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1. Introduction and Preliminaries

Fixed point theory plays a fundamental role in functional analysis. Nadler [1] initiated the study
of fixed point theorems for the multivalued mappings. Due to its significance, a large number of
authors have proved many interesting multiplications of his result (see [2–8]).

Rasham et al. [9] proved the multivalued fixed point results for new generalized F-contractive
mappings on dislocated metric spaces with application to the system of integral equations.
Nazir et al. [10] showed common fixed point results for a family of generalized multivalued
F-contraction mappings in ordered metric spaces (see also [11–21]). Recently Shoaib et al. [7] discussed
the results for the family of multivalued mappings satisfying contranction on a sequence in a closed
ball in Hausdorff fuzzy metric space. For further results on closed ball, see [7,8,22–27].

In this paper, we have obtained common fixed point for the family of multivalued mappings
satisfying conditions only on a sequence contained in a closed ball. We have used a weaker class
of strictly increasing mappings F rather than the class of mappings F used by different authors.
An example which supports the proved results is also given. Moreover, we investigate our results in
a better framework of dislocated b-metric space (see [28–30]). New results in ordered spaces, partial
b-metric space, dislocated metric space, partial metric space, b-metric space, and metric space can
be obtained as corollaries of our results. We give the following definitions and results which will be
needed in the sequel.

Definition 1 ([28]). Let X be a nonempty set and let db : X × X → [0, ∞) be a function, called a dislocated
b-metric (or simply db-metric). If there exists b ≥ 1 such that for any x, y, z ∈ X, the following conditions holds:

(i) If db(x, y) = 0, then x = y;
(ii) db(x, y) = db(y, x);
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(iii) db(x, y) ≤ b[db(x, z) + db(z, y)].

The pair (X, db) is called a dislocated b-metric space. It should be noted that every dislocated metric is a
dislocated b-metric with b = 1.

It is clear that if db(x, y) = 0, then from (i), x = y. But if x = y, db(x, y) may not be 0. For x ∈ X
and ε > 0, B(x, ε) = {y ∈ X : db(x, y) ≤ ε} is a closed ball in (X, db). We will use D.B.M space instead of
dislocated b-metric space.

Definition 2 ([28]). Let (X, db) be a D.B.M space .

(i) A sequence {xn} in (X, db) is called Cauchy sequence if given ε > 0, there corresponds n0 ∈ N such that
for all n, m ≥ n0 we have db(xm, xn) < ε or lim

n,m→∞
db(xn, xm) = 0.

(ii) A sequence {xn} dislocated b-converges (for short db -converges) to x if lim
n→∞

db(xn, x) = 0. In this case x

is called a db-limit of {xn}.
(iii) (X, db) is called complete if every Cauchy sequence in X converges to a point x ∈ X such that db(x, x) = 0.

Definition 3. Let K be a nonempty subset of D.B.M space of X and let x ∈ X. An element y0 ∈ K is called a
best approximation in K if

db(x, K) = db(x, y0), where db(x, K) = inf
y∈K

db(x, y).

If each x ∈ X has at least one best approximation in K, then K is called a proximinal set.
We denote P(X) be the set of all closed proximinal subsets of X.

Definition 4 ([8]). The function Hdb
: P(X)× P(X)→ R+, defined by

Hdb
(N, M) = max{sup

n∈N
db(n, M), sup

m∈M
db(N, m)}

is called dislocated Hausdorff b−metric on P(X).

Definition 5 ([21]). Let (X, d) be a metric space. A mapping H : X → X is said to be an F−contraction if
there exists τ > 0 such that

∀j, k ∈ X, d(Hj, Hk) > 0⇒ τ + F (d(Hj, Hk)) ≤ F (d(j, k))

where F : R+ → R is a mapping satisfying the following conditions:

(F1) F is strictly increasing, i.e. for all j, k ∈ R+ such that j < k, F(j) < F(k);
(F2) For each sequence {αn}∞

n=1 of positive numbers, limn→∞ αn = 0 if and only if

limn→∞ F(αn) = −∞;
(F3) There exists k ∈ (0, 1) such that lim α→ 0+αkF(α) = 0.

Lemma 1. Let (X, db) be a D.B.M space. Let (P(X), Hdb
) be a dislocated Hausdorff b−metric space on P(X).

Then, for all G, H ∈ P(X) and for each g ∈ G such that db(g, H) = db(g, hg), where hg ∈ H. Then the
following holds:

Hdb
(G, H) ≥ db(g, hg).

2. Main Result

Let (Z, db) be a D.B.M space, c0 ∈ Z and let
{

Sβ : β ∈ Ω
}

be a family of multivalued mappings
from Z to P(Z). Then there exist c1 ∈ Sαc0 for some α ∈ Ω, such that db(c0, Sαc0) = db(c0, c1).
Let c2 ∈ Sβc1 be such that db(c1, Sβc1) = db(c1, c2). Continuing this method, we get a sequence cn of
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points in Z such that cn+1 ∈ Sγcn, db(cn, Sγcn) = db(cn, cn+1) for some γ ∈ Ω. We denote this iterative
sequence by {ZSβ(cn) : β ∈ Ω}. We say that {ZSβ(cn) : β ∈ Ω} is a sequence in Z generated by c0.

Theorem 1. Let (Z, db) be a complete D.B.M space with constant b ≥ 1 and
{

Sβ : β ∈ Ω
}

be a family of
multivalued mappings from Z to P(Z) and {ZSβ(cn) : β ∈ Ω} be a sequence in Z generated by c0. Assume
that the following hold:

(i) There exist τ, η1, η2, η3, η4 > 0 satisfying bη1 + bη2 + η3 + η4 < 1 and a strictly increasing mapping F
such that

τ + F(Hdb
(Sie, Sjy)) ≤ F

 η1db(e, y) + η2db(e, Sie)

+η3db(y, Sjy) + η4
d2

b(e, Sie).db(y, Sjy)
1 + d2

b(e, y)

 (1)

whenever e, y ∈ Bdb
(c0, r) ∩ {ZSβ(cn) : β ∈ Ω} with e 6= y, i, j ∈ Ω with i 6= j and Hdb

(Sie, Sjy) > 0.

(ii) If λ =
η1 + η2

1− η3 − η4
, then

db(c0, Sαc0) ≤ λ(1− bλ)r. (2)

Then {ZSβ(cn) : β ∈ Ω} is a sequence in Bdb
(c0, r) and {ZSβ(cn) : β ∈ Ω} → u ∈ Bdb

(c0, r). Also,
if the inequality (1) holds for u, then there exist a common fixed point for the family of multivalued mappings{

Sβ : β ∈ Ω
}

in Bdb
(c0, r) and db(u, u) = 0.

Proof. Let {ZSβ(cn) : β ∈ Ω} be a sequence in Z generated by c0. If c0 = c1, then c0 is a common fixed
point of Sα for all α ∈ Ω. Let c0 6= c1. From (2), we get

db(c0, c1) = db(c0, Sαc0) ≤ λ(1− bλ)r < r.

It follows that,
c1 ∈ Bdb

(c0, r).

Let c2, · · · , cj ∈ Bdb
(c0, r) for some j ∈ N. Now by using Lemma 1, we have

τ + F(db(cj, cj+1)) ≤ τ + F(Hdb
(Sδcj−1, Sηcj))

≤ F[η1db
(
cj−1, cj

)
+ η2db

(
cj−1, Sδcj−1

)
+ η3db

(
cj, Sηcj

)
+η4

db
(
cj−1, Sδcj−1

)
.db(cj, Sηcj)

1 + db
(
cj−1, cj

)
≤ F[η1db

(
cj−1, cj

)
+ η2db

(
cj−1, cj

)
+ η3db

(
cj, cj+1

)
+η4

d2
b
(
cj−1, cj

)
.db(cj, cj+1)

1 + d2
b
(
cj−1, cj

)
≤ F((η1 + η2)db

(
cj−1, cj

)
+ (η3 + η4)db

(
cj, cj+1

)
).

This implies

F(db(cj, cj+1)) < F((η1 + η2)db
(
cj−1, cj

)
+ (η3 + η4)db

(
cj, cj+1

)
).

As F is strictly increasing. So, we have

db(cj, cj+1) < (η1 + η2)db
(
cj−1, cj

)
+ (η3 + η4)db

(
cj, cj+1

)
.

Which implies
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(1− η3 − η4)db(cj, cj+1) < (η1 + η2)db
(
cj−1, cj

)
db(cj, cj+1) <

(
η1 + η2

1− η3 − η4

)
db
(
cj−1, cj

)
.

As λ =
η1 + η2

1− η3 − η4
< 1. Hence

db(cj, cj+1) < λdb
(
cj−1, cj

)
< λ2db

(
cj−2, cj

)
< · · · < λjdb (c0, c1) .

Now, we have
db(cj, cj+1) < λjdb (c0, c1) for some j ∈ N. (3)

Now,

db(x0, cj+1) ≤ bdb(c0, c1) + b2db(c1, c2) + · · ·+ bj+1db(cj, cj+1)

≤ bdb(c0, c1) + b2λ(db(c0, c1)) + · · ·
+bj+1λj+1(db(c0, c1)), (by (3))

db(c0, cj+1) ≤
b(1− (bλ)j+1)

1− bλ
λ(1− bλ)r < r,

which implies cj+1 ∈ Bdb
(c0, r). Hence, by induction cn ∈ Bdb

(c0, r) for all n ∈ N. Now,

db(cn, cn+1) < λndb (c0, c1) for all n ∈ N. (4)

Now, for any positive integers m, n (n > m), we have

db(cm, cn) ≤ b(db(cm, cm+1)) + b2(db(cm+1, cm+2)) + · · ·
+bn−m(db(cn−1, cn)),

< bλmdb(c0, c1) + b2λm+1db(c0, c1) + · · ·
+bn−mλn−1db(c0, c1), (by (4))

< bλm(1 + bλ + · · · )db(c0, c1)

As η1, η2, η3, η4 > 0, b ≥ 1 and bη1 + bη2 + η3 + η4 < 1, so |bλ| < 1. Then, we have

db(cm, cn) <
bλm

1− bλ
db(c0, c1)→ 0 as m→ ∞.

Hence {ZSβ(cn)} is a Cauchy sequence in Bdb
(c0, r). Since (Bdb

(c0, r), db) is a complete metric
space, so there exist u ∈ Bdb

(c0, r) such that {ZSβ(cn)} → u as n→ ∞, then

lim
n→∞

db(cn, u) = 0. (5)

Suppose that db(u, Squ) > 0, then there exist a positive integer k such that db(cn, Squ) > 0 for all
n ≥ k. For n ≥ k, we have
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db(u, Squ) ≤ db(u, cn) + db(cn, Squ)

≤ db(u, cn) + Hdb
(Sγcn−1, Squ)

< db(u, cn) + η1db(cn−1, u) + η2db(cn−1, Sγcn−1)

+η3db(u, Squ) + η4
d2

b(cn−1, Sγcn−1).db(u, Squ)
1 + d2

b(cn−1, u)
.

Letting n→ ∞, and by using (5) we get

db(u, Squ) < η3db(u, Squ) < db(u, Squ),

which is a contradiction. So our supposition is wrong. Hence db(u, Squ) = 0 or u ∈ Squ. Similarly,
by using Lemma 1, inequality (1), we can show that db(u, Siu) = 0 or u ∈ Siu for all i ∈ Ω. Now,
for some i ∈ Ω

db(u, u) ≤ bdb(u, Siu) + bdb(Siu, u) ≤ 0.

This implies that db(u, u) = 0. This completes the proof.

Example 1. Let Z = [0, ∞) and db : Z× Z → R be a complete D.B.M space defined by

db(x, y) = (x + y)2 for all x, y ∈ Z.

Consider the family of multivalued mappings Sβ : Z → P(Z) where β ∈ Ω = α, 1, 2, 3, · · · , defined as

Sn(x) =

{
[ x

3n , x
2n ] if x ∈ Bdb

(x0, r),
[2nx, 3nx] if x ∈ (4, ∞) ∩ Z,

where n = 1, 2, 3, · · · ,

and

Sα(x) =

{
[ x

3 , 5x
12 ] if x ∈ [0, 4] ∩ Z

[2x, 3x] if x ∈ (4, ∞) ∩ Z.

Suppose that, x0 = 1, r = 25, then Bdb
(x0, r) = [0, 4] ∩ Z. Now, db(x0, Sαx0) = db(1, Sα1) =

db(1, 1
3 ) =

16
9 . So x1 = 1

3 . Now, db(x1, S1x1) = db(
1
3 , S1

1
3 ) = db(

1
3 , 1

9 ). So x2 = 1
9 . Now, db(x2, S2x2) =

db(
1
9 , S2

1
9 ) = db(

1
9 , 1

54 ). So x3 = 1
54 . Continuing in this way, we have {ZSβ(xn)} = {1, 1

3 , 1
9 , 1

54 ....}.
Take η1 = 1

10 , η2 = 1
20 , η3 = 1

60 , η4 = 1
30 , then bη1 + bη2 + η3 + η4 < 1 and λ = 3

19 . Now

db(x0, Sαx0) =
16
9

<
3
19

(1− 6
19

)25 = λ(1− bλ)r.

Now, take Sα, Sn where n = 1, 2, 3, · · · . Now, if x, y ∈ Bdb
(x0, r) ∩ {ZSβ(xn)}, then, we have

Hdb
(Snx, Sαy) = max{ sup

a∈Sn x
db(a, Sαy), sup

y∈Sαy
db(Snx, b)}

= max{ sup
a∈Sn x

db(a, [
y
3

,
5y
12

]), sup
b∈Sαy

db([
x

3n
,

x
2n

], b)}

= max{db(
x

2n
,

y
3
), db(

x
3n

,
5y
12

)}

= max

{( x
2n

+
y
3

)2
,
(

x
3n

+
5y
12

)2
}

≤ 1
10

db(x, y) +
1

20
db(x, [

x
3n

,
x

2n
]) +

1
60

db(y, [
y
3

,
5y
12

])

+
1

30
d2

b(x, [ x
3n , x

2n ]).db(y, [ y
3 , 5y

12 ])

1 + d2
b(x, y)

.
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Thus,

Hdb
(Snx, Sαy) < η1db(x, y) + η2db(x, Snx) + η3db(y, Sαy) + η4

d2
b(x, Snx).db(y, Sαy)

1 + d2
b(x, y)

,

which implies that, for any τ ∈ (0, 12
95 ] and for a strictly increasing mapping F(s) = ln s, we have

τ + F(Hdb
(Snx, Sαy)) ≤ F

 η1db(x, y) + η2db(x, Snx) + η3db(y, Sαy)

+η4
d2

b(x, Snx).db(y, Sαy)
1 + d2

b(x, y)

 .

Similarly, for some i, j ∈ Ω and τ > 0, we can prove

τ + F(Hdb
(Six, Sjy)) ≤ F

 η1db(x, y) + η2db(x, Six) + η3db(y, Sjy)

+η4
d2

b(x, Six).db(y, Sjy)
1 + d2

b(x, y)

 .

Note that, for x = 6 ∈ Z, y = 7 ∈ Z, then, we have

τ + F(Hdb
(S16, Sα7)) > F

 η1db(6, 7) + η2db(6, S7) + η3db(6, S7)

+η4
d2

b(6, S7).(7, S7)
1 + d2

b(6, 7)

 .

So condition (1) does not hold on Z. Thus the mappings Sβ satisfying all the conditions of Theorem 1
only for x, y ∈ Bdb

(x0, r) ∩ {ZSβ(xn)}. Hence there exist a common fixed point for the family of multivalued
mappings

{
Sβ : β ∈ Ω

}
in Bdb

(c0, r).

If we take η2 = 0 in Theorem 1 then we are left with the following result.

Corollary 1. Let (Z, db) be a complete D.B.M space with constant b ≥ 1 and
{

Sβ : β ∈ Ω
}

be a family of
multivalued mappings from Z to P(Z) and {ZSβ(cn) : β ∈ Ω} be a sequence in Z generated by c0. Assume
that the following hold:

(i) There exist τ, η1, η3, η4 > 0 satisfying bη1 + η3 + η4 < 1 and a strictly increasing mapping F such that

τ + F(Hdb
(Sie, Sjy)) ≤ F

(
η1db(e, y) + η3db(y, Sjy) + η4

d2
b(e, Sie).db(y, Sjy)

1 + d2
b(e, y)

)
(6)

whenever e, y ∈ Bdb
(c0, r) ∩ {ZSβ(cn) : β ∈ Ω} with e 6= y, i, j ∈ Ω with i 6= j and Hdb

(Sie, Sjy) > 0.
(ii) If λ = η1

1−η3−η4
, then

db(c0, Sαc0) ≤ λ(1− bλ)r.

Then {ZSβ(cn) : β ∈ Ω} is a sequence in Bdb
(c0, r) and {ZSβ(cn) : β ∈ Ω} → u ∈ Bdb

(c0, r). Also,
if the inequality (6) holds for u, then there exist a common fixed point for the family of multivalued mappings{

Sβ : β ∈ Ω
}

in Bdb
(c0, r) and db(u, u) = 0.

If we take η3 = 0 in Theorem 1 then we are left with the following result.

Corollary 2. Let (Z, db) be a complete D.B.M space with constant b ≥ 1 and
{

Sβ : β ∈ Ω
}

be a family of
multivalued mappings from Z to P(Z) and {ZSβ(cn) : β ∈ Ω} be a sequence in Z generated by c0. Assume
that the following hold:
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(i) There exist τ, η1, η2, η4 > 0 satisfying bη1 + bη2 + η4 < 1 and a strictly increasing mapping F such that

τ + F(Hdb
(Sie, Sjy)) ≤ F

(
η1db(e, y) + η2db(e, Sie) + η4

d2
b(e, Sie).db(y, Sjy)

1 + d2
b(e, y)

)
(7)

whenever e, y ∈ Bdb
(c0, r) ∩ {ZSβ(cn) : β ∈ Ω} with e 6= y, i, j ∈ Ω with i 6= j and Hdb

(Sie, Sjy) > 0.

(ii) If λ = η1+η2
1−η4

, then
db(c0, Sαc0) ≤ λ(1− bλ)r.

Then {ZSβ(cn) : β ∈ Ω} is a sequence in Bdb
(c0, r) and {ZSβ(cn) : β ∈ Ω} → u ∈ Bdb

(c0, r). Also,
if the inequality (7) holds for u, then there exist a common fixed point for the family of multivalued mappings{

Sβ : β ∈ Ω
}

in Bdb
(c0, r) and db(u, u) = 0.

If we take η4 = 0 in Theorem 1 then we are left with the following result.

Corollary 3. Let (Z, db) be a complete D.B.M space with constant b ≥ 1 and
{

Sβ : β ∈ Ω
}

be a family of
multivalued mappings from Z to P(Z) and {ZSβ(cn) : β ∈ Ω} be a sequence in Z generated by c0. Assume
that the following hold:

(i) There exist τ, η1, η2, η3 > 0 satisfying bη1 + bη2 + η3 < 1 and a strictly increasing mapping F such that

τ + F(Hdb
(Sie, Sjy)) ≤ F

(
η1db(e, y) + η2db(e, Sie) + η3db(y, Sjy)

)
(8)

whenever e, y ∈ Bdb
(c0, r) ∩ {ZSβ(cn) : β ∈ Ω} with e 6= y, i, j ∈ Ω with i 6= j and Hdb

(Sie, Sjy) > 0.

(ii) If λ = η1+η2
1−η3

, then
db(c0, Sαc0) ≤ λ(1− bλ)r.

Then {ZSβ(cn) : β ∈ Ω} is a sequence in Bdb
(c0, r) and {ZSβ(cn) : β ∈ Ω} → u ∈ Bdb

(c0, r). Also,
if the inequality (8) holds for u, then there exist a common fixed point for the family of multivalued mappings{

Sβ : β ∈ Ω
}

in Bdb
(c0, r) and db(u, u) = 0.

3. Application to the Systems of Integral Equations

Theorem 2. Let (Z, db) be a complete D.B.M space with constant b ≥ 1. Let c0 ∈ Z and
{

Sβ : β ∈ Ω
}

be a
family of mappings from Z to Z. Assume that, there exist τ, η1, η2, η3, η4 > 0 satisfying bη1 + bη2 + η3 + η4 <

1 and a strictly increasing mapping F such that the following holds:

τ + F(db(Sαe, Sβy)) ≤ F

 η1db(e, y) + η2db(e, Sαe)

+η3db(y, Sβy) + η4
d2

b(e, Sαe).db(y, Sβy)
1 + d2

b(e, y)

 , (9)

for all e, y ∈ Z and d(Sαe, Sβy) > 0 where α, β ∈ Ω with α 6= β. Also if the inequality (9) holds for u, then the
family

{
Sβ : β ∈ Ω

}
has a unique common fixed point u in Z.

Proof. The proof of this theorem is similar as Theorem 1. We have to prove the uniqueness only. Let v
be another common fixed point of S. Suppose db(Sαu, Sβv) > 0. Then, we have

τ + F(db(Sαu, Sβv)) ≤ F

 η1db(u, v) + η2db(u, Sαu)

+η3db(v, Sβv) + η4
d2

b(u, Sαu).db(v, Sβv)
1 + d2

b(u, v)

 .

This implies that
db(u, v) < η1db(u, v) < db(u, v),

which is a contradiction. So db(Sαu, Sβv) = 0. Hence u = v.
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In this section, we discuss the application of fixed point Theorem 2 in form of Volterra type
integral equation.

u(k) =
k∫

0

Hα(k, h, u(h))dh, (10)

for all k, h ∈ [0, 1] and α ∈ Ω. We find the solution of (10). Let Z = C([0, 1],R) be the set of all
real valued continuous functions on [0, 1], endowed with the complete dislocated b-metric. For u ∈
C([0, 1],R), define supremum norm as: ‖u‖τ = sup

k∈[0,1]
{|u(k)| e−τk}, where τ > 0 is taken arbitrary.

Then define

dτ(u, c) =

[
sup

k∈[0,1]
{|u(k) + c(k)| e−τk}

]2

= ‖u + c‖2
τ

for all u, c ∈ C([0, 1],R), with these settings, (C([0, 1],R), dτ) becomes a complete D.B.M.S.
Now we prove the following theorem to ensure the existence of solution of integral equation.

Theorem 3. Assume the following conditions are satisfied:

(i) Hα : [0, 1]× [0, 1]× C([0, 1],R)→ R;
(ii) Define Sα : C([0, 1],R)→ C([0, 1],R), where α ∈ Ω

Sαu(k) =
k∫

0

Hα(k, h, u(h))dh.

Suppose there exist τ > 0, such that

∣∣Hα(k, h, u(h)) + Hβ(k, h, c(h))
∣∣ ≤ τN(u(h), c(h))

τ‖N(u, c)‖τ + 1

for all k, h ∈ [0, 1] and u, c ∈ C([0, 1],R), where

N(u(h), c(h)) = η1[|u(h) + c(h)|]2 + η2[|u(h) + Sαu(h)|]2 + η3[
∣∣c(h) + Sβc(h)

∣∣]2
+η4

[|u(h) + Sαu(h)|]4.[
∣∣c(h) + Sβc(h)

∣∣]2
1 + [|u(h) + c(h)|]4

,

where η1, η2, η3, η4 ≥ 0, and 2η1 + 2η2 + η3 + η4 < 1. Then integral Equation (10) has a solution.

Proof. By assumption (ii)

∣∣Sαu(k) + Sβc(k)
∣∣ =

k∫
0

∣∣Hα(k, h, u(h) + Hβ(k, h, c(h)))
∣∣ dh,

≤
k∫

0

τ

τ‖N(u, c)‖τ + 1
([N(u(h), c(h))]e−τh)eτhdh

≤
k∫

0

τ

τ‖N(u, c)‖τ + 1
‖N(u, c)‖τeτhdh
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≤ τ‖N(u, c)‖τ

τ‖N(u, c)‖τ + 1

k∫
0

eτhdh,

≤ ‖N(u, c)‖τ

τ‖N(u, c)‖τ + 1
eτk.

This implies ∣∣Sαu(k) + Sβc(k)
∣∣ e−τk ≤ ‖N(u, c)‖τ

τ‖N(u, c)‖τ + 1
.

‖Sαu(k) + Sβc(k)‖τ ≤
‖N(u, c)‖τ

τ‖N(u, c)‖τ + 1
.

τ‖N(u, c)‖τ + 1
‖N(u, c)‖τ

≤ 1
‖Sαu(k) + Sβc(k)‖τ

.

τ +
1

‖N(u, c)‖τ
≤ 1
‖Sαu(k) + Sβc(k)‖τ

.

which further implies

τ − 1
‖Sαu(k) + Sβc(k)‖τ

≤ −1
‖N(u, c)‖τ

.

So all the conditions of Theorem 3 are satisfied for F(c) = −1√
c ; c > 0 and dτ(u, c) = ‖u + c‖2

τ ,
b = 2. Hence integral equations given in (10) have a unique common solution.

Example 2. Consider the system of integral equations

g(k) =
1
α

k∫
0

g(h)dh, where k ∈ [0, 1] and α ∈ Ω = N.

Define Hα : [0, 1]× [0, 1]× C([0, 1],R+)→ R by Hα = 1
α g(h), α ∈ Ω = N. Now,

Sαg(k) =
1
α

k∫
0

g(h)dh.

Take η1 = 1
10 , η2 = 1

20 , η3 = 1
60 , η4 = 1

30 , τ = 12
95 , then 2η1 + 2η2 + η3 + η4 < 1. Moreover,

all conditions of Theorem 3 are satisfied and g(k) = 0 for all k, is a unique common solution to the
above equations.

4. Conclusions

In the present paper, we have achieved common fixed point of a family of multivalued mappings
satisfying conditions only on a sequence contained in a closed ball. We have used a weaker class of
strictly increasing mappings F rather than the class of mappings F used by many potential authors.
Examples and an application are given to demonstrate the variety of our results. New results for
families of multivalued mappings and singlevalued contractive mappings in ordered spaces, partial
b-metric space, dislocated metric space, partial metric space, b-metric space, and metric space can be
obtained as corollaries of our results.
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