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Abstract: Recently, George et al. (in Georgea, R.; Radenovicb, S.; Reshmac, K.P; Shuklad, S.
Rectangular b-metric space and contraction principles. J. Nonlinear Sci. Appl. 2015, 8, 1005-1013)
furnished the notion of rectangular b-metric pace (RBMS) by taking the place of the binary sum of
triangular inequality in the definition of a b-metric space ternary sum and proved some results for
Banach and Kannan contractions in such space. In this paper, we achieved fixed-point results for a
pair of F-dominated mappings fulfilling a generalized rational F-dominated contractive condition
in the better framework of complete rectangular b-metric spaces complete rectangular b-metric
spaces. Some new fixed-point results with graphic contractions for a pair of graph-dominated
mappings on rectangular b-metric space have been obtained. Some examples are given to illustrate
our conclusions. New results in ordered spaces, partial b-metric space, dislocated metric space,
dislocated b-metric space, partial metric space, b-metric space, rectangular metric spaces, and metric
space can be obtained as corollaries of our results.

Keywords: fixed point; generalized F-contraction; a.-dominated mapping; graphic contractions

MSC: 46Txx; 47H10; 54H25

1. Introduction and Preliminaries

Fixed-point theory is a basic tool in functional analysis. Banach [1] has shown significant result
for contraction mappings. Due to its significance, a large number of authors have proved newsworthy
of this result (see [1-28]). In the sequel George et al. [2] furnished the notion of rectangular b-metric
space (RBMS) by taking the place of the binary sum of triangular inequality in the definition of a
b-metric space ternary sum and proved some results for Banach and Kannan contractions in such space.
Further recent results on rectangular b-metric spaces can be seen in [10,11]. In this paper, we achieved
fixed-point results for a pair of a-dominated mappings fulfilling a generalized rational F-dominated
contractive condition in complete rectangular b-metric spaces. Therefore, here, we investigate our
results in a better framework of rectangular b-metric space. Some new fixed-point results with graphic
contractions for a pair of graph-dominated mappings on rectangular b-metric space have been obtained.
New results in ordered spaces, partial b-metric space, dislocated metric space, dislocated b-metric
space, partial metric space, b-metric space, rectangular metric spaces, and metric space can be obtained
as corollaries of our results. First, we give the precise definitions that we will use.

Definition 1 ([2]). Let Z be a nonempty set and let d; : Z x Z — [0, c0) be a function, called a rectangular
b-metric (or simply dj-metric), if there exists b > 1 such that the following conditions hold:
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(i) di(g,p) =0, ifand only if g = p;

(i) di(g, p) = di(p, 8);

(iii) dy (g, p) < bld)(g,q) +d;(q,h) +d;(h, p)] for all g, p € Z and all distinct points q,h € Z~ {g,p}.
The pair (Z,d;) is said a rectangular b-metric space (in short R.B.M.S) with coefficient b.

Definition 2 ([2]). Let (Z,d;) be a R.B.M.S.

(i) A sequence {gn } in (Z,d;) said to be Cauchy sequence if for each ¢ > 0, there corresponds ny € N such that
forall n,m > ny we have d;(gm, gn) < € or . }%r_r}oo d;(gn,gm) = 0.

(ii) A sequence {gy } rectangular b-converges (for short d; -converges) to g if nlgrgo d;(gn,8) = 0. In this case, g

is called a dj-limit of {gn }.
(iii) (Z,d;) is complete if every Cauchy sequence in Z converges to a point g € Z for which d;(g,8) = 0.

Example 1 ([2]). Let Z = N defined : Z x Z — Z such that d(u,v) = d(v,u) forall u,v € Z and

0, ifu=uv;
100, ifu=10v=2;
d(u,v) = a, ifue{l,2}andv € {3};

20, ifu € {1,2,3} and v € {4};
3a, ifuorv ¢ {1,2,3,4} and u # v;

where « > 0 is a constant. Then (Z,d) is a R.B.M.S with coefficient b = 2 > 1, but (Z,d) does not be
a rectangular metric, since

d(1,2) = 10a > 5a = d(1,3) + d(3,4) + d(4,2).

Definition 3 ([26]). Let (Z,d;) be a metric space, S : Z — P(Z) be a multivalued mapping and o : Z X Z —
[0, 4+00). Let A C Z, the mapping S is said semi a,-admissible on A, if a(x,y) > 1 implies a,(Sx,Sy) > 1,
forall x € A, where a(Sx,Sy) = inf{a(a,b) : a € Sx,b € Sy}. When A = Z, we say that the S is
wy-admissible on Z. In the case in which S is a single valued mapping, the previous definition becomes.

Definition 4. Let (Z,d;) bea R.B.M.S. Let S : Z — Z be a mappingand o : Z X Z — [0, +00). IfFA C Z,
we say that the S is a-dominated on A, whenever a(i,Si) > 1 foralli € A.If A = Z, we say that S is
a-dominated.

Definition 5 ([28]). Let (Z,d) be a metric space. A mapping H : Z — Z is said to be an A —contraction if
there exists T > 0 such that

Vj,k € Z, d(Hj, Hk) > 0 = T+ A (d(Hj, Hk)) < A (d(j,k))

with A : Ry — R real function which satisfies three assumptions:

(F1) A is strictly increasing

(F2) For any sequence {a, }>_ of positive real numbers, limy, 0o &y = 0 is equivalent to limy, o A(ay) =
_Oo;

(F3) There is k € (0,1) for which lima — 0TaXA(a) = 0.

Example 2 ([19]). Let Z = R. Define the mapping o : Z x Z — [0,0) by

B lifx >y
a(x,y) = { %otherwise }

Define the self-mappings S,T : Z — Z by Sx = %, and Ty = %, where x,yy € Z. Suppose x = 3and y = 2.
As3 > 2, then a(3,2) > 1. Now, a(S3,T2) =  # 1, this means the pair (S, T) is not a-admissible. Also,
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x(83,52) # 1and a(T3,T2) # 1. This implies S and T are not a-admissible individually. Now, a(x, Sx) > 1,
forall x € Z. Hence S is a-dominated mapping. Similarly it is clear that «(y, Ty) > 1 for all x € Z. Hence it is
clear that S and T are a-dominated but not a-admissible.

2. Main Result

Theorem 1. Let (Z,d;) be a complete R.B.M.S with coefficient b > 1. Let a : Z x Z — [0, 00) be a function
and S, T : Z — Z be the a-dominated mappings on Z. Suppose that the following condition is satisfied:

There exist T,11, 12, 13,4 > 0 satisfying byy + byjp 4+ (1 + b)byz 4 174 < 1and a continuous and strictly
increasing real function F such that

)

d?(e,Se).d (y, Ty)

+173dl (E, T]/) + ’74 1+d12(6,y)

T+ F(d;(Se, Ty)) < F ( mdi(e,y) + n2d; (e, Se) ) /

whenever e,y € {gn}, a(e,y) > 1and d;(Se, Ty) > 0 “where the sequence gy is defined by go arbitrary in Z,
Sont1 = S(TS)"go and gp, = (TS)"T1go”. Then a(gn, gni1) > 1foralln € NU{0} and {g,} — u € Z.
Also, if the inequality (1) holds for u and either a(gn, u) > 1or a(u,g,) > 1foralln € NU{0}, then S and T
have a common fixed point u in Z.

Proof. Chose a point g¢ in Z such that g; = Sgp and g» = Tg;. Continuing this process we construct
a sequence {g, } of points in Z such that g»,11 = Sg2, and g2,,4+2 = T, +1for all for all n € NU {0}.
Letgy,---,8 € Z for some j € N. If jis odd, then j = 2i 4+ 1 for some ? € N. Since S,T: Z — Z
be the a-dominated mappings on Z, so (g2, Sg2;) > 1 and a (g1, T¢2i+1) > 1. As a (g2, 5¢21) > 1,
this implies (g2, Sg21) = a(g2i, §21+1) > 1 where g2;11 = Sg2. Now, by using inequality (1),

T+ F(d)(82i+1,§21+2)) < T+ F(d(S82,Tg2+1))

[ 1dy (21, 82041) + 124 (821, S21) + 113dy (821, Tg241)
< F n d7(821,5821)-d1(82141,T82111)

i 1+d7 (g21,82141)
. md; (821, §2i+1) + 1724, (gzz,gzzz+1) + byad; (821, §2i4+1)
< d; (821,82141)-41(82141,82142)

| g 8a2) T g )

< F(m +m2+bys)d; (821, 82i+1) + (b3 + 17a)d; (82141, §2142)] -
This implies

F(di(g2i4+1,82142)) < F

(111 + 172 + bz )d; (821, 82111)
+(byz + 114)d; (82141, 82142)

As F is strictly increasing. Therefore, we have

d1(g21+1, §21+2) <

(1 +n2 + byz)d; (821, §2i+1)
+(byz + 174)d; (82141, 82142) -

Which implies
(1= bz —na)di(g2+1,82142) < (1 +m2+bnz)d; (821, §2141)

+o+b
di($2i41,82142) < <W> d; (82, §2i+1) -
1—byz—1a

Now, we note that by assumption of inequality (1) it immediately follows A = % < 1. Hence

(82141, §2142) < My (821, 82141) < A%y (8211, 821) < -+ < A%Td; (g0, 81) -
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Similarly, if  is even, we have
di(2i+2, §2143) < A*2d; (g0,81). @)

Now, we have '
dl(gj/ngrl) < )\]dl (go,gl) fOI‘j e N. (3)

Also w(gn,gn+1) > 1foralln € NU{0}. Now,
dl(gnrgnJrl) < Andl (g()/gl) foralln € N. 4)
Now, for any positive integers m, n (m > n), we have

< b[di(gn, &n+1) + di(8nv1, &nv2) + di(8ns2,8m)]
< b[di(gn, §nr1) + di(8nv1, Gnv2)] + Vi (§n42, §n+3)
+d;(8n+3,8n+a) + d1(gnras gm)]

di(gn, gm)

< BT+ A" (g0, 81) + DPATE 4+ A" 3]d) (g0, 81)
B[N 4+ A]d) (g0, 81) + - -
+UPIA T (90, 81), (by (2.4))

< BAM[14 DA+ 0PAT - Jdi(g0, 81)
FOATH 14+ bA + DPA + - 1 (g0, 1)

< %b?\"dz(go,gl)

As 11,12,113,1a > 0,b > 1and by + bya + (1+ b)bys + 74 < 1, 50 |[bA?| < 1. Then, we have

14+A
di(gn, gm) < mb/\”dz(go,gl) —0asn — .

Hence {g,} is a Cauchy sequence in Z. Since (Z, d;) is a complete metric space, so there exist
u € Z such that {g,} — uasn — oo, then

lim d, (gn,u) = 0. )

By assumption, (1, g,) > 1. Suppose that d;(u, Su) > 0, then there exists positive integer k such
that d;(Tg2,+1,Su) > 0 for all n > k. For n > k, we have

d(u, Su) bld;(u,8n) + di(8n, S2n+2) + di(g2n+2, Su)]

bldy(u, gn) +di(8n, §2nt1) +di(T2n 41, Su)]

bld;(u,gn) + di(gn, San+1) +d1(Su, Tg2u11)]
di(u, gn) + di(gn, §2ns1) +1mdi(u, g2n41)

< b +i12d; (u, Su) 4 13d; (82141, T&2n41)
+ dl(ursu)-dlz(gZWJreranJrl)
T )

ININ A

Letting n — oo, and by using the inequalities (4) and (5) we get

dy(u, Su) < n3d;(u, Su) < d;(u, Su),
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which is a contradiction. So, our supposition is wrong. Hence d; (1, Su) = 0. Similarly, by using the

above inequlity

bld;(u, gn) + di(8n, ont1) + di(gont1, Tur)]
bld;(u, gn) + di(gn, onr1) + d1(Sg2n, Tu)]

IN A

we can get d;(u, Tu) = 0. This shows that u is a common fixed pointof Sand T. [

Example 3. Let Z = AUB, where A = {1 :n € {2,3,4,5}} and B = [1,2]. Defined, : Z x Z — [0, )
such that defined by d;(x,y) = d;(y, x) for x,y € Z and

di(3,3) =di(,5) = 0.03

di(3,5) = di(5,) = 0.02

d(3, 1) =di(3,3) =06
di(x,y) = |x —y[*  otherwise.

be the complete R.B.M.S with coefficient b = 4 > 1 but (Z,d;) is neither a metric space nor a rectangular
metric space. Take 111 = 15, 112 = 55,13 = g5, 14 = 30, T € (0, 58] then bypy + bz + (1 +b)byz + 14 < 1,
A= % and F(x) = Inx. Consider the mapping « : Z x Z — [0, c0) by

o= {0

% otherwise

Let S, T : Z — Z be defined as

1 1
Sy — %{zfxeA Ty — §>szxeA
7ifx €B. 7ifx €B.
As}, Y€ Z,a(},3) > 1taking F(x) = Inx, for any T € (0, §2]. Then S and T satisfy the condition of
Theorem 1.
If, we take S = T in Theorem 1, then we are left with result.

Corollary 1. Let (Z,d;) be a complete R.B.M.S with coefficient b > 1. Let o : Z X Z — [0, 00) be a function
and S : Z — Z be the a-dominated mapping on Z. Suppose that the following condition is satisfied:

There exist T,11, 12, 113, 114 > 0 satisfying by + by + (1 +b)byz + 14 < 1and a continuous and strictly
increasing real function F such that

(6)

2 (e,Se).d; (y,5y)

mdi(e,y) +n2d;(e, Se)
4 ,
+nad; (e, Sy) + 14

T+ F(d;(Se,Sy)) < F
1+d12(e,y)

whenever e,y € {gn}, a(e,y) > 1and d;(Se, Sy) > 0 “where the sequence g, is defined by gy arbitrary in Z,
Qont1 = S?"g0”. Then a(gn, gui1) > 1foralln € NU{0} and {gn} — u € Z. Also, if the inequality (6)
holds for u and either a(gn, u) > 1 or a(u,g,) > 1 foralln € NU {0}, then S and T have a common fixed
point u in Z.

If, we take 17o = 0 in Theorem 1, then we are left with the result.

Corollary 2. Let (Z,d;) be a complete R.B.M.S with constant b > 1. Let « : Z x Z — [0, ) be a function
and S, T : Z — Z be the a-dominated mappings on Z. Suppose that the following condition is satisfied:
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There exist T, 11,13, 14 > 0satisfying byyy + (14 b)byz + n4 < 1and a continuous and strictly increasing
real function F such that

@)

14 d7 (e,Se).dy (y,Ty)

md;(e,y) + nad;(e, Ty)
T+ F(d;(Se, Ty)) < F ,
l+d12(e,y)

whenever e,y € {gn}, a(e,y) > 1and d;(Se, Ty) > 0 “where the sequence gy is defined by gy arbitrary in Z,
gont1 = S(TS)"go and g, = (TS)"1gy”. Then a(gn, gns1) > 1foralln € NU {0} and {g,} — u € Z.
Also, if the inequality (7) holds for u and either a(gn, u) > 1or a(u,g,) > 1foralln € NU{0}, then Sand T
have common fixed point u in Z.

If, we take 13 = 0 in Theorem 1, then we are left with the result.

Corollary 3. Let (Z,d;) be a complete R.B.M.S with constant b > 1. Let  : Z x Z — [0, 00) be a function
and S, T : Z — Z be the a-dominated mappings on Z. Suppose that the following condition is satisfied:
There exist T,11,%2,14 > 0 satisfying by + by +n4 < 1 and a continuous and strictly increasing real
function F such that

®)

s 2 (e,Se).dy (y,Ty)

mdi(e,y) +mn2d;(e, Se)
T+ F(d;(Se, Ty)) < F ,
1+d12(e,y)

whenever e,y € {gn}, a(e,y) > 1and d;(Se, Ty) > 0 “where the sequence g is defined by go arbitrary in Z,
Sont1 = S(TS)"go and o, = (TS)"*1go”. Then a(gn, gny1) > 1foralln € NU{0} and {g,} — u € Z.
Also, if the inequality (8) holds for u and either a(gn, u) > 1or a(u,g,) > 1foralln € NU{0}, then Sand T
have common fixed point u in Z.

If, we take 4 = 0 in Theorem 1, then we are left with the result.

Corollary 4. Let (Z,d;) be a complete R.B.M.S with coefficient b > 1. Let « : Z X Z — [0,00) be a function
and S, T : Z — Z be the a-dominated mappings on Z. Suppose that the following condition is satisfied:

There exist T,11,12, 13, 14 > 0 satisfying by + bya + (14 b)bys + 14 < 1 and a continuous and strictly
increasing real function F such that

mdi(e,y) +n2d;(e, Se)
T+ E(d)(Se, Ty)) < F ( Cdie, Ty) ) / ©)

whenever e,y € {gn}, a(e,y) > 1and d;(Se, Ty) > 0 “where the sequence g, is defined by go arbitrary in Z,
9oni1 = S(TS)"go and g, = (TS)" gy, Then a(gn, gui1) > 1foralln € NU{0} and {g,} — u € Z.
Also, if the inequality (9) holds for u and either a(gu, u) > 1or a(u,g,) > 1foralln € NU{0}, then S and T
have a common fixed point u in Z.

3. Fixed Points for Graphic Contractions

Lastly, we give a realization of Theorem 1 in graph theory. Jachymski, [14], shown the particular
case for contraction mappings on metric space with a graph. Hussain et al. [12], introduced the concept
of graphic contractions and obtained a point fixed result. Further results on graphic contraction can
be seen in [8,21,27]. Shang [25], discussed briefly basic notions of graph limit theory and fix some
necessary notations and presented many interesting applications.

Definition 6. Let Z be a nonempty set and Q = (V(Q), W(Q)) be a graph such that V(Q) = Z, A C Z.
A mapping S : Z — Z is said to be a graph dominated on A if (p,q) € W(Q), forall g € Sp and q € A.

Theorem 2. Let (Z,d;) be a complete R.B.M.S endowed with a graph Q with coefficient b > 1. Let S, T :
Z — Z be two self mappings. Suppose that the following satisfy:
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(i) S and T are graph dominated on Z.
(i) There exist T, 11,12, 13,4 > 0 satisfying byy + by + (14 b)byz + 174 < 1 and a continuous and strictly
increasing real function F such that

(10)

mdi(p,q) +1n2di(p, Sp)
T+ F(Hy (Sp, Tq)) < F ,

di (p.Sp)d1(4,Tq)
+13di(p. 1) + 14~ 2527, 05
whenever p,q € {gn}, (p,q) € W(Q) and d;(Sp, Tq) > 0 “where the sequence g, is defined by gy arbitrary
inZ, gony1 = S(TS)"go and go, = (TS)"1g0”. Then (gn, gui1) € W(Q) and {gn} — m*. Also, if the
inequality (10) holds for m* and (g,, m*) € W(Q) or (m*,g,) € W(Q) foralln € NU {0}, then S and T
have common fixed point m* in Z.

Proof. Define, a : Z x Z — [0,0) by

x(p,q) = { 1,01 ifpez, (p.g) € WQ)

otherwise.

As S and T are graph dominated on Z, then for p € Z, (p,q) € W(Q) for all ¢ € Sp and
(p,q) € W(Q) forall g € Tp. Therefore, a(p,q) = 1forallg € Spand a(p,q) = 1forallg € Tp. Hence
a«(p,Sp) =1, a(p, Tp) = 1forall p € Z. Therefore, S, T : Z — Z are the a-dominated mappings on
Z. Moreover, inequality (10) can be written as

2(p,Sp)-d1(4,Tq)

d
+m3d1(p, Tq) + 14

( mdi(p,q) +m2di(p, Sp) )
T+ F(Hy (Sp,Tq)) < F

1+d? (pg)

whenever p,q € {gu}, a(p,q) > 1 and d;(Sp,Tq) > 0. Also, (ii) holds. Then, by Theorem 1, we
have {g,} — s* € Z. Now, g, s* € Z and either (g,,5*) € W(Q) or (s*,g,) € W(Q) implies that
either a(gu,s*) > 1 or a(s*,gn) > 1. Therefore, all the conditions of Theorem 1 are satisfied. Hence,
by Theorem 1, S and T have a common fixed point s* in Z and d;(s*,s*) = 0. O

4. Conclusions

In the present work, we have achieved fixed-point results for new generalized F-contraction
for a more general class of a-dominated mappings rather than a.-admissible mappings and for a
weaker class of strictly increasing mapping F rather than class of mappings F used by Wordowski [28].
We introduced the concept of a pair of graph-dominated mappings and given a fixed-point existence
result of a fixed point for graphic contractions. Our results generalized and extended many recent
fixed-point results of Rasham et al. [16,20], Wordowski’s result [28], Ameer et al. [6] and many classical
results in the current literature (see [4,7,9,13,17,18,23,24]).
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