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Abstract: The present work introduces the application of rational Chebyshev collocation technique for
approximating bio-mathematical problems of continuous population models for single and interacting
species (C.P.M.). We study systematically the logistic growth model in a population, prey-predator
model: Lotka-Volterra system (L.V.M.), the simple two-species Lotka-Volterra competition model
(L.V.C.M.) and the prey-predator model with limit cycle periodic behavior (P.P.M.). For testing the
accuracy, the numerical results for our method and others existing methods as well as the exact
solution are compared. The obtained numerical results indicate the ability, the reliability and the
accuracy of the present method.

Keywords: rational Chebyshev functions; continuous population models; rational Chebyshev
collocation method; nonlinear differential equations

1. Introduction

As we know, the nonlinear differential equations and their system play a crucial role due to their
applications in applied mathematics and science, for example, in real life phenomena modeling and in
many other fields of science, such as the epidemic model [1,2], kinetic model [3,4], ozone decomposition
model [5,6], dynamical models of happiness [7], modeling of mosquito dispersal [8], modeling a
thermal explosion [9] and Volterra population model [10].

The purpose of this investigation is applying rational Chebyshev (RC) collocation method to solve
four nonlinear biological problems. Four problems are investigated; the first problem is the continuous
population model (C.P.M.) represented as a nonlinear first order ordinary differential equation,
whereas the other models are systems of non-linear differential equations. They are represented,
respectively, as the Lotka-Volterra system (L.V.M.), Lotka-Volterra competition model (L.V.C.M.) and
prey-predator model (P.P.M.) [11].

Spectral methods have an important and significant role in approximate differential equations,
which makes it easy in treating many phenomena and models in physics, engineering, economic and
many other fields. The most common distinguished feature for spectral methods is using them as a
basis in form polynomials or functions that are orthogonal with respect to the weight functions defined
in bounded and unbounded domain.

The choice of trial functions gives the spectral methods a great distinguish feature. This choice
depended on the analytical solution of the differential equation denoted by f (x) and the values of
x for the proposed equation. This means that if f (x) is polynomial in finite domain use Chebyshev
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polynomials, but if f (x) periodic prefer Fourier series. If f (x) defined in unbounded domain then use
Hermit functions or exponential Chebyshev functions. However, if the solution defined in semi-infinite
interval x ∈ [0,∞) uses Laguerre functions or rational Chebyshev functions, especially the solution
f (x) in fraction or exponential form in semi-infinite domain, the RC functions is preferred.

The RC functions were proposed by Boyd [12] in 1987, used as a basis function with the spectral
methods. RC collocation method is one of the spectral methods characterized by the domain and gives
us high efficient and better accuracy especially if the analytical solution is as fraction or exponential
form. The RC collocation method transforms the proposed four nonlinear biological problems and
conditions to algebraic non-linear systems of equations with unknown RC coefficients. In terms
of the RC functions the solutions are, then obtained after solving the systems. On the other hand,
rational Chebyshev functions are presented to solve differential equation in many papers by Ramadan
et al. [13–18] and Yuksel et al. [19].

2. Definition, Properties and Derivative of Rational Chebyshev Functions

In this section, we use an algebraic transformation to extend the domain of Chebyshev polynomials
to semi-infinite domain, which provide set of bases functions so called rational Chebyshev functions
that deal with differential equations define on an infinite interval.

The new basis are written as TLn(x):

TLn(x) = Tn(y) = cos nθ (1)

where L is a constant map parameter and the three coordinates are related by:

x =
L(1 + y)

1− y
, y =

x− L
x + L

(2)

x = L cot2(θ/2), θ = 2arc cot([x/L]1/2). (3)

To avoid confusion as we leap from one coordinate to another, we shall adopt the convention
that x ∈ [0,∞) is the argument of the TLn(x), y ∈ [−1, 1] is the argument of the ordinary Chebyshev
polynomials Tn(x), and θ ∈ [0,π] is the argument of the cosines [12,20].

From Equations (1) and (2) we get:

TLn(x) = Tn(y) = Tn

( x− L
x + L

)
. (4)

In this study we take L = 1 (according to the study by Boyd [12], this is the optimal value of L),
and relation (4) obtains as:

TLn(x) = Tn

( x− 1
x + 1

)
= Rn(x),

where we symbolized rational Chebyshev function as Rn(x) instead of TLn(x). Consequently, from above
we can define rational Chebyshev functions as following.

The rational Chebyshev functions Rn(x) of the first kind are functions of x defined on Λ,
Λ = {x/0 ≤ x < ∞} defined by the relation:

Rn(x) = T
( x− 1

x + 1

)
, when x = cot2(θ/2) x ∈ Λ.

If the variable x ranges in the interval [0, ∞) hence the corresponding θ ranges in [0,π]. Now,
since x = 0 corresponds to θ = π and x→∞ corresponds to θ = 0, these ranges are traversed in
opposite directions.
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The solution function y(x) defined on Λ can be expanded in terms of RC functions where RC
functions are orthogonal and complete, as:

y(x) =
∞∑

n=0

anRn(x), (5)

where:

an =
2

cnπ

∫
Λ

Rn(x)y(x)w(x)dx,

with respect to the weight function w(x) = 1/((x + 1)
√

x), and:

cn =

{
2, n = 0
1, n ≥ 1

For more details, (see [14]).
If in Expression (5), y(x) is truncated to N < ∞ for the RC functions, then y(x) will be in the

following form:

y(x) =
N∑

n=0

anRn(x) =R(x)A, x ∈ Λ, (6)

where N is chosen as positive integer and an is unknown RC coefficients, where R(x) is a row vector
with size 1 × (N + 1) of RC functions and A is a column vector with size (N + 1) × 1 as:

R(x) =
[

R0(x) R1(x) . . . RN(x)
]

And A =
[

a0 a1 · · · aN
]T

.

The kth order derivative of y(x) according to Equation (6):

y(k)(x) =
N∑

n=0

an(Rn(x))
(k) =R(k)(x)A. (7)

When applying RC collocation method in the interval x ∈ [0,∞) will define the collocation
points by:

xk =

1 + cos
(

kπ
N

)
1− cos

(
kπ
N

) , k = 1, . . . , N, (8)

and at k = 0 x0 →∞ .
However, if x ∈ [0, q], where q < ∞will take the collocation points as:

xk =
k
N

q, k = 0, 1, 2, . . . , N. (9)

We are interested only on the initial behavior of solutions, since our numerical tests are in the
interval [0,1].

3. Description of the Problems

The size of population will grow if the rate of birth exceeds the death rate. The growth of
Malthusian model is the grandfather of all population models:

dN
dt

= (b− d)N(t),
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where N(t) is number of individuals in a population at time t while b and d are the average per capita
rate of birth and rate of death respectively. The solution for N (t) will grow exponentially, that is,
N(t) = N0ert where r = b− d and N0 is an initial population size [11].

However, over a long period of time, the growth law of exponential form for the size of population
is unrealistic. Thus, we may consider that the environment has intrinsic carrying capacity K to define
the model in the well-known logistic form: N′(t) = rN − rN2

K ,
N(0) = N0,

0 ≤ t ≤ b, (10)

where b is appropriate constant, we may transform (10) to dimensionless as:

u(τ) =
N(t)

K
, τ = rt,

and takes the form: {
u′(τ) = u− u2,
u0 = N0

K ,
(11)

where, u0 = u(0).
Hence, the exact solution of (11) takes the form:

u(τ) =
1

1 + (K/N0 − 1)e−τ
. (12)

The next model, L.V.M., is governed by:{
N′(t) = αN − βPN,
P′(t) = γPN − λP,

(13)

where α, β, γ and λ are appropriate constants. Here, the prey population is P = P(t) and the predator at
time t is that N = N(t). Transforming system (13) to dimensionless form by setting:

u(τ) =
γN(t)
λ

, v(τ) =
βP(t)
α

, τ = αt, a =
λ
α

.

this finally becomes: 
u′(τ) = u− uv,
v′(τ) = auv− av,
u0 = d, v0 = l.

(14)

Lastly, L.V.C.M. is considered. Each of the two species N1 and N2 having logistic growth in the
absence of the other, where the logistic growth inclusion in the L.V.M. makes them more realistic.
However, we consider the simpler model that gives a lot of the properties of more complicated models
to highlight the principle, especially in regarding stability. Therefore, we consider the system as: N′1(t) = r1N1 −

r1N2
1

K1
− β12

r1N1N2
K1

,

N′2(t) = r2N2 − β21
r2N2N1

K2
−

r2N2
2N2

K2
,

(15)

the constants r1, K1, r2, K2, β12 and β21 are all positive. Additionally, the r’s represent the rates of birth,
while the Ks are the carrying capacities. In addition, the constants β12 and β21 give a measure to the
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competitive effect of N2 on N1 and N1 on N2, respectively: in general they are not equal. This model
can also be non-dimensionalized by writing:

u =
N1

K1
, v =

N2

K2
, τ = r1t, a =

r2

r1
, b = b12

K2

K1
, c = b21

K1

K2
.

Now, we can express (15) by: 
u′(τ) = u− u2

− buv,
v′(τ) = av− av− acuv,
u0 = d, v0 = l.

(16)

Finally, P.P.M. is represented as: N′(t) = rN − rN2

K −
kNP

N+D ,
P′(t) = Ps− hP2s

N ,
(17)

where r, K, k, D, s and h are positive constants. The following relations can be used by being
non-dimensionalized (17):

u =
N
K

, v =
hP
K

, τ = rt, a =
D
K

, b =
k
hr

c =
s
r

,

The system (17) takes the following form:
u′(τ) = u− u2

−
buv
u+a ,

v′(τ) = cv− cv2

u ,
u0 = d, v0 = l.

(18)

4. Method Description

Consider the nonlinear first order initial value problem (11) as follows:

u′(τ) = u− u2,

with initial condition:
u0 =

N0

K
It is easy to conclude the following nonlinear equation in the unknown vector A:

R′A = RA− (RA)2 (19)

u(τ) is approximated, as in Equation (6). Note that the typical collocation method is employed to
obtain the approximate solution uN(τ). Thus, Equation (19) is collocated at (N + 1) points, which may
be taken as Equation (9) where q = 1:

τk =
k
N

,

Then, the proposed technique produced a system of (N + 1) nonlinear algebraic equation.
By applying the same technique on the condition, we will get another equation, and then replace it by
any equation of the nonlinear system. Hence, the nonlinear system is in the RC coefficients, where one
can use a suitable numerical method to solve this system. For example, the Newton iterative method
with 100 iterations can be used to obtain uN(τ).
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Similarly, with the nonlinear systems (14), (16) and (18), uN(τ) and vN(τ) can also be obtained by
using the collocation method: {

R′ A1 = RA1 −RA1R A2,
R′ A2 = aR A2R A1 − aR A2,

(20)

 R′ A1 = R A1 − (R A1)
2
− bR A2R A1,

R′ A2 = aR A2 − a(R A2)
2
− caR A1R A2,

(21)

 R′ A1 = R A1 − (R A1)
2
−

b R A1 R A2
R A1 +a ,

R′ A2 = cR A2 −
cA2R A2

A1
.

(22)

where

R(x) =
[

R0(x) R1(x) . . . RN(x)
]
, R(1)(x) =

[
R(1)

0 (x) R(1)
1 (x) . . . R(1)

N (x)
]
.

and
A1 =

[
a10 a11 · · · a1N

]T
, A2 =

[
a20 a21 · · · a2N

]T
.

Additionally, by substituting Equation (9) where q = 1, and replacing the equation that we got
from the condition, we get a block non-linear system. Hence, a set of 2(N + 1) nonlinear system is
generated in the RC coefficients. The Newton iterative method is used with 100 iterations. Then,
we can obtain the approximate solutions of uN(τ) land vN(τ).

5. Stability and Error Estimation

The collocation method is considered to be one of most common spectral techniques used to
handle the solution of differential equations. This method is easy to be implemented once the
operational matrices are computed. The condition number of the coefficient matrix, which is always
full, behaving like O(N2 j) (j represents differential equation order); see [21,22]. The four models are
from the first order ( j = 1); we found that N ∈ [6, 16]. Thus, the maximum condition number of the
RC coefficient vector of the system in this study operates similar to O(256). Thus, this approach is
well-conditioned and is a stable RC collocation method.

Error Estimation

The accuracy of (11) is checked by computing the absolute error eN, which is defined as:

eN =
∣∣∣u(τ) − uN(τ)

∣∣∣. (23)

As the approximate solutions of Equations (14), (16) and (18) are computed, the approximate
solutions uN(τ), vN(τ), with their derivatives are replaced in systems. From that, we can get the
residual error for the three systems, which for the second system take the form:{

e1,N =
∣∣∣u′N(τk) − uN(τk) + uN(τk)vN(τk)

∣∣∣ � 0,
e2,N =

∣∣∣v′N(τk) − auN(τk)vN(τk) + avN(τk)
∣∣∣ � 0,

(24)

and for the third system: e1,N =
∣∣∣∣u′N(τk) − uN(τk) + (uN(τk))

2 + buN(τk)vN(τk)
∣∣∣∣ � 0,

e2,N =
∣∣∣∣v′N(τk) + acuN(τk)vN(τk) + a(vN(τk))

2
− avN(τk)

∣∣∣∣ � 0,
(25)
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and the fourth system:
e1,N =

∣∣∣∣u′N(τk) − uN(τk) + (uN(τk))
2 +

buN(τk)vN(τk)
uN(τk)+a

∣∣∣∣ � 0,

e2,N =

∣∣∣∣∣v′N(τk) − cvN(τk) +
c(vN(τk))

2

uN(τk)

∣∣∣∣∣ � 0,
(26)

where τk ∈ [0, 1], ei,N ≤ 10−qk , i = 1, 2 (where qk positive integer), see [21,22].

6. Numerical Results and Discussion

Four models are considered to obtain the effectiveness properties and accuracy of the RC collocation
method. The calculations are carried out on the P.C. Mathematica 7.0 program (Wolform Research, Inc.
100 Trade Center Drive Champing IL 61820-7237, USA). Additionally, these problems are solved by a
fourth order Runge-Kutta method.

6.1. Example 1

Consider the following problem for first model. This example is mentioned in [23–26]:{
u′(τ) = u− u2,
u0 = 2,

where N0
K = 2 and the analytic solution is u(τ) = 2

2−e−τ .
The presented method is applied to get the approximate solution uN(t) for N = 6, 8, 10 and 16 by

the truncated rational Chebyshev series. Table 1 shows the coefficients ai of the rational Chebyshev

series at different N as uN(τ) =
N∑

i=0
aiRi(τ), while Table 2 shows the comparison of the results of the

presented method at N = 6, 8, 10 and 16 with the analytical solution. Table 3 shows the results of
the other methods. When compared to ours, the results of our method shows higher efficiently and
accuracy along the domain [0,1]. The solution mentioned by He’s Homotopy perturbation method [24]
are given as:

u = 2− 2τp + 3τ2p− (13/3)τ3p + (25/4)τ4p− (541/60)τ5p + (1561/120)τ6p
−(47293/2520)τ7p + (36389/1344)τ8p,

Table 1. The results of rational Chebyshev (RC) coefficients series.

i N = 6 N = 8 N = 10

0 1.3743038652494135 1.3815676658579128 1.378760897008215
1 −0.48569746796934876 −0.472360965127773 −0.47762275444551
2 0.1573910657307733 0.1676676751696002 0.163340333772166
3 0.02472470081167393 0.03130192087870919 0.028193249891979
4 0.008651101531889627 0.01207803143254162 0.010142873118876
5 0.0014836127284939531 0.00288300087697244 0.001852300099965
6 0.00016481305874272199 0.00058424467628341 0.000123719346054
7 - 0.00007957368660952 −0.00008777552305
8 - 5.913178179 × 10−6 −0.00004101762781
9 - - −9.1851265 × 10−6

10 - - −9.7072067 × 10−7
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Table 2. Approximate solution of the proposed method with the analytical solution.

τi
u(t) The Exact

Solution
uN(t) Proposed Method

N = 6 N = 8 N = 10 N = 16

0 2 2 2.0 2 2
0.2 1.693094106370 1.693097310282 1.693094124641 1.693094084261 1.693094106329
0.4 1.504121344416 1.504123163285 1.504121356087 1.504121329981 1.504121344389
0.6 1.378180841125 1.378182097628 1.378180849124 1.378180831198 1.378180841107
0.8 1.289764207701 1.289765195162 1.289764213455 1.289764200594 1.289764207687
1.0 1.225399673561 1.225399087991 1.225399690622 1.225399670101 1.225399673550

Table 3. The approximate solutions of the other method.

τi
Bessel Collocation
Method [25] N = 10

Shifted Chebyshev
Collocation
Method [26]

He’s Homotopy
Perturbation

Method [24] N = 8

Runge-Kutta
Method N = 10

h = 0.1

Runge-Kutta
Method N = 100

h = 0.01

0.0 2.0 2.0 2.0 2.0 2.0
0.2 1.69309344793 1.6930940588 1.69310962730 1.69309839098 1.69309410677
0.4 1.50412090406 1.5041219473 1.51061414603 1.50412551760 1.50412134481
0.6 1.37818054385 1.3781801288 1.58918166286 1.37818429507 1.37818084145
0.8 1.28976406729 1.2897638171 3.72352625778 1.28976697188 1.28976420796
1.0 1.22542276706 1.2253849971 17.2164186508 1..122540187518 1.22539967376

The He’s Homotopy perturbation solution gives Adomian solution at p = 1, thus the results of
Adomian solution [23] are not mentioned. These results are given in Table 3 and are approximately the
same in seven decimal places.

The errors obtained in Tables 4 and 5 show that the proposed method is the most efficient.
In Table 6, a comparison of the L2, L∞ error norms of the proposed method and Bessel collocation
method shows that N = 6 and 10, thus, the present method is more accurate. Figure 1 shows the
approximate solution for RC collocation method at N= 6, 8, 10 and 16, where, Figure 2 obtains the error
functions for the present method at different N, finally, Figure 3 comparing the error functions for RC
collocation method and Bessel collocation method.

Table 4. Comparing absolute errors of RC collocation method for different values of N.

τi e6 e8 e10 e16

0.0 0 0 0 0
0.2 3.20391 × 10−6 1.82704 × 10−8 2.21096 × 10−8 4.10847 × 10−11

0.4 1.81887 × 10−6 1.16713 × 10−8 1.44351 × 10−8 2.65399 × 10−11

0.6 1.2565 × 10−6 7.99841 × 10−9 9.92748 × 10−9 1.8243 × 10−11

0.8 9.87462 × 10−7 5.75504 × 10−9 7.10665 × 10−9 1.30811 × 10−11

1.0 5.85569 × 10−7 1.70622 × 10−8 3.45884 × 10−9 9.6152 × 10−12

Table 5. Comparing absolute errors for pervious works.

Bessel
Collocation
Method [25]

Shifted Chebyshev
Collocation
Method [26]

He’s Homotopy
Perturbation
Method [24]

Runge–Kutta Method

τi e10 - e8 N = 10 h = 0.1 N = 100 h = 0.01
0.0 0.0 0.0 0.0 0.0 0.0
0.2 6.5844 × 10−7 4.75702 × 10−8 1.5521 × 10−5 4.28461 × 10−6 4.08747 × 10−10

0.4 4.4035 × 10−7 6.02884 × 10−7 6.4928 × 10−3 4.17319 × 10−6 3.94976 × 10−10

0.6 2.9727 × 10−7 7.12326 × 10−7 2.1100 × 10−1 3.45395 × 10−6 3.25475 × 10−10

0.8 1.4041 × 10−7 3.90601 × 10−7 2.433800 2.76418 × 10−6 2.59781 × 10−10

1.0 2.3094 × 10−5 1.46765 × 10−5 15.99100 2.20162 × 10−6 2.06548 × 10−10
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Table 6. Comparison of the L2, L∞ errors norm.

L2 Proposed
Method

L2 Bessel
Collocation [21]

L∞ Proposed
Method

L∞ Bessel
Collocation [21]

N = 6 1.17678 × 10−11 1.56377 × 10−6 3.43964 × 10−6 2.20598 × 10−3

N = 10 7.53488 × 10−16 1.69564 × 10−10 3.09021 × 10−8 2.30935 × 10−5

N = 16 2.43726 × 10−16 - 5.29949 × 10−11 -
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Figure 1. Approximate solution for RC collocation method at different N values.
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Figure 2. Error functions for the present method at different N values.
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6.2. Example 2

The nonlinear system with the initial conditions for third model is considered as [24]:
u′(τ) = u− u2

− uv,
v′(τ) = v− 0.8uv− v2,
u0 = 1, v0 = 1.
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The approximate solution by H’s Homotopy perturbation method mentioned:

u = 1− τ+ 1.4τ2
− 1.9607τ3 + 2.5814τ4 + . . .

v = 1− 0.8τ+ 1.12τ2
− 1.472τ3 + 1.9397τ4 + . . .

By applying the present method to find the approximate solutions uN(τ) and vN(τ) for N = 8 and
10 by the rational Chebyshev functions:

uN(τ) =
N∑

i=0

aiRi(τ) and vN(τ) =
N∑

i=0

biRi(τ)

The results in Table 7 shows the comparison of the approximate solutions of RC collocation
method at N = 10 with other methods. Table 8 contains the residual errors of present method and the
He’s Homotopy perturbation method [24]. From the two tables, we can see that the RC collocation
method has better accuracy along the domain [0,1], which is clear in Figures 4 and 5.

Table 7. Numerical results for vN(τ) and uN(τ) at N = 10 compared with another methods.

uN(τ) vN(τ)

τi
Proposed

Method N = 10
Fourth Order
Runge-Kutta

He’s
Homotopy [24]

Proposed
Method N = 10

Fourth Order
Runge-Kutta

He’s
Homotopy [24]

0.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.2 0.843998 0.842106 0.844877 0.875479 0.875552 0.876128
0.4 0.744861 0.73666 0.768055 0.797484 0.79815 0.814648
0.6 0.676850 0.661213 0.826702 0.745510 0.747394 0.856633
0.8 0.627632 0.604487 1.177110 0.709539 0.713175 1.117640

Table 8. The residual errors of the RC collocation method and He’s Homotopy.

uN(τ) vN(τ)

τi e8 e10
He’s

Homotopy e8 e10 He’s Homotopy

0.0 0 1.11022 × 10−16 0.0 0 −1.11022 × 10−16
−1.11022 × 10−16

0.2 3.18832 × 10−7 0 0.0229604 −3.01595 × 10−7 0 0.0170781
0.4 2.08784 × 10−8 0 0.313171 −1.83947 × 10−8 5.55112 × 10−17 0.235563
0.6 −9.89687 × 10−9 0 1.41601 8.0971 × 10−9 5.55112 × 10−17 1.07387
0.8 −3.85544 × 10−8

−5.55112 × 10−17 4.38991 2.92022 × 10−8
−5.55112 × 10−17 3.32221
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6.3. Example 3

The system for the second model is mentioned in [23–25] and is given with:
u′(τ) = u− uv,
v′(τ) = uv− v,
u0 = 1.3, v0 = 0.6 .

To find the approximate solutions uN(τ) and vN(τ), we apply the RC collocation method for N = 6,
9 and 10 by using the rational Chebyshev functions:

uN(τ) =
N∑

i=0

aiRi(τ) and vN(τ) =
N∑

i=0

biRi(τ).

Tables 9 and 10 contain comparison of previous works and the present method in the interval
[0,1]. Tables 11 and 12 contain the residual errors of previous works and present method.

Table 9. Comparison between RC collocation method and other methods for uN(τ).

τi
Bessel Collocation
Method N = 9 [25]

He’s Homotopy Perturbation
Method [24] and Adomian [23]

Fourth Order
Runge-Kutta

Proposed Method
N = 9

0.0 1.30000 1.30000 1.30000 1.30000
0.2 1.40250 1.40250 1.40432 1.40240
0.4 1.49742 1.49747 1.50641 1.49726
0.6 1.57645 1.57664 1.60048 1.57625
0.8 1.62988 1.62987 1.67896 1.62962
1.0 1.64799 1.64509 1.73280 1.64769

Table 10. Comparison between RC collocation method and other methods for vN(τ).

τi
Bessel Collocation
Method N = 9 [25]

He’s Homotopy Perturbation
Method [24] and Adomian [23]

Fourth Order
Runge-Kutta

Proposed Method
N = 9

0.0 0.60000 0.60000 0.60000 0.60000
0.2 0.64370 0.64371 0.64378 0.64386
0.4 0.70445 0.70453 0.70522 0.70461
0.6 0.78459 0.78529 0.78792 0.78473
0.8 0.88563 0.88918 0.89576 0.88575
1.0 1.00702 1.01980 1.03209 1.00712
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Table 11. Comparison of the residual errors of other methods.

uN(τ) vN(τ)

τi
e9 Bessel Collocation

Method [25]

He’s Homotopy
Perturbation Method [24]

and Adomian [23]

e9 Bessel Collocation
Method [25]

He’s Homotopy
Perturbation Method [24]
and Adomian [23] N = 9

0.0 0 −2.22045 × 10−16 0 0
0.2 7.5143 × 10−9 0.0363226 3.6872 × 10−9 −0.00239656
0.4 3.9632 × 10−9 0.122843 1.8683 × 10−9 −0.0168928
0.6 5.5576 × 10−9 0.258709 2.4142 × 10−9 −0.0549218
0.8 2.4248 × 10−8 0.444968 8.9296 × 10−9 −0.128288
1.0 5.6282 × 10−6 0.6838 1.4089 × 10−6 −0.2484

Table 12. Comparison of the errors of the present of different values for N.

uN(τ) vN(τ)
τi e6 e9 e10 e6 e9 e10

0.0 1.44329 × 10−15 9.88098 × 10−15
−4.996 × 10−15 1.77636 × 10−15

−8.52096 × 10−15 1.94567 × 10−14

0.2 1.40608 × 10−3 2.09602 × 10−5
−8.88178 × 10−16

−3.11203 × 10−5
−4.55058 × 10−5

−2.66454 × 10−15

0.4 −4.41867 × 10−4 3.06784 × 10−6
−1.77636 × 10−15

−1.76244 × 10−5 5.98195 × 10−6 1.27676 × 10−15

0.6 2.58461 × 10−4 1.46951 × 10−6
−7.77156 × 10−16 3.17073 × 10−5

−2.6324 × 10−6 2.27596 × 10−15

0.8 −3.21336 × 10−4 2.60506 × 10−6 0 −7.55635 × 10−5
−4.3658 × 10−6 4.44089 × 10−16

1.0 7.10364 × 10−3
−2.89201 × 10−4

−1.37099 × 10−4 2.77429 × 10−3 4.60118 × 10−4 1.49865 × 10−4

6.4. Example 4

For the nonlinear system for the fourth model, as mentioned in [24], is given with:
u′(τ) = u− u2

−
uv

u+10 ,
v′(τ) = 5v− 5v2

u ,
u0 = 1.3, v0 = 1.2.

He’s Homotopy perturbation method introduces the approximate solution, which takes the
form [24]:

u = 1.3− 0.5281τ+ 0.8415τ2
− 2.399τ3 + 3.7396τ4 + . . .

v = 1.2 + 0.4615τ− 4.2024τ2 + 35.8016τ3
− 760.493τ4 + . . .

By applying the proposed method to get the approximate solutions uN(τ) and vN(τ) for N = 8 and
10 given in Table 13, and comparison between fourth order Runge-Kutta method and the Homotopy
perturbation method [24]. We can see from Table 14, which contains the residual errors and Figures 6
and 7, that the present method is more accurate.

Table 13. Comparing the results for RC collocation method with other methods.

uN(τ) vN(τ)

τi
Proposed Method He’s Homotopy

[24]
Fourth Order
Runge-Kutta

Proposed Method He’s Homotopy
[24]

Fourth Order
Runge-KuttaN = 8 N = 10 N = 8 N = 10

0.0 1.30000 1.30000 1.30000 1.30000 1.20000 1.20000 1.20000 1.20000
0.2 1.20944 1.20944 1.21483 1.20953 1.22773 1.22773 0.19383 1.22768
0.4 1.14291 1.14291 1.16560 1.14310 1.18981 1.18981 −16.46510 1.18987
0.6 1.09334 1.09334 1.25255 1.09334 1.13990 1.13990 −90.86270 1.13996
0.8 1.05582 1.05582 1.71953 1.05541 1.09507 1.09507 −294.2880 1.09492
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Table 14. The residual errors for RC collocation method and He’s Homotopy perturbation method.

uN(τ) vN(τ)
τi e8 e10 He’s Homotopy e8 e10 He’s Homotopy

0.0 −2.77556 × 10−16 3.60822 × 10−16
−4.69027 × 10−5 2.16493 × 10−15 6.10623 × 10−16

−3.84615 × 10−5

0.2 6.31305 × 10−8 1.11022 × 10−16 −0.07773280 6.53084 × 10−6 1.59595 × 10−15 −22.07360
0.4 4.97209 × 10−9 3.46945 × 10−16 −1.5748900 3.38616 × 10−7 1.19349 × 10−15 1064.8400
0.6 −2.74813 × 10−9 1.52656 × 10−16 −8.676020 −1.33023 × 10−7

−6.10623 × 10−16 32,788.300
0.8 −1.21897 × 10−8 2.22045 × 10−16 −38.070800 −4.49676 × 10−7 8.32667 × 10−17 251,805.00
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Figure 7. Approximate solution vN(τ) at different N with He’s Homotopy solution.

Finally, the numerical computations for all examples are carried out by the Mathematica 7.0,
with usual personal computer with specifications (Intel processor CORE i3 2.53 GHz, 2.00 GB RAM).
Additionally, in Table 15, the CPU time used by the program for all examples using rational Chebyshev
collocation method and He’s Homotopy perturbation method are computed.

Table 15. The CPU time used for all examples.

Example He’s
Homotopy

RC Collocation Method
N = 6 N = 8 N = 9 N = 10 N = 16

1 0.296 0.704 1.17 - 1.5 2.247
2 0.281 - 1.374 - 2.154 -
3 0.233 0.861 - 1.809 1.965 -
4 0.364 1.358 - 2.09 -

The results in Table 15 for the CPU time are expected, since in the He’s Homotopy perturbation
method, the code takes a few steps to be implemented, while in our method, the models are transformed
to a system of algebraic nonlinear equations that need more speed/storage to be solved.
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7. Conclusions

In this paper, an application of the collocation technique for solving single and interacting
species C.P.M. using rational Chebyshev series is investigated. The three models we considered are
the population logistic growth model, an L.V.M., an L.V.C.M. and a P.P.M. Upon using the rational
Chebyshev collocation points, this method transforms the four models to system of nonlinear equations
with unknown rational Chebyshev coefficients. A considerable advantage of this technique is that it
is very simple to implement using the Mathematica 7.0 computer program. The obtained numerical
results indicate the ability and reliability and accuracy of the present method. From this work, we can
see the rational Chebyshev functions are better bases to deal with problems such as the four models,
as we see the analytical solution of the first model C.P.M. in fraction form for this proposed technique
gives high efficiency along the domain. Moreover, the rational Chebyshev functions can deal with
large domains, even if x tends to infinity.
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