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1. Introduction

As a generalization of BCK-algebras, the notion of d-algebras was introduced by Neggers and
Kim [1]. They discussed some relations between d-algebras and BCK-algebras as well as several other
relations between d-algebras and oriented digraphs. Several properties on d-algebras, e.g., d-ideals,
deformations, and companion d-algebras, were studied [2–4]. Recently, some notions of the graph
theory were applied to the theory of groupoids [5].

The notion of an implicativity has a very important role in the study of BCK-algebras.
An implicative BCK-algebra has some connections with distributive lattices, Boolean algebras, and
semi-Brouwerian algebras.

In this paper, we generalize the notion of the implicativity, which is a useful tool for investigation
of BCK-algebras by using the notion of a word in general algebraic structures, the most simple
mathematical structure, i.e., in the theory of a groupoid. Moreover, we generalized the notion of
the implicativity by using Bin(X)-product “2”, and obtain the notion of a weakly i-implicativity,
and obtain several properties in BCK-algebras and other algebraic structures.

2. Preliminaries

A groupoid (X, ∗) is said to be a left-zero-semigroup if x ∗ y := x for all x, y ∈ X. Similarly,
a groupoid (X, ∗) is said to be a right-zero-semigroup if x ∗ y := y for all x, y ∈ X [6]. A groupoid (X, ∗, 0)
with constant 0 is said to be a d-algebra [1] if it satisfies the following conditions:

(I) x ∗ x = 0,
(II) 0 ∗ x = 0,
(III) x ∗ y = 0 and y ∗ x = 0 imply x = y for all x, y ∈ X.

For brevity, we call X a d-algebra. In a d-algebra X, we define a binary relation “ ≤ ” by x ≤ y if
and only if x ∗ y = 0. A d-algebra (X, ∗, 0) is said to be an edge if x ∗ 0 = x for all x ∈ X. Example 1
below is an edge d-algebra. For general references on d-algebras we refer to [2–4].

A BCK-algebra [7] is a d-algebra X satisfying the following additional axioms:
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(IV) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(V) (x ∗ (x ∗ y)) ∗ y = 0 for all x, y, z ∈ X.

Theorem 1 ([7]). If (X, ∗, 0) is a BCK-algebra, then

(x ∗ y) ∗ z = (x ∗ z) ∗ y

for all x, y, z ∈ X.

Example 1. Let X := {0, a, b, c, d, 1} be a set with the following table:

∗ 0 a b c d 1
0 0 0 0 0 0 0
a a 0 0 a 0 0
b b a 0 b a 0
c c c b 0 0 0
d d c b a 0 0
1 1 d b a a 0

Then, (X, ∗, 0) is an edge d-algebra which is not a BCK-algebra, since (c ∗ b) ∗ d = b ∗ d = a 6= 0 = 0 ∗ b =

(c ∗ d) ∗ b. For general references on BCK-algebras, we refer to [7–9].

Let (X,≤) be a partially ordered set with minimal element 0, and let (X, ∗) be its associated
groupoid, i.e., ∗ is a binary operation on X defined by

x ∗ y :=

{
0 if x ≤ y,
x otherwise.

Then, (X, ∗, 0) is a BCK-algebra, and we call it a standard BCK-algebra.
A BCK-algebra (X, ∗, 0) is said to be implicative if x = x ∗ (y ∗ x); commutative if x ∗ (x ∗ y) =

y ∗ (y ∗ x); positive implicative if (x ∗ y) ∗ (y ∗ z) = (x ∗ y) ∗ z for all x, y ∈ X [7]. It is well known that a
BCK-algebra is implicative if and only if it is both commutative and positive implicative. A group X is
said to be Boolean if every element of X is its own inverse.

The notion of Smarandache algebras emerged and has been applied to several algebraic
structures [10–12]. Two algebras (X, ∗) and (X, ◦) are said to be Smarandache disjoint [13,14] if we
add some axioms of an algebra (X, ∗) to an algebra (X, ◦), then the algebra (X, ◦) becomes a trivial
algebra, i.e., |X| = 1; or if we add some axioms of an algebra (X, ◦) to an algebra (X, ∗), then the algebra
(X, ◦) becomes a trivial algebra, i.e., |X| = 1. Note that if we add an axiom (A) of an algebra (X, ∗) to
another algebra (X, ◦), then we replace the binary operation “◦” in (A) by the binary operation “∗”.

Let Bin(X) be the collection of all groupoids (X, ∗) defined on X. For any elements (X, ∗) and
(X, •) in Bin(X), we define a binary operation “2” on Bin(X) by

(X, ∗)2 (X, •) = (X,2), (1)

where
x 2 y = (x ∗ y) • (y ∗ x) (2)

for any x, y ∈ X. Using the notion, Kim and Neggers proved the following theorem.

Theorem 2 ([6]). (Bin(X), 2) is a semigroup, i.e., the operation “2" as defined in general is associative.
Furthermore, the left zero semigroup is an identity for this operation.
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3. (Weakly) Implicativity in Groupoids

By using the notion of words, we generalize the notion of an implicativity in groupoids.
A groupoid (or a BCK-algebra) (X, ∗) is said to be implicative if

x ∗ (y ∗ x) = x

for all x, y ∈ X.

Proposition 1. If (X, ∗) is a left-zero semigroup (respectively, a right-zero semigroup), i.e., x ∗ y = x
(respectively, x ∗ y = y) for all x, y ∈ X, then (X, ∗) is implicative.

Proof. If (X, ∗) is a left-zero semigroup, then x ∗ y = x for all x, y ∈ X. It follows that x ∗ (y ∗ x) =
x ∗ y = x, which proves that (X, ∗) is implicative. Similarly, if (X, ∗) is a right-zero semigroup, then it is
also implicative.

Proposition 2. The class of implicative groupoids and the class of groups are Smarandache disjoint.

Proof. Assume (X, •, e) is both a group and an implicative groupoid. Then, e = e • (x • e) = x • e = x
for all x ∈ X. This shows that X = {e}.

Notice that the class of implicative groupoids is equationally defined and thus that it is a variety,
i.e., it is closed under subgroups, epimorphic images, and direct products.

A groupoid (X, ∗) is said to be weakly implicative if there exists a word w(x) such that, for all
x, y ∈ X,

x ∗ (y ∗ x) = w(x).

Note that w(x) is an expression of “x”, e.g., x ∗ (x ∗ x), x ∗ x, ((x ∗ x) ∗ x) ∗ x, · · · , and a zero
element “0”, e.g., x ∗ (0 ∗ x), (0 ∗ x) ∗ (x ∗ 0), · · · , if necessary.

Proposition 3. Let (X, ∗, 0) be a weakly implicative groupoid with w(x) = x ∗ (0 ∗ x). If (X, ∗, 0) is
a BCK-algebra, then it is an implicative BCK-algebra.

Proof. Let (X, ∗, 0) be a weakly implicative groupoid with w(x) := x ∗ (0 ∗ x). Since (X, ∗, 0) is
a BCK-algebra, we obtain x ∗ (y ∗ x) = w(x) = x ∗ (0 ∗ x) = x ∗ 0 = x for all x, y ∈ X. Hence, (X, ∗, 0)
is an implicative BCK-algebra.

Corollary 1. Let (X, ∗, 0) be an edge d-algebra. If (X, ∗, 0) is a weakly implicative with w(x) = x ∗ (0 ∗ x),
then is an implicative edge d-algebra.

Proof. If (X, ∗, 0) is an edge d-algebra, then 0 ∗ x = 0 and x ∗ 0 = x for all x ∈ X. By Proposition 3,
(X, ∗, 0) is an implicative edge d-algebra.

Let (X, ∗) be a groupoid. Define a binary operation “•” on X by

x • y := y ∗ x

for all x, y ∈ X. We call (X, •) an oppositie groupoid of a groupoid (X, ∗).

Theorem 3. The opposite groupoid of a BCK-algebra is weakly implicative.

Proof. Let (X, ∗, 0) be a BCK-algebra and let w(x) := 0 for all x ∈ X. Then, x • (y • x) = (x ∗ y) ∗ x =

(x ∗ x) ∗ y = 0 ∗ y = 0 = w(x). Hence, (X, •) is weakly implicative.
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Proposition 4. There is no nontrivial implicative opposite groupoid derived from a BCK-algebra.

Proof. Let (X, ∗, 0) be a BCK-algebra and let |X| ≥ 2. Assume that (X, •) is implicative. Then,
x = x • (y • x) = (x ∗ y) ∗ x = (x ∗ x) ∗ y = 0 ∗ y = 0 for all x ∈ X, i.e., X = {0}, a contradiction.

Theorem 4. The class of weakly implicative groupoids and the class of groups are Smarandache disjoint.

Proof. Assume (X, ·, e) is both a group and a weakly groupoid. Then, there exists a word w(x) such
that x · (y · x) = w(x) for all x, y ∈ X. It follows that e · (x · e) = w(e) for all x ∈ X. Since x = e · (x · e),
we obtain x = w(e), a constant. Hence, X = {w(e)}, i.e., |X| = 1, a contradiction.

4. Levels of Implicativities

Let (X, ∗) be a groupoid and let x, y ∈ X. We define binary operations “2i” on X by x21y :=
(x ∗ y) ∗ (y ∗ x) = x2y and x2i+1y := (x2iy) ∗ (y2ix) for all x, y ∈ X, where i = 1, 2, 3, · · · . Let w(x)
be a word of x. We define the following levels of implicativities as follows:

Level 0: (i) x ∗ (y ∗ x) = w(x) (weakly 0-implicative); (ii) x ∗ (y ∗ x) = x (implicative).
Level 1: (i) x ∗ (y21x) = w(x) (weakly 1-implicative); (ii) x ∗ (y21x) = x (1-implicative).
Level i: (i) x ∗ (y2ix) = w(x) (weakly i-implicative); (ii) x ∗ (y2ix) = x (i-implicative).

Theorem 5. Let (X, ·, e) be a group with |X| ≥ 2. Then, X is weakly 1-implicative if and only if X is
a Boolean group.

Proof. Let (X, ·, e) be a weakly 1-implicative groupoid. Then, x · (y21x) = w(x) for all x, y ∈ X.
It follows that x · ((y · x) · (x · y)) = w(x). If we let x := e, then e · ((y · e) · (e · y)) = w(e), and hence
y2 = w(e) for all y ∈ X. If we let y := e, then w(e) = e2 = e. Hence y2 = w(e) = e for all y ∈ X.
Hence, (X, ·, e) is a Boolean group.

Assume (X, ·, e) is a Boolean group. Then, x2 = e for all x ∈ X. It follows that, for any x, y ∈ X,

x · (y21x) = x · ((y · x) · (x · y))
= xyx2y

= x

= w(x).

Hence, (X, ·, e) is a weakly 1-implicative groupoid.

Theorem 6. Let (X, ·, e) be a group. If (X, ·, e) is a weakly i-implicative groupoid, then it is i-implicative.

Proof. Given x ∈ X, we have e21x = (e · x) · (x · e) = x2, x21e = (x · e) · (e · x) = x2, e22x =

(e21x) · (x21e) = x2 · x2 = x4, and x22e = x4. Similarly, we obtain e2ix = x2i
= x2ie. Since X is a

group and w(x) is a word on x, we have w(e) = e. This shows that e = w(e) = e · (y2ie) = e · y2i
= y2

for all y ∈ X. Hence, w(x) = x · (e2ix) = x · x2i
= x · ei = x for all x ∈ X, proving that (X, ·, e)

is i-implicative.

Proposition 5. Let (X, ·, e) be a group. If x2i
= e for any x ∈ X, then X is i-implicative.

Proof. Given x, y ∈ X, we have x · (y2ix) = x · x2i
y2i

= x. Hence, X is i-implicative.

Theorem 7. Let (X, ∗, 0) be a BCK-algebra. If it is weakly i-implicative, then it is i-implicative.
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Proof. Suppose that (X, ∗, 0) is weakly i-implicative. Then, there exists a mapping H : X × X → X
such that, for any x, y ∈ X, x ∗ (y2ix) = H(x). Since (X, ∗, 0) is a BCK-algebra, we obtain 021x =

(0 ∗ x) ∗ (x ∗ 0) = 0, 022x = (021x) ∗ (x210) = 0. In this fashion, we obtain 02ix = 0. Thus,
H(x) = x ∗ (02ix) = x ∗ 0 = x, which proves that x ∗ (y2ix) = H(x) = x ∗ (02ix) = x. Hence,
(X, ∗, 0) is i-implicative.

Theorem 8. Let (X, ∗) be both a weakly 0-implicative groupoid and an 1-implicative groupoid. If (X,2) :=
(X, ∗)2(X, ∗), then (X,2) is weakly 0-implicative.

Proof. Since (X,2) = (X, ∗)2(X, ∗), we have x2(y2x) = (x ∗ (y2x)) ∗ ((y2x) ∗ x) for any x, y ∈ X.
It follows from (X, ∗) is 1-implicative that x = x ∗ (y21x) = x ∗ (y2x) for all x, y ∈ X. Let z := y2x.
Since (X, ∗) is weakly 0-implicative, we have x ∗ (z ∗ x) = w(x) for some word w(x). It follows that

x2(y2x) = (x ∗ (y2x)) ∗ ((y2x) ∗ x)

= x ∗ ((y2x) ∗ x)

= x ∗ (z ∗ x)

= w(x),

which proves that (X,2) is weakly 0-implicative.

Corollary 2. Let (X, ∗) be both an implicative groupoid and a 1-implicative groupoid. If (X,2) :=
(X, ∗)2(X, ∗), then (X,2) is implicative.

Proof. Let w(x) := x in Theorem 8.

Let (X, ∗) be a groupoid and let (X,2) := (X, ∗)2(X, ∗). If we assume that x2y := x ∗ y for any
x, y ∈ X, then x21y = x2y = x ∗ y and hence x22y = (x21y) ∗ (y21x) = (x ∗ y) ∗ (y ∗ x) = x21y =

x2y = x ∗ y. In this fashion, we obtain x2iy = x ∗ y for all i = 1, 2, · · · .

Theorem 9. Every implicative BCK-algebra (X, ∗, 0) is an i-implicative BCK-algebra where i = 1, 2, · · · .

Proof. Let (X, ∗, 0) be an implicative BCK-algebra. Then, x ∗ (y ∗ x) = x for any x, y ∈ X. It follows
from Theorem 1 that

y2x = (y ∗ x) ∗ (x ∗ y)

= (y ∗ (x ∗ y)) ∗ x

= y ∗ x,

i.e., y2x = y ∗ x. This shows that x ∗ (y2ix) = x ∗ (y2x) = x ∗ (y ∗ x) = x for any i = 1, 2, · · · .
Hence, (X, ∗, 0) is an i-implicative BCK-algebra.

5. Weakly Implicative Groupoids with P(Li)

A groupoid (X, ∗, 0) is said to have a condition (Li) if it satisfies the following condition, for any
x, y ∈ X,

x2i+1y = x2iy, (Li);

and a groupoid (X, ∗, 0) is said to have a condition (L0) if it satisfies the following condition, for any
x, y ∈ X,

x21y = x20y, (L0),
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i.e., (x ∗ y) ∗ (y ∗ x) = x ∗ y. Assume that a groupoid (X, ∗) has the condition (Li). Then, x2i+2y =

(x2i+1y) ∗ (y2i+1x) = (x2iy) ∗ (y2ix) = x2i+1y for any x, y ∈ X. Similarly, x2i+3y = x2i+2y =

x2i+1y. In this fashion, we have x2i+ky = x2i+k−1y for any k = 1, 2, · · · . Hence, (X, ∗) satisfies the
condition (Li+k).

Proposition 6. If a groupoid (X, ∗) is a weakly i-implicative groupoid with (Li), then it is a weakly
(i + k)-implicative groupoid.

Proof. Let (X, ∗) be a weakly i-implicative groupoid with (Li). Then, x ∗ (y2ix) = w(x) and y2i+kx =

y2ix for any x, y ∈ X, where k = 1, 2, · · · . It follows that x ∗ (y2i+kx) = x ∗ (y2ix) = w(x) for any
k = 1, 2, · · · . This proves that (X, ∗) is a weakly (i + k)-implicative groupoid.

Theorem 10. Any standard BCK-algebra has the condition (L0).

Proof. Let (X, ∗, 0) be a standard BCK-algebra. Given x, y ∈ X, we have 3 cases: (i) x ∗ y = 0;
(ii) y ∗ x = 0; (iii) x ∗ y 6= 0, y ∗ x 6= 0. Case (i). If x ∗ y = 0, then x2y = (x ∗ y) ∗ (y ∗ x) = 0 ∗ (y ∗ x) =
0 = x ∗ y. Case (ii). If y ∗ x = 0, then x2y = (x ∗ y) ∗ (y ∗ x) = (x ∗ y) ∗ 0 = x ∗ y. Case (iii).
If x ∗ y 6= 0, y ∗ x 6= 0, then x ∗ y = x and y ∗ x = y. It follows that x2y = (x ∗ y) ∗ (y ∗ x) = x ∗ y.
Hence, x21y = x20y = x ∗ y.

Note that nonstandard BCK-algebras need not have the condition (L0). Consider the
following example.

Example 2. Let X := {0, 1, 2, 3} be a set with the following table:

∗ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Then, (X, ∗, 0) is a BCK-algebra ([7], p. 245). Since 2 ∗ 3 = 1 and (2 ∗ 3) ∗ (3 ∗ 2) = 1 ∗ 3 = 0, we have
223 6= 2 ∗ 3, i.e., (X, ∗, 0) does not satisfy the condition (L0).

A groupoid (X, ∗) is said to have a condition (α) if X× X = A ∪ B ∪ C, where

A = {(x, y)|y ∗ x = 0},
B = {(x, y)|x ∗ y = 0},
C = {(x, y)|x ∗ y = x, y ∗ x = y}.

Theorem 11. Let (X, ∗, 0) be a groupoid with a condition (α). If (X, ∗, 0) satisfies the following conditions:
(i) 0 ∗ x = x; (ii) x ∗ 0 = x; (iii) x ∗ x = 0; (iv) y ∗ x = 0 implies x ∗ y ∈ {0, x}, then (x ∗ (x ∗ y)) ∗ y = 0 for
all x, y ∈ X.

Proof. Case (i). If (x, y) ∈ A, then y ∗ x = 0. By (iv), we have x ∗ y ∈ {0, x}. If x ∗ y = 0, then
(x ∗ (x ∗ y)) ∗ y = (x ∗ 0) ∗ y = x ∗ y = 0. If x ∗ y = x, then (x ∗ (x ∗ y)) ∗ y = (x ∗ x) ∗ y = 0 ∗ y = 0.
Case (ii). If (x, y) ∈ B, then x ∗ y = 0 and hence (x ∗ (x ∗ y)) ∗ y = (x ∗ 0) ∗ y = x ∗ y = 0. Case (iii).
If (x, y) ∈ C, then x ∗ y = x and y ∗ x = y. It follows that (x ∗ (x ∗ y)) ∗ y = (x ∗ x) ∗ y = 0 ∗ y = 0.

Theorem 12. Let (X, ∗, 0) be a groupoid with a condition (α). If (X, ∗, 0) satisfies the following conditions:
(i) x ∗ 0 = x; (ii) 0 ∗ (x ∗ y) = y ∗ x for all x, y ∈ X, then (X, ∗, 0) satisfies the condition (L0).
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Proof. Given x, y ∈ X, if (x, y) ∈ A, then y ∗ x = 0 and hence x2y = (x ∗ y) ∗ (y ∗ x) = (x ∗ y) ∗ 0 =

x ∗ y. If (x, y) ∈ B, then x ∗ y = 0 and hence x2y = (x ∗ y) ∗ (y ∗ x) = 0 ∗ (y ∗ x) = x ∗ y. If (x, y) ∈ C,
then x ∗ y = x, y ∗ x = y and hence x2y = (x ∗ y) ∗ (y ∗ x) = x ∗ y, proving the theorem.

Theorem 13. Let K be a field and let A, B, C ∈ K, |K| ≥ 3. Define a binary operation “∗" on K by x ∗ y :=
A + Bx + Cy for all x, y ∈ K. If (K, ∗) is an implicative groupoid, then x ∗ y is one of the following:

(i) x ∗ y = x,
(ii) x ∗ y = y,
(iii) x ∗ y = A− y.

Proof. Since (K, ∗) is an implicative groupoid, we have

x = x ∗ (y ∗ x)

= A + Bx + C(A + Bx + Cy)

= A(1 + C) + (B + C2)x + BCy

for any x, y ∈ K. It follows that A(1 + C) = 0, B + C2 = 1, and BC = 0. Case 1. Assume B = 0.
Since B + C2 = 1, we obtain C2 = 1, i.e., C = ±1. If C = 1, then A = 0, since A(1 + C) = 0.
Hence, x ∗ y = y. If C = −1, then A is arbitrary, since A(1 + C) = 0. Hence, x ∗ y = A− y. Case 2.
Assume C = 0. Since A(1 + C) = 0, B + C2 = 1, we obtain A = 0, B = 1, i.e., x ∗ y = x.

Theorem 14. Let K be a field and let A, B, C ∈ K, |K| ≥ 3. Define a binary operation “∗" on K by x ∗ y :=
A + Bx + Cy for all x, y ∈ K. If (K, ∗) satisfies the condition (L0), then x ∗ y is one of the following:

(i) x ∗ y = A,
(ii) x ∗ y = x,
(iii) x ∗ y = 1

2 (x + y),
(iv) x ∗ y = A− 1

2 (x− y).

Proof. Since x ∗ y = A + Bx + Cy and y ∗ x = A + By + Cx, we have

(x ∗ y) ∗ (y ∗ x) = (A + Bx + Cy) ∗ (A + By + Cx)

= A + B(A + Bx + Cy) + C(A + By + Cx)

= A(1 + B + C) + (B2 + C2)x + 2BCy

= x ∗ y

= A + Bx + Cy

for any x, y ∈ K. It follows that A(1 + B + C) = A, B2 + C2 = B and 2BC = C. This shows that
C = 0 or B = 1

2 . Case 1. C = 0. Since B2 + C2 = B, we obtain that either B = 0 or B = 1. If B = 0,
then x ∗ y = A. If B = 1, then A = A(1 + B + C) = 2A, i.e., A = 0. Hence, x ∗ y = x. Case 2.
B = 1

2 . Since B2 + C2 = B, we obtain C = ± 1
2 . If C = 1

2 , then A = A(1 + B + C) = 2A, i.e., A = 0.
Hence, x ∗ y = 1

2 (x + y). If C = − 1
2 , then A = A(1 + B + C) = A, and hence A is arbitrary. Hence,

x ∗ y = A− 1
2 (x− y).

6. Conclusions

In this paper, we generalized the notion of an implicativity discussed mainly in BCK-algebras by
using the notion of a word, and obtained several properties in groupoids and BCK-algebras. By using
the notion of Bin(X)-product 2, we generalized the notion of the implicativity in different directions,
and obtained the notion of a weakly (i-)implicativity. We applied these notions to BCK-algebras
and several groupoids, and investigated some relations among them. The notion of a weakly
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(i-)implicativity can be applied to positive implicative BCK-algebras, e.g., x ∗ y = (x2iy) ∗ y, and seek
to find some relations with commutative BCK-algebras.

7. Future Research

Using the notions of the word and the Bin(X)-product, we will generalize the notions of
the commutativity and the positive implicativity in BCK-algebras and groupoids, i.e., (weakly)
i-commutative and (weakly) i-positive implicative BCK-algebras and groupoids. We will investigate
some relations between (weakly) i-implicative BCK-algebras and (weakly) i-commutative and (weakly)
i-positive implicative BCK-algebras. Moreover, we will generalize several equivalent conditions for
positive implicative BCK-algebras, and investigate their relationships.
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