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Abstract: Foeplitz and Loeplitz matrices are Toeplitz matrices with entries being Fibonacci and Lucas
numbers, respectively. In this paper, explicit expressions of determinants and inverse matrices of
Foeplitz and Loeplitz matrices are studied. Specifically, the determinant of the n x n Foeplitz matrix
is the (n + 1)th Fibonacci number, while the inverse matrix of the n x n Foeplitz matrix is sparse and
can be expressed by the nth and the (n + 1)th Fibonacci number. Similarly, the determinant of the
n x n Loeplitz matrix can be expressed by use of the (1 + 1)th Lucas number, and the inverse matrix
of the n x n (n > 3) Loeplitz matrix can be expressed by only seven elements with each element
being the explicit expressions of Lucas numbers. Finally, several numerical examples are illustrated
to show the effectiveness of our new theoretical results.
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1. Introduction

Toeplitz matrices often arise in statistics, econometrics, psychometrics, structural engineering,
multichannel filtering, reflection seismology, etc. (see [1,2] and references therein). Furthermore, they
have been employed in quite wide fields of applications, especially in the elliptic Dirichlet-periodic
boundary value problems [3], solving fractional diffusion equations [4-6], numerical analysis [7], signal
processing [7], and system theory [7], etc. Citations of a large number of results have been made in a
series of papers and in the monographs of Iohvidov [8] and Heining and Rost [9].

It seems to be an ideal research area and current topic of interest to specify inverses of Toeplitz
matrices as well as the special Toeplitz matrices involving famous numbers as entries. Some scholars
showed the explicit determinant and inverse of the special matrices involving famous numbers. The
authors [10] proposed the invertibility of generalized Lucas skew circulant matrices and provided
the determinant and the inverse matrix. Furthermore, the invertibility of generalized Lucas skew
left circulant matrices was also discussed. The determinant and the inverse matrix of generalized
Lucas skew left circulant matrices were obtained respectively. The determinants and inverses of
Tribonacci skew circulant type matrices were discussed in [11]. The authors provided determinants
and inverses of circulant matrices with Jacobsthal and Jacobsthal-Lucas numbers in [12]. The explicit
determinants of circulant and left circulant matrices including Tribonacci numbers and generalized
Lucas numbers were shown based on Tribonacci numbers and generalized Lucas numbers only in [13].
Moreover, four kinds of norms and bounds for the spread of these matrices were discussed respectively.
In [14], circulant type matrices with the k-Fibonacci and k-Lucas numbers were considered and the
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explicit determinant and inverse matrix were presented by constructing the transformation matrices.
Jiang et al. [15] gave the invertibility of circulant type matrices with the sum and product of Fibonacci
and Lucas numbers and provided the determinants and the inverses of the these matrices. Jiang and
Hong [16] studied exact form determinants of the RSFPLR circulant matrices and the RSLPFL circulant
matrices involving Padovan, Perrin, Tribonacci, and the generalized Lucas number by the inverse
factorization of a polynomial. It is worthwhile to note that Akbulak and Bozkurt gave the upper and
lower bounds for the spectral norms of the Fibonacci and Lucas Toeplitz matrices [17].

In this paper, we will show the explicit determinants and inverses of the Foeplitz matrix and
Fankel matrix both involving Fibonacci numbers (see Definitions 1 and 2 below), and the Loeplitz
matrix and Lankel matrix both involving Lucas numbers (see Definitions 3 and 4). The main results are
obtained by factoring the considered matrices into structured factors, whose determinant and inverse are
computed exactly, and then reassembling the factorization. This paper provides a novel characterization
of Fibonacci or Lucas numbers as the determinant of Toeplitz matrices containing numbers from the same
sequence. In fact, the main contribution of this paper is that Toeplitz matrix, tridiagonal Toeplitz matrices
with perturbed corner entries, the Fibonacci number, and the Golden Ratio are connected together.

Here the Fibonacci and Lucas sequences (see, e.g., [18]) are defined by the following recurrence
relations, respectively:

Foyvi=F +F_1(n>1), where F=0F=1,
Lyvi=Ly+L, 1(n>=1), where Ly=2L1=1,
Fopppy=—Fu+F__q)(n>1), where F=0 F;=1,

L (ys1y=—Lon+L_(_1)(n>1), where Ly=2 L 1=-1

The following identities are easily attainable

Foy=(—1)"""Fy, Loy = (—1)"Ln, 1)
ni:zaiL _ L1 — @ Lo + 0" L1 + 0" Ly_ogi o £ —1++/5 ?)
= i a2+a—1 ’ 27
nizai]; - Ly — Ly +a" gy + "Ly (o) 2t 1++5 3)
=t e a2 —a—1 ’ 2
Definition 1. An n x n Foeplitz matrix is defined as a Toeplitz matrix of the form
51 R - K1 H
F 51 R
TF,n - : s (4)
Fuyn - " B I3
Fyw Fyupn -+ Fo R

nxn

where Fy, Fyy, ---, Fiy are the Fibonacci numbers.
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Definition 2. An n x n Fankel matrix is defined as a Hankel matrix of the form

Fy Fn—l o 15}
F,bey - o FH
HF,n -
K F . .
R Fo - Fun
where Fy, Fyy, ---, Fiy are the Fibonacci numbers.

Definition 3. An n x n Loeplitz matrix is defined as a Toeplitz matrix of the form

Ly Ly -+ Ly
L_» Lq
TL,n =
L—n-l—l .. - Ll
Ly L—n+1 o Lop
where Ly, L4y, ---, Ly, are the Lucas numbers.

31
F o

F—n+1
F_n

nxn

nxn

Definition 4. An n x n Lankel matrix is defined as a Hankel matrix of the form

Ly Ly1 -+ Lo
Lyw - Ly
HL,n -
Ly Lq . .
Ly Lo -+ Loy
where Ly, Lyy, ---, Ly, are the Lucas numbers.

It is easy to check that

HF,n = TF,nIn ’
HL,n = TL,nIn ’

Ly
L,

L—n—i—l
Ly

nxn

30f19

©)

(6)

@)

)
©)

where [, is the counteridentity matrix, the square matrix whose elements are all equal to zero except
those on the counter-diagonal, which are all equal to 1, which provide us with basic relations between

Tty and Hr ,,, and Ty , and Hj ,, respectively.
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Lemma 1. ([19], Lemma 2.5) Define an n x n bi-band-Toeplitz matrix by

& 0 - cee o 0
B«
0 x :
f}’l(lxl ) = . ’B ) ) ) . ’
B« 0
0 0 B a/, .,
the inverse of F,(«, B) can be expressed as
AL 0 0
AV JEAN}
Ay Ay A :
]:n(ﬂc,ﬁ)_lz ,
Ap—2
Ap1 Dn JAV IRAN] 0
Ap Dy1 Dyz 0 Az Ay N

nxn

where -
_B)i—
Ai = %, i>1.
lX’

Remark 1. This Lemma is a special case of ([19], Lemma 2.5).

2. The Determinant and Inverse Matrix of Foeplitz, Fankel, Loeplitz, and Lankel Matrices

In this section, we study the determinant and the inverse of Foeplitz, Fankel, Loeplitz, and Lankel
matrices by factoring the considered matrices into structured factors, whose determinant and inverse
are computed exactly, and then reassembling the factorization. We establish the relationship between
the determinant of these matrices and Fibonacci or Lucas numbers.

2.1. Determinant and Inverse Matrix of a Foeplitz Matrix

In this subsection, the determinant and the inverse of the Foeplitz matrix Tr , are studied.
Theorem 1. Let T, be an n x n Foeplitz matrix defined as in (4). Then Tr ,, is invertible and
detTr, = Fuq1, (10)

where F, 1 is the (n + 1)th Fibonacci number.
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Proof. For n < 3, it is easy to check that detTr; =1 = F,, detTrp, = 2 = F; and detTr3 = 3 =

F;. Therefore, Equation (10) is satisfied. Now, we consider the case n > 3. Define two additional
nonsingular matrices,

—_
—_
o
o

—F_, 1
1
—F 1 1 -1 0
A= 0 1 -1 -1 /B = 1 0
0 1 -1 -1 e o1 0 -0/ .
Multiplying Tr , by A; from the left, we obtain
R KB B - kK1 K
0 wa ag -+ @y 1 ap
B2 Bs - Pu1 Pn
Al TF,YL = . 7
0 0 1 0
0 0 1 0 0
nxn
where
w; =—F_,F+ F—n+i—1/ (l =23, ,1’1), (11)
Bi=—F yaF+F i (i=23,n-1),
,Bn = _F—n—an~ (12)
Then, multiplying A;Tf , by B; from the right, we have
Fl Fn Fn—l s F3 FZ
0 an aypq1 - a3 a
0 Bu Pun1 -+ B3 P2
A1TrpB1 = 0O 0 1 o --- 0 ’ (13)
0 0 0 1 0
nxn

and

det(A1 TF,nBl) = det(Al) det(Tp,n) det(Bl)
=R [(=1)""faan — (=1)" 2]
=(—1)"  F[(—~F-nFy + F)(=F_y 1Fa + F_p) + F_yy 1Fo(=F-yF2 + F_,1)].

From the definition of A; and By, we get

(n—1)(n-2)
2

det Ay =detB; = (—1)
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Therefore, we have

det TF,n :(_1)n71Fl[(_F—nFn + Fl)(_F*n71F2 + F—n)
+ F—n—an(_anFz + F—n+1)]

=In+1-
Since F,+1 # 0, the n x n Foeplitz matrix is invertible. Thus, the proof is completed. [

Remark 2. Theorem 1 gives the relationship between the Foeplitz matrix and the Fibonacci number. From the
perspective of number theory, the (n + 1)th Fibonacci number can be represented by the determinant of an n x n
Foeplitz matrix.

Theorem 2. Let T, be an n x n Foeplitz matrix defined as in (4). The inverse matrix of Tg ,, is

i ("
Fn+l 1 O O 0 O Fn+l
1 -1 =1 0 0 -+ -+« =0 0
0 1 -1 -1 0 0
1 -1 -1
To=| . L | : (14)

0 A 0 T D I |

-1 Ey
J 0 0 1 Fup1 nxn

where F, and F, 1 are the nth and (n + 1)th Fibonacci numbers, respectively.

Proof. For n =1, it is easy to check that

_ F
T =1and Tpl = 2.
F1 F1 FZ
For n = 2, we have
1 1 _ i1
Tplz ( 1 1 ) and TF,% = ( % 12 >/
- 2 2
and for n = 3, we have
1 1 2 z2 1 -1
Tra=| -1 1 1 |andTr3=|( 1 -1 -1 [,
2 -1 1 -1 1 3
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which are in agreement with Equation (14). Now, we consider the case n > 4. The explicit expression
of the inverse of the Foeplitz matrix can be obtained by use of Equation (14). Define addtionally two
nonsigular matrices

1 0 -+ cvi eee oo 0
0 1
Bn
0 —¢ 1
Ad=11 0
o
0 0 0 1
nxn
and F F F
1 _% %_pn_l %‘3_1:3 %‘;2_1:2
[
I e
1 0 0
BZ_ 7
: . 1
0o --- 0 1

where «; and B, are defined as in (11) and (12), respectively.
Multiplying A1TF ,,B1 by Az from the left and by B, from the right, we obtain

ATryB = AyA1Tr ,B1B

FF 0 0 0 0 0
0 ay 0 0 0 0
0 0 Byq— Lt g, Putea gy Pl g, Pt
_ 1 0 0 ,
1
0 0 1 0
nxn
where
1 0
—F, 1
P B bt O
e 0 1 -1 -1 ’
0 I -1 -1 nxn
1 f Bt g Buop Buop
0 0 1
B=BiB=| | . . . . :
1 0 0
0 1 — -2 —

o &n &n nxn
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with «; and B, are defined as in (11) and (12), respectively. In addition, the matrix ATr ,B admits a
block partition of the form

ATp,B=N& M, (15)

where N & M denotes the direct sum of the matrices N and M, N = diag(F;, ) is a nonsingular
diagonal matrix, and

—ﬁ”ffiz_l+l3n—1 —ﬁ”ffi;”z—Fﬁnfz _%‘34_‘33 _%4_52
1 0 - 0
M = 0 1
0 0 1 0 (n—2)x(n—2)
From (15), we obtain
Ty =B(N"'eM A
Based on the defintions of N and M, we have N~! = diag(F; !, &;!) and
0 1 0 e 0
-1 _ . . .
M = : . . 0
0 e e 0 1
Ay _ Bun—10n—Pny-1 . Baon—Pnos  _ Baan—Pnas
Baan—PBnaz B2on—PBnaz Battn—Pnas Batn—Pnity (n—2)x(n—2)
By direct computation, we have
B 1 0 0 0 o U
n+1 n+1
1 1 =1 0 0 -+ cee .o 0 0
0 1 -1 -1 0 0
1 -1 -1
Tp,=B(N"'eM A=
1 -1 -1 0
0 1 -1 -1
Fyii1 0 1 Fua nxn

O

Remark 3. It is well known that if you divide F, by F, 1, then these ratios get closer and closer to about
0.618, which is known to many people as the Golden Ratio, a number which has fascinated mathematicians,
scientists and artists for centuries. Equation (14) can be appreciated in many different ways, and it is easy to see
that top-left and bottom-right corner entries of Ty ; get closer and closer to the Golden Ratio. In fact, Toeplitz
matrices, tridiagonal Toeplitz matrices with perturbed corner entries, the Fibonacci number, and the Golden
Ratio are all connected by Equation (14).
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2.2. Determinant and Inverse Matrix of a Fankel Matrix

In this subsection, the determinant and the inverse of the Fankel matrix Hr , are studied.

Theorem 3. Let Hr , be an n X n Fankel matrix defined as in (5). Then Hr ,, is invertible and

(n=1)n

deth,n I(*l) 2 Fn+1,

where F, 1 is the (n + 1)th Fibonacci number.

Proof. From (8), it follows that det Hr,, = det I, det Tr ;. We obtain this conclusion by the fact that

det [, = (—1)n(n;1) and Theorem 1. O

Remark 4. This Theorem gives the relationship between the Fankel matrix and the Fibonacci number. From the
standpoint of number theory, the (n + 1)th Fibonacci number can be expressed as the product of the determinant
of an n X n Fankel matrix and a sign function.

Theorem 4. Let Hf ,, be an n x n Fankel matrix defined as in (5). Then inverse matrix of Hp ,, is

~g= 0 0 0 0 - 0 0 1 g
0 O 0 1 -1 =1

1 -1 -1 0
Heb=| o : : (16)

0 1 -1 -1 :
1 B o I 0

Fy _ e (_1)n
ey 1 0 0 0 0 0 0 T e

where F, and F, 1 are the nth and (n + 1)th Fibonacci numbers, respectively.
Proof. We obtain this conclusion by formula (8) and Theorem 2. [

Remark 5. Equation (16) can be appreciated in many different ways, and it is easy to see that bottom-left and
top-right corner entries of Hp 111 get closer and closer to the Golden Ratio. In fact, Hankel matrices, sub-tridiagonal
Hankel matrices with perturl;ed corner entries, the Fibonacci number, and the Golden Ratio are all connected by
Equation (16).

2.3. Determinant and Inverse Matrix of a Loeplitz Matrix

In this subsection, the determinant and the inverse of the Loeplitz matrix Ty , are studied.
Theorem 5. Let T1 , be an n x n Loeplitz matrix defined as in (6). Then T ,, is invertible and
detTy, = (—1)""1L,, 1 — 2", forn>1, (17)

where Ly, 11 is the (n + 1)th Lucas number.
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Proof. For n < 3, itis easy to check that
det TL,l =1, det TL,Z = —8 and det TL,B = -1

Therefore, Equation (17) is satisfied. Now, we consider the case n > 3. Define additional nonsingular

matrices,
1
—L_y, 1
—L_, 1 1 -1
A = 0 1 -1 -1

0 1 -1 -1

nxn
Multiplying Ty , by Ay from the left, we obtain
Ly Ly Ly -+ Ly Ly-1 Lan
0 a a3 -+ ap2 ay1 an
0 by b3 -+ by byq by
MTip — 0 B | 2 -1 0 ,
2 -1
0 2 -1 0 0/ ..

where

a;=—LyLi+L i1, (i=23,--,n-1),

ay = —L_,L, + Ll/

bi=—L yqLi+L 412 (=23 n~— 2>’ (18)
by1=-L_, 1L, 1+Li—L_,,

b,=—-L_, 1L, + L, — L.

Then, multiplying A;T; ,, by B; from the right, we have

Ly Lp Ly1 Lp2 -+ L3 L
0 an a1 apo -+ az a
by by by - bz by
MTi,Bi=] ¢ 0 -1 2 0 --- 0 , (19)
-1 2 0
0 0 o -1 2
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and
det(A1 TL,nBl) = det(Al) det(TL,n) det(Bl)
n—2 ) n—2 )
:Ll (an 2 Znizilbn_i — bn Z 2”*2*1an_i)
i=1 i=1
=2"3[(=Ly-1Ly—1 + L1 = L2)(=L-nLu + L1) = (~L—nLy—1 +L-2)
n—2 )
(=Loy1Lu+Lo)] + Y 2" [(~L_y—1Ly—i+ L_j2)(—L_uLy + L1)
i=2

= (=L-nLn—i+Lj—1)(=L-n-1Ln + Lo)].

From the definition of A and B;, we get

(n=1)(n=2)
2

detA; =detB; = (—1)
By formulas (2) and (3), we obtain
det Ty, = (=1)"""Ly4q — 2",
which completes the proof. O
Remark 6. This Theorem gives the relationship between the Loeplitz matrix and the Lucas number. From the
perspective of number theory, the (n + 1)th Lucas number can be expressed as the sum of the determinant of

n x n Loeplitz matrix and scalar matrix.

Theorem 6. Let T1 ;, be an n x n Loeplitz matrix defined as in (6). Then

L s 8§ -9 -5
1 1 -3 3 1
TL,l =1, TL,Z = ( QS ,81 > , TL,3 = 5 -17 -9 ,
8 8 -13 15 8
and forn > 3, TL_i is
Q3 Q  2"%Q -+ 2201 2 Q1
Q4 Qs Q2 - to22Q) 2
) 2Q4 Q6 Qs o 22
T, , = : 206 : , (20)
4y o Qs Q@ 28
2173Q,  2"74Q, o 206 Qs Qs Q>
Qr  2"3Qy 2"*Qs - 2Qs  Qu Q3

nxn
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where
5

Q= detTp,’
Qx =1+42"2Qy,
05 — det TL'n_l,

det Ty ,
0, = V(Lo + Lusa)

det Ty ,

Qs =3+2""Qy,
Qs =5+2"Q1,
0y = 22 Ln + (ZD)" L] + (21"

det TL,n ’
detTy, = (—1)""!L, 4 — 2",

and L; (j=1, £2, ---, £ n)is the jth Lucas number.
Proof. For n < 3, itis easy to check that

8 -9 -5
—1
| > Ti=| 15 -17 -9

-13 15 8

H
N
Il
—_
g
3
SN
Il
N
o |
o=
ool

Now, we consider the case n > 4. The explicit expression of the inverse of the Loeplitz matrix can be
found by use of Equation (20). Define additionally two nonsigular matrices.

1
1
by
Ay = —a 1
1
nxn
and L
1 —ﬁ’ Ty—1 - 7 T
R
0 1 0o -~ 0
Vo=1 . . . . . : ,
0 0 0 1
nxn
where
Lya;, L;
_ Lna; Z(i=2,3r"'/n_1)/ (21)

T = —
" Lya, Ly’

with a; and b; are defined as in (18).
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Multiplying ATy ,B1 by A, from the left and by V; from the right, we get

L, 0 0 0 - 0 0
0 ay 0 0 .- 0 0
D0 Y1 Ya2 3 M
ATy, V = MAy Ty By Vs = 0 -1 2 0 - 0 )
. 0
0 O o -1 2 e
where
1
—L_, 1
o | e o
A =Mk = 0 1 -1 -1 :
0 1 -1 -1 axn
1 *%’1’ Tu-1 - T D
0 1
: R | 0
V=BVy=1] |, . . . ) p
1 0 - 0
ay_
b .
,Yi:_nal+bi/<i:2/3/"'/n_1)/
An

with 4;, b; and T; are defined as in (18) and (21), respectively. In addition, the matrix AT,V admits a
block partition of the form

AT,V =N &M, (22)

where N @& M denotes the direct sum of the matrices N and N. N = diag(L,,4,) is a nonsingular
diagonal matrix,

Yn-1 Tn-2 Yn-3 " Y3 N2
-1 2 0 B 0]
0 -1 2
M p—
-1 2 0
0 0 -1

(n—2)x(n—2)
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Denote £ =y,-1—VC U #0,where V.= (Y2 Vn-3 -~ 713 72)1x(n—3)s

2 0 0
-1 2
C=1 o
: .. =1 2 0
o -~ 0 -12 (n—3)x(n—3)
andU = (-10 --- 0)1Tx(n73). From (22), we obtain

T, =VWN e M A
Based on the definitions of " and M, we have N1 = diag(Ly Lah). By Lemma 1, we get

@ @ :

w3 @7 @1

c1l= : . - U :
@Wy—5
@p_y @p5 - . @ @ 0
Wp—3 @Wyyg Wp5 -+ @3 W @ (n=3)x (n—3)
where
1 .
wj==,1<i<n-3
21

From Lemma 5 in [20], we have

1 1 -1
1 —lvc
M= ( _i1cy o4 dcuve )
‘ 4 (n—2)x (n—2)
where

VC*l = (ﬁl/ ”7\2/ e /ﬁ}’l—?))/
1
cly-ctuve™ = [m! 13

¢ ijlij=1
n—2—i
fi= Y, Yn-1-j@, 1<i<n-—3,
j=1
m= - U 1<j<i<n—3
ij — %i—j+1 7’ SIS ,
m{':—@,1§i<]’§n—3.

i,j {
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Therefore, we get

1 0 0 0
1
0 a 0 0
1 _n _ _ s
0 0 7 4 14 7
1 1 D @ ! ! -
NoeM =+ = 7 1,1 12 1,13
[ / / /
va mj 4 mj, My -3
@p—3 / / I
0 0 = my gy My 35 0 My 3,3/

1 0 e e e e 0
=" 0 ~ o 4
€11 €1,2 €13 C14 €15 - Cin
WNTeMDHA=| 1 @2 3 4 5 - Cn
€31 €32 €33 C34 €35  C3n
Ch—21 Cn—-22 Cn-23 Cn-24 Cn-25 " Cn=2n / ,.,
where
11 = %(anth L (1)) i1 = %(b”‘#” —L_(y41)), 2<i<n—2,
€12 = —ﬁL;, Cip = mﬁ,ll,H, 2<i<n—-2,
€13 = 777;1[4 + ﬁn€_3/ Cig =M 1y g —Mj 1, 3 2<i<n—2,
Cl,j _ _ﬁnfglfj + 777;]’ + ﬁn}lfjl 4< ] <n-1,
Cijj = Mg g = Mgy ;=M qypq_j, 2<i<n—2,4<i<n-—1,
Cln = %<_ain 1)+ %/ Cin = (Digl (_ain -1) - mffm/ 2<i<n=2

15 0f 19
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By formulas (2) and (3), we have
Q3 Q 2% 2201 21 Q1
Q4 Qs Q2 2201 20
X ) ) 2Qy Q6 Qs ' 220y
24Qy ' Qs Q2
2173Q, 2"74Q, - 206 Qe Qs Q2
Q7 2"3Qq 2"y 204 Q4 Q3 i

where Q;(i =1, 2, -+, 7) is the same as in Theorem 6. O
2.4. Determinant and Inverse Matrix of a Lankel Matrix

In this subsection, the determinant and the inverse of the Lankel matrix Hj, , are studied.

Theorem 7. Let Hy ,, be an n x n Lankel matrix defined as in (7). Then Hy ,, is invertible and

n(n—1)

det HL,'rl :(—1) 2

[(_1)n+1Ln+1 - 2”],
where L, 1 is the (n + 1)th Lucas number.

Proof. From formula (9), it follows that det Hy ,, = det I, det Tr,n. We obtain the desired conclusion by

using det [, = (—1) 7Y and Theorem 5. O

Remark 7. This Theorem gives the relationship between the Lankel matrix and the Lucas number. In terms of
number theory, the (n + 1)th Lucas number can be expressed as the sum of the determinant of n x n Lankel
matrix and scalar matrix.

Theorem 8. Let Hy ,, be an n x n Lankel matrix defined as in (7). Then

31 ~-13 15 8
8 8>,HL‘,§: 15 -17 -9 |,

-1 -1
HL,l =1, HL,2 = ( _
8 -9 -5

3
8

Q0=

and for n > 3, HL_}l is

Q7  2"3Q 24 2Qs Q4 Q3
21783Q, 24 ' 206 Qs Qs Q2
2", : - Qs Q20
HE‘}l — . 2Q6 . . . . : ,
204 Qs Qs . 220,
Q4 Qs Q> - 22Q; 20
Q3 Q  2"% 2201 2 Q1

where Q;(i=1,2, ---

, 7) is the same as in Theorem 6.

nxn

Proof. By formula (9), we have HL*; =1, T, 711 Thus we get the desired conclusion from Theorem 6.
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3. Example

In this section, an example demonstrates the method which was introduced above for the
calculation of the determinant and inverse of the Foeplitz matrix and the Loeplitz matrix.

Example 1. Here we consider an 8 x 8 Foeplitz matrix:

1 1 3 5 8§ 13 21

-1 1 1 2 3 5 8§ 13

2 -1 1 1 2 3 5 8

Trg = -3 2 -1 1 1 2 3 5
’ 5 -3 2 -1 1 1 2 3
-8 5 -3 2 -1 1 1 2

3 -8 5 -3 2 -1 1 1

-21 13 -8 5 -3 2 -1 1

8x8

From formula (10), we obtain
det Trg =F = 34.

As the inverse calculation, if we use the corresponding formulas in Theorems 2, we have Fg = 21, Fy = 34.
So we get

21 1
% -1 0 0 0 0 0 5
1 -1 -1 0 0 O 0 O
0 1 -1 1 0 0 0 O
-1 0 o 1 -1 -1 0 0 O
Trg= _
0 o 0 1 1 -1 0 0
0 o 0o o 1 -1 -1 0
0 o 0 o o0 1 -1 -1
1 21
-5 0 0 0 O 1 3 /s
Example 2. Here we consider a 5 x 5 Loeplitz matrix:
1 3 4 7 11
3 1 3 4 7
Trs=| —4 3 1 3 4
7 —4 3 1 3
-11 7 -4 3 1 /.4

From formula (18), we obtain

detTy 5 = — (2Ly — Lg) — 2° = —14.
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_B
7

As the inverse calculation, if we use the corresponding formulas in Theorem 6, we have Qq = —%, Q2 =
3 _ _ 20 __19 _ _45 _ 143
Q=13 QU=%0=—%,0Q =—7%,0Q = —7;. Sowe get
27 13 10 _5 _5
14 7 7 7 14
20 _1© _ 1B _10 _5
7 7 7 7 7
Tlo| % 5 19 13 1
L5~ 7 7 7 7 7
80 90 _45 _19 13
7 7 7 7 7
143 80 40 20 27

14 7 7 7 14 5x5
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