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Abstract: In this paper, we proposed a high accurate and stable Legendre transform algorithm,
which can reduce the potential instability for a very high order at a very small increase in the
computational time. The error analysis of interpolative decomposition for Legendre transform is
presented. By employing block partitioning of the Legendre-Vandermonde matrix and butterfly
algorithm, a new Legendre transform algorithm with computational complexity O(Nlog2N /loglogN)
in theory and O(Nlog3N) in practical application is obtained. Numerical results are provided to
demonstrate the efficiency and numerical stability of the new algorithm.
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1. Introduction

Legendre transform (LT) plays an important part in many scientific applications, such as
astrophysical [1], numerical weather prediction and climate models [2,3]. Fast Legendre transform
attracts considerable interest amongst the scientific computing and numerical simulation. Scientists
have paid very serious attention to develop fast Legendre transform algorithms [4–11]. The validity
and reliability of these algorithms depend on whether they can keep fast, stable and high accuracy.

The butterfly algorithm [12,13] is an effective multilevel technique to compress a matrix that
satisfies a complementary low-rank property. It factorizes a complementary low-rank matrix K of
size N×N into the product of O(logN) sparse matrices, each with O(N) nonzero entries. Hence,
dense matrix-vector multiplication can be transformed into a set of sparse matrix-vector multiplication
in O(NlogN) operations [14]. LT using butterfly algorithm has the advantages of high accuracy, stability
and low computational complexity.

As one of the most widely used butterfly algorithms, Tygert’s algorithm (2010) [11] has been
successfully implemented in IFS of ECMWF [2], YHGSM [15–17] of NUDT [3] and astrophysical [1].
In the applications of numerical weather prediction and climate models, which need spectral harmonic
transform (SHT) many times for each time step, only one precomputation is needed in the first-time
step, then the results are stored in memory and reused in each transform. Though Tygert’s algorithm
(2010) is slow in terms of precomputation: O(N2) for LT and O(N3) for SHT, it does not have much
impact on total performance. However, some unsolved issues still remain. The main issue is the
potential instability of interpolative decomposition (ID) [18] for very high order Legendre transform.
That said, Tygert [11] points out that the reason why the butterfly procedure works so well for associated
Legendre functions may be that the associated transforms nearly weighted averages of Fourier integral
operators. There are no literatures to prove that the pre-computations will compress the appropriate
N × N matrix enough to enable application of the matrix to vectors using only O(NlogN) floating-point
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operations(flops). Full numerical stability has been demonstrated both empirically and theoretically
for fast Fourier transform (FFT) using butterfly algorithm. It is difficult to give complete and rigorous
proofs of interpolative decomposition for Legendre transform as Fourier transform.

Non-oscillatory phase functions method opens up new avenues for special function transforms.
The solutions of some kinds of second order differential equations can be accurately represented by
non-oscillatory phase functions [19,20]. It has been proved that Legendre’s differential equation [21]
and its generalization Jacobi’s differential equation [22] admit a non-oscillatory phase function.
So non-oscillatory phase functions can be used to the expansions [22], the calculation of the roots [23]
and transform [24] of special functions. Jacobi transform by non-oscillatory phase functions shows an
optimal computational complexity O(Nlog2N/loglogN) in reference [24]. However, Legendre transform
algorithm in ButterflyLab [25], which adopts interpolative butterfly factorization (IBF) [14,26] and
non-oscillatory phase functions method to evaluate the Legendre polynomials [24], does not show
high accuracy as Fourier transform using IBF. Therefore, Fast Legendre transform (FLT) based on
IBF and non-oscillatory phase functions and its extension to the associated Legendre functions need
further study.

Recently, fast Legendre transform algorithm based on FFT deserved more attentions for its
optimal computational complexity O(Nlog2N/loglogN). Hale and Townsend [27] firstly presented a
fast Chebyshev-Legendre transform, and then developed a non-uniform discrete cosine transform
which use a Taylor series expansion for Chebyshev polynomials about equally-spaced points in the
frequency domain. Finally, Hale and Townsend [28] got an O(Nlog2N /loglogN) Legendre transform
algorithm. In the near future, fast polynomial transforms [29] based on Toeplitz and Hankel matrices
will be presented to accelerate the Chebyshev-Legendre transform. Although FFT-based LT has
the attractive computational complexity, it needs too many times FFT, which makes FFT-based LT
only become more computationally efficient than LT using Dgemv when N is greater than or equal
to 5000. Since the computation of associated-Legendre-Vandermonde matrices is completed in the
pre-computation step, it will become worse on the occasion of multiple use of FLT such as NWP,
in which only once computation of associated-Legendre-Vandermonde matrices is needed for many
times spectral harmonic transform (SHT).

Motivated and inspired by the ongoing research in these areas, we present a theoretical method to
analyze the error of LT using butterfly algorithm, and then provide a numerically stability Legendre
transform algorithm based on block partitioning and butterfly algorithm. The novel aspect is the
mitigation of the potential instability of LT using butterfly algorithm at a very small increase of
computational cost.

2. Mathematical Preliminaries

In this section, we introduce the theorem that Legendre polynomials on equally-spaced
grid can be expressed as a weighted linear combination of Chebyshev polynomials, and a
partitioning of Legendre-Vandermonde matrix PN

(
xcheb

N

)
(x = xcheb

N = cos
(
θcheb

N

)
). For more details,

see references [27,28].
According to Stieltjes’s theory [30], Legendre polynomials can be expressed as following asymptotic

formula when n→∞
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hm,n =

1, m = 0,∏m
j=1

( j−1/2)2

j(n+ j+1/2) , m > 0.
(3)

The error term in Equation (1) can be bounded by∣∣∣RM,n(θ)
∣∣∣ ≤ CnhM,n

2

(2 sinθ)M+1/2
(4)

Hale and Townsend [27] rewrote Equation (1) as a weighted linear combination of
Chebyshev polynomials

Pn(cosθ) = Cn

M−1∑
m=0

hm,n(um(θ)Tn(sinθ) + vm(θ)Tn(cosθ)) + RM,n(θ) (5)

with Tn(cosθ) = cos(nθ), Tn(sinθ) = sin(nθ) and

um(θ) =
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(
(m + 1/2)

(
π
2
− θ

))
(2 sinθ)m+1/2

, vm(θ) =
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(
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− θ

))
(2 sinθ)m+1/2

(6)

Let xleg
k = cos

(
θ

leg
k

)
and θleg

0 , · · · ,θleg
N−1 are the transformed Legendre nodes, Equation (5) can be

written as

Pn
(
xleg

k
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(
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(
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(
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(
θ
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(7)

3. Error Analysis of Legendre Transform using Butterfly Algorithm

The transformed Legendre nodes θleg
0 , · · · ,θleg

N−1 can be seen as a perturbation of an equally-spaced
grid θ∗0, · · · ,θ∗N−1, i.e

θ
leg
k = θ∗k + δθk, 0 ≤ k ≤ N − 1 (8)

and then approximate each xleg
k = cos

(
nθleg

k

)
term by a truncated Taylor series expansion about θ∗k.

If |δθk| is small then only a few terms in the Taylor expansion are required.
The Taylor series expansion of Tn(cos(θ+ δθ)) = cos(n(θ+ δθ)) about θ ∈ [0,π] can be

expressed as

cos(n(θ+ δθ)) = cos(nθ) +
∞∑

l=1
cos(l)(nθ) (nδθ)

l

l!

= cos(nθ) +
∞∑

l=1
(−1)b(l+1)/2cΦl(nθ)

(nδθ)l

l!

(9)

where

Φl(θ) =

{
cos(θ), l even
sin(θ), l odd

(10)

Similarly, Tn(sin(θ+ δθ)) = sin(n(θ+ δθ)) about θ ∈ [0,π] can be expressed as

sin(n(θ+ δθ)) = sin(nθ) +
∞∑

l=1
sin(l)(nθ) (nδθ)

l

l!

= sin(nθ) +
∞∑

l=1
(−1)bl/2cΨl(nθ)

(nδθ)l

l!

(11)

where

Ψl(θ) =

{
cos(θ), l odd
sin(θ), l even

(12)
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Substituting θ∗k for θ in Equation (5), one can get
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(
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(
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The Taylor series expansion of Pn
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Substituting Equation (15) into Equation (14), one can obtain
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∞∑
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Similarly, we have

∞∑
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Substituting Equations (17)–(20) into Equation (16), one can get
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By truncating the second term in the right hand side of Equation (19), it can be approximated as

Pn
(
xleg

k

)
= Cn

M−1∑
m=0

hm,n
(
um

(
θ

leg
k

)
Tn

(
sin

(
θ∗k

))
+ vm

(
θ

leg
k

)
Tn

(
cos

(
θ∗k

)))
+Cn

L∑
l=1

(δθk)
l

l!

M−1∑
m=0

hm,n

{
um

(
θ∗k

)
T(l)

n

(
sin

(
θ∗k

))
+ vm

(
θ∗k

)
T(l)

n

(
cos

(
θ∗k

))}
+RM,n

(
θ

leg
k

)
+ RL,M,n,δθ

(23)

and then
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Equation (24) can be expressed in the following compact form

Pn
(
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l
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(−1)b

l
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where

Un = Cn
M−1∑
m=0

hm,num
(
θ

leg
k

)
Tn

(
sin

(
θ∗k

))
, Vn = Cn

M−1∑
m=0
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(
θ

leg
k

)
Tn

(
cos

(
θ∗k

))
Uns = Cn

M−1∑
m=0
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(
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(
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(
θ∗k

))
, Vns = Cn
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m=0
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(
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(
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(
θ∗k

))
Unc = Cn
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(
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, Vnc = Cn
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So, the computation of Legendre-Vandermonde matrix can be written as

PN

(
xleg

N

)
= (UN + VN) +

L∑
l odd

(nδθk)
l
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(
(−1)b

l
2 cUc + (−1)b
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l even
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(−1)b

l
2 cUs + (−1)b

(l+1)
2 cVc

)
+ Rtotal

(27)

The numerical stability of ID can be analyzed by Equation (27). Since the butterfly algorithm
works well for equispaced Fourier series, Legendre transform using butterfly algorithm is numerical
stability with the error of Rtotal. When L tends to infinity, the error is RM,n

(
θ

leg
k

)
.

Lemma 1. For any L ≥ 1 and n ≥ 0 [27]

RL,n,δθ := max
θ∈[0,π]

∣∣∣∣∣∣∣cos(n(θ+ δθ)) −
L−1∑
l=0

cos(l)(nθ)
(δθ)l

l!

∣∣∣∣∣∣∣ ≤ (n|δθ|)L

L!
(28)

Lemma 2. For any L ≥ 1 and n ≥ 0, the error bound of Equation (24) is

R ≤
2CnhM,n
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)M+ 1
2

+
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2 sinθleg
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)M+ 1
2
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(
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l
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∣∣∣∣(um
(
θ∗k

)
Ψl

(
nθ∗k

)
+ vm

(
θ∗k

)
Φl

(
nθ∗k

))∣∣∣∣∣∣∣∣∣∣
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L

L!
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Finally, one can get the total upper error bound

R =
∣∣∣∣RM,L,n,δθk + RM,n

(
θ
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k

)∣∣∣∣ ≤ 2CnhM,n
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 (n|δθk|)
L(
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+
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)M+ 1
2

 (31)

�
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4. Legendre Transform Based on Block Partitioning and Butterfly Algorithm

In this section, we will propose a Legendre transform based on block partitioning and butterfly
algorithm. The main idea is separate the matrix PN

(
xleg

N

)
into block PREC

N

(
xleg

N

)
and K sub-matrices

P(k)
N

(
xleg

N

)
and then factorize K sub-matrices P(k)

N

(
xleg

N

)
by butterfly algorithm. The butterfly algorithm

can factorize a complementary low-rank matrix of size N × N into the product of O(logN) sparse
matrices, each with O(N) nonzero entries. What’s more, butterfly algorithm works well for P(k)

N

(
xleg

N

)
as

mentioned in Section 3. Hence, the total of nonzero entries after factorization can be approximate to
O(Nlog2N/loglogN) by controlling the number of nonzero entries in PREC

N

(
xleg

N

)
. Finally, one can get a

Legendre transform with O(Nlog2N/loglogN) computational complexity.
It can be found that the matrix PN

(
xleg

N

)
can be considered as a perturbation of matrix PN

(
xcheb

N

)
from Equation (24). The block partitioning of PN

(
xleg

N

)
can be performed by using the same method as

PN

(
xcheb

N

)
in the paper of Hale and Townsend [27]. Therefore, the matrix PN

(
xleg

N

)
is partitioned as

PN

(
xleg

N

)
= PREC

N

(
xleg

N

)
+

K∑
k=1

P(k)
N

(
xleg

N

)
(32)

This partitioning separates the matrix PN
(
xleg

N

)
into block PREC

N

(
xleg

N

)
and K sub-matrices P(k)

N

(
xleg

N

)
.

Block PREC
N

(
xleg

N

)
contains the columns and rows of PN

(
xleg

N

)
, which cannot be computed by using

Equation (24).

PREC
N

(
xleg

N

)
i j
=


PN

(
xleg

N

)
i j

, 1 ≤ min(i, N − i + 1) ≤ jM,

PN
(
xleg

N

)
i j

, 1 ≤ j ≤ nM,

0, otherwsie

(33)

where

nM =

1
2

(
ε
π3/2Γ(M + 1)
4Γ(M + 1/2)

) −1
M+ 1

2

 (34)

and
jM =

⌊N + 1
π

sin−1
(nM

N

)⌋
(35)

P(k)
N

(
xleg

N

)
i j
=

 PN
(
xleg

N

)
i j

, ik ≤ i ≤ N − jk, αkN ≤ j ≤ αk−1N

0, otherwsie
(36)

where α = O(1/log N) and ik =
⌊

N+1
π sin−1

( nM
αkN

)⌋
.

Legendre transform can be expressed as

PN

(
xleg

N

)
cleg

N = PREC
N

(
xleg

N

)
cleg

N +
K∑

k=1

P(k)
N

(
xleg

N

)
cleg

N (37)

Nonzero entries of P(k)
N

(
xleg

N

)
can be accurately expressed by the asymptotic formula, which means

that the butterfly compression to P(k)
N

(
xleg

N

)
is stable and accurate. Instead of the FFT method, the

butterfly algorithm is employed to compute the matrix-vector product P(k)
N

(
xleg

N

)
cleg

N . This is because

the butterfly algorithm works well for P(k)
N

(
xleg

N

)
as mentioned in Section 3. So

K∑
k=1

P(k)
N

(
xleg

N

)
cleg

N can be

computed in O(KN log N) operations. By restricting PREC
N

(
xleg

N

)
has fewer than O(KN log N) nonzero

entries, the matrix-vector product PREC
N

(
xleg

N

)
cleg

N can be computed in O(KN log N) operations. Finally,
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the optimal computational cost is achieved. Let nm = min(nM, N − 1), the parameters α and K are
defined as

α =

{
min(1/log(N/nm), 1/2), for small N

1/log(N/nm), for large N

and K = O(log N/log log N), respectively. In the practical application, only parameters N, nm, α and K
are used to obtain information such as starting row/column index and offset for all blocks.

Figure 1 shows the partitioning of the Legendre-Vandermonde matrix for N = 1024.
The Legendre-Vandermonde matrix is divided into boundary (denoted by symbol B) and internal
(denoted by symbol P) parts. The boundary parts include the elements which cannot be accurately
expressed by the asymptotic formula. There are 2(K+1) sub-matrices of B and 2K sub-matrices
of P. According to the symmetric or anti-symmetric property of Legendre polynomials, only K+1
sub-matrices of B and K sub-matrices of P on the top are used. Algorithm 1 presents a summary of
Legendre transform algorithm using block butterfly algorithm. Direct computation part and butterfly
multiplication part is cost O(KN log N) operations, respectively.
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Figure 1. Partitioning of the Legendre-Vandermonde matrix for N = 1024 (in which matrix B is the
boundary parts can’t be accurately expressed by the asymptotic formula while matrix P is the internal
parts can. There are 2(K + 1) sub-matrices of B and 2K sub-matrices of P. According to the symmetric
or anti-symmetric property of Legendre polynomials, we only need to consider K + 1 sub-matrices of B
and K sub-matrices of P on top).
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Algorithm 1: Block Butterfly Algorithm for Legendre Transform.
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Block Butterfly Algorithm for Legendre Transform 
Input N  and leg

Nc  to compute ( )N
leg leg leg
N N Nv x c= P  

Pre-computation Part 
Block Partitioning: 1 2 k+1

top top top, , ,B B B  and 1 2 k
top top top, , ,P P P  

extract symmetric part 1 2 k+1
tops tops tops, , ,B B B , 1 2 k

tops tops tops, , ,P P P  and anti-symmetric part 
1 2 k+1
topa topa topa, , ,B B B 1 2 k

topa topa topa, , ,P P P  

for i=1,2,…,k 
call butterfly_compression( tops

iP )  ! Symmetric Part 

call butterfly_compression( topa
iP )  ! Anti-Symmetric Part 

end for 
Direct Computation Part: 

for i=1,2,…,k+1 
call dgemv( tops

iB )  ! Symmetric Part 

call dgemv( topa
iB )  ! Anti-Symmetric Part 

end for 
Butterfly Multiplication Part: 

for i=1,2,…,k 
call butterfly_multiply()  ! Symmetric Part 
call butterfly_multiply()  ! Anti-Symmetric Part 

end for 
Combine the results of symmetric and anti-symmetric part to get leg

Nv  

Parameters CMAX and EPS need for butterfly matrix compression are still needed in block butterfly
algorithm. CMAX is the number of columns in each sub-matrix on level 0, EPS is desired precision in
interpolative decomposition [3]. A dimensional thresh value DIMTHESH [3] is also needed in Legendre
transform calls to activate FLT when wavenumber (m) less and equal to NSMAX-2DIMTHESH+3
(NSMAX is truncation order). Block butterfly algorithm is equivalent to Tygert’s algorithm (2010)
when no block partition is used, so two dimensional thresh values could be introduced to include
Tygert’s algorithm (2010) and LT using DGEMM for further reducing the computational complexity.
To facilitate comparison with Tygert’s algorithm, only one dimensional thresh value is used and set to
200 in the rest of the paper.

5. Results

In this section, all tests are performed on the MilkyWay-2 super computer (see Liao et al. [31] for
more details), which installed in NUDT. Each compute node possesses 64GB of memory. The CPU
model name is Intel(R)Xeon(R) CPU E5-2692V2 @2.2GHz. A private 32KB L1 instruction cache,
a 32KB L1 data cache, a 256KB L2 cache, and a 30720KB L3 cache are used. ID software package
developed by Martinsson et al. [32] for low rank approximation of matrices is employed to perform
interpolative decompositions for all tests. ID package can be downloaded from Mark Tygert’s
homepage [33]. Hereafter, LT using matrix-matrix multiplication, Tygert’s algorithm (2010) and block
butterfly algorithm are named as LT0, LT1 and LT2, respectively.

Figures 2–4 show the errors of LT with CMAX = 64 in log10 form for EPS = 1.0E-05, EPS = 1.0E-07
and EPS = 1.0E-10, respectively. Abbreviations “MAX ERR” and “RMS ERR” in Figures 2–4 denote
maximum error and root-mean-square error, respectively. It can be found that both maximum error
and root-mean-square error of LT2 are improved by about one order magnitude than LT1. The results
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show that the proposed method is effective in improving the accuracy of Legendre transform using
butterfly algorithm.
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Figure 2. Errors of LT in log10 form with EPS = 1.0E-05 and CMAX = 64 (LT1 is the butterfly algorithm
and LT2 is the proposed method. Abbreviations “MAX ERR” and “RMS ERR” denote the maximum
error and root-mean-square error, respectively. EPS is desired precision in interpolative decomposition,
CMAX is the number of columns in each sub-matrix on level 0).
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Figure 3. Errors of LT in log10 form with EPS = 1.0E-07 and CMAX = 64 (LT1 is the butterfly algorithm
and LT2 is the proposed method. Abbreviations “MAX ERR” and “RMS ERR” denote the maximum
error and root-mean-square error, respectively. EPS is desired precision in interpolative decomposition,
CMAX is the number of columns in each sub-matrix on level 0).
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Figure 4. Errors of LT in log10 form with EPS = 1.0E-10 and CMAX = 64 (LT1 is the butterfly algorithm
and LT2 is the proposed method. Abbreviations “MAX ERR” and “RMS ERR” denote the maximum
error and root-mean-square error, respectively. EPS is desired precision in interpolative decomposition,
CMAX is the number of columns in each sub-matrix on level 0).

Figure 5 shows the computational time for different Legendre transform algorithms. The speedup
and loss speedup of LT2 with CMAX = 64 are demonstrated in Figures 6 and 7, respectively.
Loss speedup which measures the relative performance penalty is defined as the speedup of LT1 minus
the speedup of LT2 and divided by the speedup of LT0. From Figures 5 and 6, LT2 begins to be faster
than LT0 when N = 2048 and achieves more than 26%, 22%, 17% reduction in elapsed time for EPS =

1.0E-5, EPS = 1.0E-7 and EPS = 1.0E-10. LT2 has achieved more than 17%, 63%, 75% and 86% reduction
in elapsed time for a run of N2048, N4096, N8192 and N16384, respectively. In Figure 7, the loss
speedup of LT2 relative to LT1 is less than 21%, 11%, 7% and 4% for N = 2048, 4096, 8192 and 16,384,
respectively. Moreover, the loss speedup of LT2 relative to LT1 decreases rapidly with the increase
of N. According to the results of Yin [3], the potential instability of interpolative decomposition only
exists in the case of very high order. So, the presented method can alleviate the potential instability of
interpolative decomposition at a very small computational burden.
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Figure 5. Computational time for different Legendre transform algorithms with CMAX = 64 (LT0 is
the algorithm using DGEMM, LT1 is the butterfly algorithm and LT2 is the proposed method, EPS is
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Figure 6. Speedup of LT1 and LT2 with CMAX = 64 compare to LT0 (LT0 is the algorithm using
DGEMM, LT1 is the butterfly algorithm and LT2 is the proposed method, EPS is desired precision in
interpolative decomposition, CMAX is the number of columns in each sub-matrix on level 0).

Mathematics 2019, 9, x FOR PEER REVIEW 13 of 17 

 

 

Figure 7. Speedup of LT1 and LT2 with CMAX = 64 compare to LT0 (LT0 is the algorithm using 
DGEMM, LT1 is the butterfly algorithm and LT2 is the proposed method, EPS is desired precision in 
interpolative decomposition, CMAX is the number of columns in each sub-matrix on level 0). 

 

Figure 8. Loss speedup of LT2 with CMAX = 64 compare to LT1 (LT1 is the butterfly algorithm and 
LT2 is the proposed method, EPS is desired precision in interpolative decomposition, CMAX is the 
number of columns in each sub-matrix on level 0). 

Figure 6 shows the computational time for different Legendre transform algorithms. The 
speedup and loss speedup of LT2 with CMAX = 64 are demonstrated in Figures 7 and 8, respectively. 
Loss speedup which measures the relative performance penalty is defined as the speedup of LT1 
minus the speedup of LT2 and divided by the speedup of LT0. From Figures 6 and 7, LT2 begins to 
be faster than LT0 when N = 2048 and achieves more than 26%, 22%, 17% reduction in elapsed time 
for EPS = 1.0E-5, EPS = 1.0E-7 and EPS = 1.0E-10. LT2 has achieved more than 17%, 63%, 75% and 86% 
reduction in elapsed time for a run of N2048, N4096, N8192 and N16384, respectively. In Figure 8, the 
loss speedup of LT2 relative to LT1 is less than 21%, 11%, 7% and 4% for N = 2048, 4096, 8192 and 
16,384, respectively. Moreover, the loss speedup of LT2 relative to LT1 decreases rapidly with the 
increase of N. According to the results of Yin [3], the potential instability of interpolative 

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

512 800 1024 1280 2048 4096 8192 16384

LT1 EPS=1.0E-05 LT2 EPS=1.0E-05 LT1 EPS=1.0E-07

LT2 EPS=1.0E-07 LT1 EPS=1.0E-10 LT2 EPS=1.0E-10

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

512 800 1024 1280 2048 4096 8192 16384

EPS=1.0E-05 EPS=1.0E-07 EPS=1.0E-10

Figure 7. Loss speedup of LT2 with CMAX = 64 compare to LT1 (LT1 is the butterfly algorithm and
LT2 is the proposed method, EPS is desired precision in interpolative decomposition, CMAX is the
number of columns in each sub-matrix on level 0).

Figures 8 and 9 show the computational time of LT scaled by Nlog3N and Nlog4N, respectively.
It can be found that the computational complexity of LT2 appears to a little bigger than LT1.
The boundary blocks which can’t be accurately expressed by the asymptotic formula and the internal
blocks with dimension less that dimensional thresh value result in the increase of the computational
complexity. Although the results of LT2 are bigger than those of LT1, LT2 has a similar trend as LT1 in
Figures 8 and 9. This means that LT2 has the same computational complexity O(Nlog3N) as LT1.
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performance in the reduction of potential numerical instability for resolution T7999. 

Author Contributions: Conceptualization, F.Y. and J.W.; Formal analysis, F.Y.; Funding acquisition, F.Y.; 
Methodology, F.Y. and J.S.; Supervision, J.S.; Validation, J.W. and J.Y.; Writing—original draft, F.Y.; Writing—
review & editing, J.Y. 

Funding: This research was funded by the National Natural Science Foundation of China (Grant 41705078) and 
partly supported by the National Natural Science Foundation of China (Grants 61379022 and 41605070). 

Acknowledgments: The author acknowledges Yingzhou Li (Duke University) and Haizhao Yang (National 
University of Singapore) for providing ButterflyLab for reference. The author would also like to thank two 
anonymous reviewers for their insightful and constructive comments, which help to improve the quality of this 
paper. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

0.00E+00

5.00E-12

1.00E-11

1.50E-11

2.00E-11

2.50E-11

3.00E-11

512 800 1024 1280 2048 4096 8192 16384

LT1 EPS=1.0E-05 LT2 EPS=1.0E-05 LT1 EPS=1.0E-07

LT2 EPS=1.0E-07 LT1 EPS=1.0E-10 LT2 EPS=1.0E-10

Figure 9. Computational time scaled by Nlog4N with CMAX = 64 (LT1 is the butterfly algorithm and
LT2 is the proposed method. EPS is desired precision in interpolative decomposition, CMAX is the
number of columns in each sub-matrix on level 0).

Legendre-Vandermond matrix is divided into boundary blocks and internal blocks. Boundary
blocks which can’t be accurately expressed by the asymptotic formula cause instability of interpolative
decompositions and are not suitable for interpolation decomposition. The matrix-vector multiplication
based on butterfly algorithm is faster than BLAS function DGEMV only when the dimension of
matrix is greater than or equal to 512. Internal blocks with lower matrix dimension adopt direct
matrix-vector multiplication instead of butterfly algorithm. The number of nonzero elements of
boundary blocks, internal blocks which do not participate in interpolation decomposition cause the
increase of the computational cost compare to Tygert’s algorithm. Therefore, through reasonable
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partitioning, the theoretical computational complexity of the proposed method can reach the optimal
computational complexity O(Nlog2N/loglogN).

6. Conclusions

In this paper, a high accurate and stable Legendre transform algorithm is proposed. A block
partitioning based on asymptotic formula is employed to mitigate the potential instability of Legendre
transform using butterfly algorithm. The Legendre-Vandermonde matrix is divided into one block
PREC

N

(
xleg

N

)
and K sub-matrices P(k)

N

(
xleg

N

)
. Instead of FFT method, butterfly algorithm is employed to

compute P(k)
N

(
xleg

N

)
cleg

N . Numerical results demonstrate that the proposed method improves stability by
about one order magnitude than Tygert’s algorithm (2010), while only sacrifices less than 7% speedup
for very high order (N ≥ 4096) Legendre transform.

Although the computational time of proposed method is a little bigger than Tygert’s algorithm,
it has the same computational complexity O(Nlog3N) as Tygert’s algorithm. Moreover, the proposed
method is equivalent to Tygert’s algorithm when no block partition is used. In the application of NWP,
an additional dimensional thresh value could be introduced to include Tygert’s algorithm (2010) for
further reducing the computational complexity.

In the future, we will study the more optimal block partition method to improve the computational
performance, while still keeping stability and making a detailed analysis in regard to the spectral
harmonic transform using the proposed method for very high resolution—especially its performance
in the reduction of potential numerical instability for resolution T7999.
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