Tn+1x − Tnx‖ < ∞. By
Lemma 10, we have limn→∞ supx∈conv{xn} ‖Tnx− Tx‖ = 0. Therefore, by (21), we conclude that

lim sup
n→∞

‖xn − Txn‖ ≤ lim sup
n→∞

(‖xn − Tnxn‖+ ‖Tnxn − Txn‖)

≤ lim sup
n→∞

‖xn − Tnxn‖+ lim sup
n→∞

sup
x∈conv{xn}

‖Tnx− Tx‖ = 0.

That is, limn→∞ ‖xn − Txn‖ = 0.
Step 3. We claim that

lim sup
n→∞

〈x∗ − f (x∗), j(x∗ − xn)〉 ≤ 0, x∗ ∈ Ω, (22)

where zt is the fixed point of the mapping z 7→ t f (z) + (1− t)(µA + (1− µ)Q)z with A := (2I − T)−1,
x∗ = limt→0+ zt and x∗ solves the VI: 〈(I − f )x∗, j(x∗ − x)〉 ≤ 0, ∀x ∈ Ω.

Indeed, note that the mapping T : C → C is defined as Tx := limn→∞ Tnx for all x ∈ C. By assumption,
we have that F(T) =

⋂∞
n=1 F(Tn). Let us show that T : C → C is pseudocontractive and continuous. As a

matter of fact, observe that for all x, y ∈ C, limn→∞ ‖Tnx− Tx‖ = 0 and limn→∞ ‖Tny− Ty‖ = 0. Since
each Tn is pseudocontractive, we get

〈Tx− Ty, j(x− y)〉 = lim
n→∞
〈Tnx− Tny, j(x− y)〉 ≤ ‖x− y‖2.

This means that T is pseudocontractive. In order to show the continuity of T on C, we suppose that
un → u as n→ ∞ with u ∈ C and {un} ⊂ C. Let D := conv({un} ∪ {u}), where conv({un} ∪ {u}) is the
closed convex hull of the set {un} ∪ {u}. Then D is a nonempty bounded closed convex subset of C. By
assumption, we obtain ∑∞

n=1 supx∈D ‖Tn+1x− Tnx‖ < ∞ for such a subset D of C. So, by Lemma 10 we
deduce that limm→∞ supx∈D ‖Tmx− Tx‖ = 0.
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We now observe that, for each given m, n ≥ 1,

‖Tun − Tu‖ ≤ ‖Tun − Tmun‖+ ‖Tmun − Tmu‖+ ‖Tmu− Tu‖
≤ sup

x∈D
‖Tx− Tmx‖+ ‖Tmun − Tmu‖+ ‖Tmu− Tu‖.

Since each Tm is continuous and un → u as n→ ∞, we have limn→∞ ‖Tmun − Tmu‖ = 0, which together
with the last inequality, implies that for each given m ≥ 1

lim sup
n→∞

‖Tun − Tu‖ ≤ lim sup
n→∞

(sup
x∈D
‖Tx− Tmx‖+ ‖Tmun − Tmu‖+ ‖Tmu− Tu‖)

≤ sup
x∈D
‖Tx− Tmx‖+ lim sup

n→∞
‖Tmun − Tmu‖+ ‖Tmu− Tu‖

= sup
x∈D
‖Tx− Tmx‖+ ‖Tmu− Tu‖.

Since limm→∞ supx∈D ‖Tx− Tmx‖ = 0 and limm→∞ ‖Tmu− Tu‖ = 0, we obtain

lim sup
n→∞

‖Tun − Tu‖ ≤ lim
m→∞

sup
x∈D
‖Tx− Tmx‖+ lim

m→∞
‖Tmu− Tu‖ = 0,

that is, limn→∞ ‖Tun − Tu‖ = 0. This means that T is continuous on C.
Suppose A := (2I − T)−1. Then A is nonexpansive and F(A) = F(T) as a consequence of Theorem 6

of [35]. So it follows that F(A) ∩ F(Q) = F(T) ∩ F(Q) =
⋂∞

n=1 F(Tn) ∩ F(Q)(=: Ω) 6= ∅. Also,
we observe that

‖xn − Axn‖ = ‖AA−1xn − Axn‖ ≤ ‖A−1xn − xn‖ = ‖(2I − T)xn − xn‖ = ‖xn − Txn‖.

Since limn→∞ ‖xn − Txn‖ = 0, we have limn→∞ ‖xn − Axn‖ = 0. Meanwhile, from Lemma 4 it is easy to
see that µA + (1− µ)Q is nonexpansive and F(µA + (1− µ)Q) = F(A) ∩ F(Q) =

⋂∞
n=1 F(Tn) ∩ F(Q)(=:

Ω) 6= ∅. Obviously, the mapping z 7→ t f (z) + (1− t)(µA + (1− µ)Q)z is a contraction of C into itself
for each t ∈ (0, 1). So, zt solves the fixed point equation zt = t f (zt) + (1− t)(µA + (1− µ)Q)zt. Then,
we have

zt − xn = (1− t)[µ(Azt − xn) + (1− µ)(Qzt − xn)] + t( f (zt)− xn). (23)

Thus, from Lemma 7 and (23), we obtain

‖zt − xn‖2 ≤ (1− t)2‖µ(Azt − xn) + (1− µ)(Qzt − xn)‖2 + 2t〈 f (zt)− xn, j(zt − xn)〉
≤ (1− t)2{µ(‖zt − xn‖2 + 2‖zt − xn‖‖Axn − xn‖+ ‖Axn − xn‖2)

+ (1− µ)(‖zt − xn‖2 + 2‖zt − xn‖‖Qxn − xn‖+ ‖Qxn − xn‖2)}
+ 2t〈 f (zt)− xn, j(zt − xn)〉
≤ (1− t)2{‖zt − xn‖2 + ‖Axn − xn‖(2‖zt − xn‖+ ‖Axn − xn‖)
+ ‖Qxn − xn‖(2‖zt − xn‖+ ‖Qxn − xn‖)}+ 2t〈 f (zt)− xn, j(zt − xn)〉,

that is,

‖zt − xn‖2 ≤ (1 + t2)‖zt − xn‖2 + ‖Axn − xn‖(2‖zt − xn‖+ ‖Axn − xn‖)
+ ‖Qxn − xn‖(2‖zt − xn‖+ ‖Qxn − xn‖) + 2t〈 f (zt)− zt, j(zt − xn)〉.
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It follows that

〈zt − f (zt), j(zt − xn)〉 ≤
t
2
‖zt − xn‖2 +

1
2t
[‖Axn − xn‖(2‖zt − xn‖+ ‖Axn − xn‖)

+ ‖Qxn − xn‖(2‖zt − xn‖+ ‖Qxn − xn‖)].
(24)

Letting n→ ∞ in (24), from ‖xn − Axn‖ → 0 and ‖xn −Qxn‖ → 0 as n→ 0, we have

lim sup
n→∞

〈zt − f (zt), j(zt − xn)〉 ≤
t
2
` (25)

where ` is a constant such that ‖zt − xn‖2 ≤ ` for all n ≥ 0 and t ∈ (0, 1). Utilizing Lemma 8 we deduce
that {zt} converges strongly to a fixed point x∗ ∈ F(µA + (1 − µ)Q) = F(A) ∩ F(Q) (= Ω), which
solves the variational inequality: 〈(I − f )x∗, j(x∗ − x)〉 ≤ 0, ∀x ∈ Ω. Since j is norm-to-norm uniformly
continuous on bounded sets of E, as t→ 0+ in (25), we get (22).

Step 4. We claim that xn → x∗ and yn → y∗ as n → ∞, where (x∗, y∗) solves the GSVI (4). Indeed,
putting p = x∗ in (13), we obtain

‖xn − x∗‖2 ≤ [1− (1− k)αn − γn]
‖xn−1 − x∗‖2 + ‖xn − x∗‖2

2
+ αn〈 f (x∗)− x∗, j(xn − x∗)〉

+ βn‖Sx∗ − x∗‖‖xn − x∗‖+ γn‖xn − x∗‖2,

which hence implies that

‖xn − x∗‖2 ≤ 1− (1− k)αn − γn

1 + (1− k)αn − γn
‖xn−1 − x∗‖2 +

2αn

1 + (1− k)αn − γn
〈 f (x∗)− x∗, j(xn − x∗)〉

+
2βn

1 + (1− k)αn − γn
‖Sx∗ − x∗‖‖xn − x∗‖

= (1− λn)‖xn−1 − x∗‖2 + λnσn,

(26)

where λn =
2(1− k)αn

1 + (1− k)αn − γn
and σn = 1

1−k 〈 f (x∗)− x∗, j(xn − x∗)〉+ βn
(1−k)αn

‖Sx∗ − x∗‖‖xn − x∗‖.

Now, observe that (1− k)αn =
2(1− k)αn

2
≤ 2(1− k)αn

1− γn + (1− k)αn
= λn. Since ∑∞

n=1 αn = ∞, we infer

that ∑∞
n=1 λn = ∞. Note that lim

n→∞

βn

αn
= 0 and lim supn→∞〈 f (x∗)− x∗, j(xn − x∗)〉 ≤ 0, due to (22). Thus,

in terms of the boundedness of {‖xn − x∗‖}, we have lim supn→∞ σn ≤ 0. Therefore, applying Lemma 9
to (26) implies that xn → x∗ as n → ∞. Moreover, putting p = x∗ and q = y∗ = JM2

ρ2 (I − ρ2 A2)x∗ in (18),
we have limn→∞ ‖xn − yn − (x∗ − y∗)‖ = 0. Also, since ‖yn − y∗‖ ≤ ‖xn − yn − (x∗ − y∗)‖+ ‖x∗ − xn‖,
we know that yn → y∗ as n→ ∞. In addition, in terms of Lemma 3 and as x∗ ∈ Ω ⊂ F(Q), (x∗, y∗) solves
the GSVI (4).
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