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1. Introduction

As a generalization of BCK-algebras, the notion of d-algebras was introduced by Neggers and
Kim [1]. They discussed some relations between d-algebras and BCK-algebras as well as several other
relations between d-algebras and oriented digraphs. Several properties on d-algebras, e.g., d-ideals,
deformations, and companion d-algebras, were studied [2—4]. Recently, some notions of the graph
theory were applied to the theory of groupoids [5].

The notion of an implicativity has a very important role in the study of BCK-algebras.
An implicative BCK-algebra has some connections with distributive lattices, Boolean algebras, and
semi-Brouwerian algebras.

In this paper, we generalize the notion of the implicativity, which is a useful tool for investigation
of BCK-algebras by using the notion of a word in general algebraic structures, the most simple
mathematical structure, i.e., in the theory of a groupoid. Moreover, we generalized the notion of
the implicativity by using Bin(X)-product “0”, and obtain the notion of a weakly i-implicativity,
and obtain several properties in BCK-algebras and other algebraic structures.

2. Preliminaries

A groupoid (X, *) is said to be a left-zero-semigroup if x xy := x for all x,y € X. Similarly,
a groupoid (X, *) is said to be a right-zero-semigroup if x x y := y for all x,y € X [6]. A groupoid (X, *,0)
with constant 0 is said to be a d-algebra [1] if it satisfies the following conditions:

O xxx=0,
(I O0xx=0,
() x*y=0and y xx = 0imply x = y forall x,y € X.

For brevity, we call X a d-algebra. In a d-algebra X, we define a binary relation “ < ” by x < y if
and only if x x y = 0. A d-algebra (X, *,0) is said to be an edge if x * 0 = x for all x € X. Example 1
below is an edge d-algebra. For general references on d-algebras we refer to [2—4].

A BCK-algebra [7] is a d-algebra X satisfying the following additional axioms:
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(IV) ((x*xy)*(x*z))*(zxy) =0,

(V) (x*(xxy))*xy=0forallx,y,z e X.

Theorem 1 ([7]). If (X, ,0) is a BCK-algebra, then
(xxy)xz=(x*xz)*y

forallx,y,z € X.

Example 1. Let X := {0,a,b,¢,d, 1} be a set with the following table:

_ QL0 S  Of %
_ QL0 ¢ 8 oo
UL o x O oOR
ST O O Ol
[V R O Oln
QOO RN O O
S DD O O

Then, (X, %,0) is an edge d-algebra which is not a BCK-algebra, since (c xb) xd =bxd =a #0=0xb =
(c*d) = b. For general references on BCK-algebras, we refer to [7-9].

Let (X, <) be a partially ordered set with minimal element 0, and let (X, *) be its associated
groupoid, i.e., * is a binary operation on X defined by

i <
x*y:—{ 0 if x<y,

x otherwise.

Then, (X, %,0) is a BCK-algebra, and we call it a standard BCK-algebra.

A BCK-algebra (X, *,0) is said to be implicative if x = x  (y * x); commutative if x % (x xy) =
y * (y * x); positive implicative if (x xy) % (y*z) = (x*y) *z for all x,y € X [7]. It is well known that a
BCK-algebra is implicative if and only if it is both commutative and positive implicative. A group X is
said to be Boolean if every element of X is its own inverse.

The notion of Smarandache algebras emerged and has been applied to several algebraic
structures [10-12]. Two algebras (X, *) and (X, o) are said to be Smarandache disjoint [13,14] if we
add some axioms of an algebra (X, *) to an algebra (X, o), then the algebra (X, o) becomes a trivial
algebra, i.e., | X| = 1; or if we add some axioms of an algebra (X, o) to an algebra (X, *), then the algebra
(X, o) becomes a trivial algebra, i.e., |X| = 1. Note that if we add an axiom (A) of an algebra (X, ) to
another algebra (X, o), then we replace the binary operation “o” in (A) by the binary operation “x”.

Let Bin(X) be the collection of all groupoids (X, *) defined on X. For any elements (X, *) and
(X, e) in Bin(X), we define a binary operation “0” on Bin(X) by

(X,%)0(X,e) = (X,0), )

where
x0y = (xxy)e(y*x) )
for any x,y € X. Using the notion, Kim and Neggers proved the following theorem.

Theorem 2 ([6]). (Bin(X), O) is a semigroup, i.e., the operation “0" as defined in general is associative.
Furthermore, the left zero semigroup is an identity for this operation.
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3. (Weakly) Implicativity in Groupoids

By using the notion of words, we generalize the notion of an implicativity in groupoids.
A groupoid (or a BCK-algebra) (X, *) is said to be implicative if

xx(y*x)=x
forall x,y € X.

Proposition 1. If (X, ) is a left-zero semigroup (respectively, a right-zero semigroup), i.e., X xy = x
(respectively, x xy = y) forall x,y € X, then (X, x) is implicative.

Proof. If (X, ) is a left-zero semigroup, then x x y = x for all x,y € X. It follows that x * (y *x x) =
x % iy = x, which proves that (X, *) is implicative. Similarly, if (X, ) is a right-zero semigroup, then it is
also implicative. [

Proposition 2. The class of implicative groupoids and the class of groups are Smarandache disjoint.

Proof. Assume (X, e,¢) is both a group and an implicative groupoid. Then,e = ce (xee) = xee=x
for all x € X. This shows that X = {¢}. O

Notice that the class of implicative groupoids is equationally defined and thus that it is a variety,
i.e., it is closed under subgroups, epimorphic images, and direct products.
A groupoid (X, ) is said to be weakly implicative if there exists a word w(x) such that, for all
x,y € X,
x#* (y*x) =w(x).

7w

Note that w(x) is an expression of “x”, e.g., x * (x *x x),x * x, ((x * x) * x) % x,-- -, and a zero
element “0”, e.g., x * (0 x x), (0% x) * (x % 0), - - -, if necessary.

Proposition 3. Let (X, ,0) be a weakly implicative groupoid with w(x) = x* (0% x). If (X,*,0) is
a BCK-algebra, then it is an implicative BCK-algebra.

Proof. Let (X, *,0) be a weakly implicative groupoid with w(x) := x % (0 % x). Since (X, *,0) is
a BCK-algebra, we obtain x * (y x x) = w(x) = x* (0xx) = x*0 = x for all x,y € X. Hence, (X, %,0)
is an implicative BCK-algebra. [

Corollary 1. Let (X, *,0) be an edge d-algebra. If (X, x,0) is a weakly implicative with w(x) = x * (0 * x),
then is an implicative edge d-algebra.

Proof. If (X, %,0) is an edge d-algebra, then 0 % x = 0 and x * 0 = x for all x € X. By Proposition 3,
(X, *,0) is an implicative edge d-algebra. [J

"

Let (X, *) be a groupoid. Define a binary operation “e” on X by
Xey i =y*Xx
for all x,y € X. We call (X, e) an oppositie groupoid of a groupoid (X, *).
Theorem 3. The opposite groupoid of a BCK-algebra is weakly implicative.

Proof. Let (X, *,0) be a BCK-algebra and let w(x) := 0 forall x € X. Then, xe (yex) = (x*y) *x =
(x*x)*y =0%y =0 =w(x). Hence, (X, o) is weakly implicative. [



Mathematics 2019, 7, 973 40f8

Proposition 4. There is no nontrivial implicative opposite groupoid derived from a BCK-algebra.

Proof. Let (X, ,0) be a BCK-algebra and let |X| > 2. Assume that (X, e) is implicative. Then,
x = xo(yex)=(xxy)xx= (xxx)xy=0xy=0forallx € X, i.e, X = {0}, a contradiction. []

Theorem 4. The class of weakly implicative groupoids and the class of groups are Smarandache disjoint.

Proof. Assume (X, -, e) is both a group and a weakly groupoid. Then, there exists a word w(x) such
that x - (v - x) = w(x) for all x,y € X. It follows thate - (x-e) = w(e) forallx € X. Sincex =e- (x-e),
we obtain x = w(e), a constant. Hence, X = {w(e)}, i.e., | X| = 1, a contradiction. O

4. Levels of Implicativities

Let (X, %) be a groupoid and let x,y € X. We define binary operations “0;” on X by xOyy :=
(x*y) * (y*x) = xOy and x0; 1y := (x0O;y) * (yO;x) forall x,y € X, wherei =1,2,3,---. Let w(x)
be a word of x. We define the following levels of implicativities as follows:

Level 0: (i) x * (v * x) = w(x) (weakly O-implicative); (ii) x * (y * x) = x (implicative).
Level 1: (i) x * (yO1x) = w(x) (weakly 1-implicative); (ii) x * (yO1x) = x (1-implicative).
Level i: (i) x * (yO;x) = w(x) (weakly i-implicative); (ii) x * (yO;x) = x (i-implicative).

Theorem 5. Let (X,-,e) be a group with |X| > 2. Then, X is weakly 1-implicative if and only if X is
a Boolean group.

Proof. Let (X, -, ¢) be a weakly 1-implicative groupoid. Then, x - (yO1x) = w(x) for all x,y € X.
It follows that x - ((y - x) - (x-y)) = w(x). f weletx :=¢, thene- ((y- ) (e-y)) = w(e), and hence
y?> = w(e) forally € X. If we lety := e, then w(e) = ¢ = e. Hence y*> = w(e) = eforally € X.
Hence, (X, -, e) is a Boolean group.

Assume (X, -, e) is a Boolean group. Then, x2 = e for all x € X. It follows that, for any x,y € X,

x-(yBix) = x-((y-x)- (x-y))

= xyx?y

= x

= w(x).
Hence, (X, -, e) is a weakly 1-implicative groupoid. [
Theorem 6. Let (X, -, e) be a group. If (X, -, e) is a weakly i-implicative groupoid, then it is i-implicative.
Proof. Given x € X, we have e0qx = (e-x)- (x-e) = x?, x01e = (x-e) - (e-x) = x2, elpx =
(eO1x) - (xO1e) = x2 - x? = x*, and xOpe = x*. Similarly, we obtain e0;x = x? = xOje. Since Xisa
group and w(x) is a word on x, we have w(e) = e. This shows thate = w(e) = e (yOje) = e y> = y?
for all y € X. Hence, w(x) = x- (e0;x) = x-x* = x-¢ = x for all x € X, proving that (X, -,e)
is i-implicative. [
Proposition 5. Let (X, -,¢) be a group. If x* = e for any x € X, then X is i-implicative.

Proof. Given x,y € X, wehave x - (yO;x) = x - x2[y2i = x. Hence, X is i-implicative. [

Theorem 7. Let (X, *,0) be a BCK-algebra. If it is weakly i-implicative, then it is i-implicative.
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Proof. Suppose that (X, ,0) is weakly i-implicative. Then, there exists a mapping H : X x X — X
such that, for any x,y € X, x * (yO;x) = H(x). Since (X, *,0) is a BCK-algebra, we obtain 00;x =
(0% x) % (xx0) = 0,00px = (007x) * (x0,0) = 0. In this fashion, we obtain 00;x = 0. Thus,
H(x) = x* (00;x) = x*0 = x, which proves that x x (yO0;x) = H(x) = x* (00;x) = x. Hence,
(X, *,0) is i-implicative. [

Theorem 8. Let (X, *) be both a weakly 0-implicative groupoid and an 1-implicative groupoid. If (X, 0) :=
(X, *)0(X, ), then (X, 0) is weakly 0-implicative.

Proof. Since (X,0) = (X, *)0(X, %), we have xO(yOx) = (x * (yOx)) * ((yOx) * x) for any x,y € X.
It follows from (X, *) is 1-implicative that x = x % (yO1x) = x * (yOx) forall x,y € X. Let z := yOx.
Since (X, *) is weakly 0-implicative, we have x * (z * x) = w(x) for some word w(x). It follows that

XO(yOx) = (xx (yOx) = ((yOx) * x)

which proves that (X, 0) is weakly 0-implicative. [

Corollary 2. Let (X, x) be both an implicative groupoid and a 1-implicative groupoid. If (X,0) :=
(X, *)O(X, ), then (X, O) is implicative.

Proof. Let w(x) := x in Theorem 8. [J

Let (X, *) be a groupoid and let (X, 0) := (X, x)O(X, *). If we assume that xOy := x * y for any
x,y € X, then xOyy = x0Oy = x * y and hence xOyy = (x0O1y) * (yO1x) = (x*xy) * (y*x) = xO1y =
x0Oy = x x y. In this fashion, we obtain xO;y = x *y foralli =1,2,- - -.

Theorem 9. Every implicative BCK-algebra (X, *,0) is an i-implicative BCK-algebra where i = 1,2, - - -.

Proof. Let (X, %,0) be an implicative BCK-algebra. Then, x % (y * x) = x for any x,y € X. It follows
from Theorem 1 that

yOx = (yxx)*(x*y)
= (y=*(xxy))*x
Y*X,

i.e., yOx = y « x. This shows that x * (yO;x) = x* (yOx) = xx (y*xx) = x forany i = 1,2,---.
Hence, (X, *,0) is an i-implicative BCK-algebra. [

5. Weakly Implicative Groupoids with P(L;)

A groupoid (X, *,0) is said to have a condition (L;) if it satisfies the following condition, for any
x,y € X,

X041y = x0y, (L;);

and a groupoid (X, *,0) is said to have a condition (L) if it satisfies the following condition, for any
x,y € X,

xO1y = xOgy, (Lo),
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ie., (x*xy)* (y*x) = x*y. Assume that a groupoid (X, %) has the condition (L;). Then, x0; ,y =
(x0j11y) * (YOjp1x) = (x0;y) * (yO;x) = x0;41y for any x,y € X. Similarly, xO;, 3y = x0; 1,y =
x0;1y. In this fashion, we have x0;, yy = x0; 1y for any k = 1,2, - - - . Hence, (X, *) satisfies the
condition (L; ).

Proposition 6. If a groupoid (X, *) is a weakly i-implicative groupoid with (L;), then it is a weakly
(i + k)-implicative groupoid.

Proof. Let (X, *) be a weakly i-implicative groupoid with (L;). Then, x * (y0;x) = w(x) and yO; , xx =
yO;x for any x,y € X, where k = 1,2, - - -. It follows that x * (yO;,,x) = x * (yO;x) = w(x) for any
k=1,2,---. This proves that (X, *) is a weakly (i + k)-implicative groupoid. [

Theorem 10. Any standard BCK-algebra has the condition (Ly).

Proof. Let (X, *,0) be a standard BCK-algebra. Given x,y € X, we have 3 cases: (i) x*xy = 0;
() y*x=0; (i) x*y # 0,y xx #0. Case (i). f x xy =0, then xOy = (xxy) * (y*x) = 0% (y*xx) =
0 =xxy. Case(ii). Ifyxx = 0, thenxOy = (x*xy)* (y*xx) = (x*xy)*0 = x*y. Case (iii).
Ifxxy #0,y*xx #0,thenx*y = xand y *xx = y. It follows that xOy = (x *xy) * (y*x) = x * .
Hence, xO1y = xOgy = x xy. O

Note that nonstandard BCK-algebras need not have the condition (Lp). Consider the
following example.

Example 2. Let X := {0,1,2,3} be a set with the following table:

W N = Of %
W N =R OO
N WO =
— O W NN
O = N W W

Then, (X, *,0) is a BCK-algebra ([7], p. 245). Since 23 = 1 and (2% 3) x (3%2) = 1x3 = 0, we have
203 # 2% 3, i.e., (X, *,0) does not satisfy the condition (Lo).

A groupoid (X, *) is said to have a condition (a) if X x X = AUBUC, where

A={(xy)lyxx=0},
B ={(x,y)lx*y =0},
C={(xylx*xy=xyxx=y}

Theorem 11. Let (X, *,0) be a groupoid with a condition («). If (X, x,0) satisfies the following conditions:
() 0% x = x; (ii) x 0 = x; (ifi) x x x = 0; (iv) y * x = 0 implies x x y € {0, x}, then (x * (x xy)) xy = 0 for
all x,y € X.

Proof. Case (i). If (x,y) € A, theny*x = 0. By (iv), we have x xy € {0,x}. If x xy = 0, then
(xx(xxy))*xy=(xx0)xy=x+y=0.Ifxxy =x, then (x*x (x*y))xy = (x*x)*xy =0y = 0.
Case (ii). If (x,y) € B, then x xy = 0 and hence (x * (x xy)) xy = (x*0) xy = x xy = 0. Case (iii).
If (x,y) € C,thenx *y = x and iy * x = y. It follows that (x % (x*xy)) *xy = (x*x)*xy =0xy =0. O

Theorem 12. Let (X, *,0) be a groupoid with a condition (). If (X, *,0) satisfies the following conditions:
(i) x%0 =x; (i) 0% (x xy) = y*x forall x,y € X, then (X, *,0) satisfies the condition (Ly).
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Proof. Given x,y € X, if (x,y) € A, theny * x = 0 and hence xOy = (x*y) % (yxx) = (x*y) *x0 =
x*y.If (x,y) € B, then x xy = 0 and hence xOy = (x*xy) * (y*xx) =0x (y*xx) = xxy. If (x,y) € C,
then x xy = x,y * x = y and hence xOy = (x xy) * (y * x) = x x y, proving the theorem. [

Theorem 13. Let K be a field and let A, B,C € K, |K| > 3. Define a binary operation “x” on Kby x  y :=
A+ Bx + Cy forall x,y € K. If (K, ) is an implicative groupoid, then x x y is one of the following:

i x*xy=x
(i) xxy=y,
(i) xxy=A—-y.

Proof. Since (K, ) is an implicative groupoid, we have

x = xx(y*xx)
= A+Bx+C(A+ Bx+Cy)
= A(1+C)+(B+C?*x+BCy

for any x,y € K. It follows that A(1+C) = 0,B+ C? = 1, and BC = 0. Case 1. Assume B = 0.
Since B + C? = 1, we obtain C>2 = 1,ie, C = £1. If C = 1, then A = 0, since A(1+C) = 0.
Hence, x xy = y. If C = —1, then A is arbitrary, since A(1+ C) = 0. Hence, x xy = A — y. Case 2.
Assume C = 0. Since A(1+C) =0,B+ C?> =1, weobtain A =0,B =1, i.e., x xy=x. [

Theorem 14. Let K be a field and let A, B,C € K, |K| > 3. Define a binary operation “x” on Kby x  y :=
A+ Bx + Cy forall x,y € K. If (K, x) satisfies the condition (Lg), then x * y is one of the following:

i xxy=A4,

(i) x*xy=x,

(i) x+y=1L(x+y),
(iv) xxy=A—3(x—y).

Proof. Since xxy = A+ Bx+ Cyand y *x = A+ By + Cx, we have

(x*xy)*(y*xx) = (A+Bx+Cy)*(A+ By+Cx)
A+ B(A+ Bx+ Cy) + C(A+ By + Cx)
A(1+4 B+C) + (B®+ C?)x +2BCy
x*y
= A+Bx+Cy

for any x,y € K. It follows that A(1+ B+ C) = A,B>+ C?> = B and 2BC = C. This shows that
C=0o0rB= % Case 1. C = 0. Since B? + C2 = B, we obtain that either B=0orB=1.If B =0,
thenx+xy = A. If B=1,then A = A(1+B+C) = 24, ie, A = 0. Hence, x xy = x. Case 2.
B = }. Since B2+ C2 = B, we obtain C = +1. If C = }, then A = A(1+B+C) =24, ie, A = 0.
Hence, x xy = 3(x+y). If C = —1, then A = A(1+ B+ C) = A, and hence A is arbitrary. Hence,
xxy=A-1(x-y). O

6. Conclusions

In this paper, we generalized the notion of an implicativity discussed mainly in BCK-algebras by
using the notion of a word, and obtained several properties in groupoids and BCK-algebras. By using
the notion of Bin(X)-product O, we generalized the notion of the implicativity in different directions,
and obtained the notion of a weakly (i-)implicativity. We applied these notions to BCK-algebras
and several groupoids, and investigated some relations among them. The notion of a weakly
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(i-)implicativity can be applied to positive implicative BCK-algebras, e.g., x * y = (x0;y) * y, and seek
to find some relations with commutative BCK-algebras.

7. Future Research

Using the notions of the word and the Bin(X)-product, we will generalize the notions of
the commutativity and the positive implicativity in BCK-algebras and groupoids, i.e., (weakly)
i-commutative and (weakly) i-positive implicative BCK-algebras and groupoids. We will investigate
some relations between (weakly) i-implicative BCK-algebras and (weakly) i-commutative and (weakly)
i-positive implicative BCK-algebras. Moreover, we will generalize several equivalent conditions for
positive implicative BCK-algebras, and investigate their relationships.
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