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Hüseyin Işık 1,2,* and Wutiphol Sintunavarat 3,*
1 Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
2 Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
3 Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University

Rangsit Center, Pathumthani 12121, Thailand
* Correspondence: huseyin.isik@tdtu.edu.vn (H.I.); wutiphol@mathstat.sci.tu.ac.th (W.S.)

Received: 7 August 2019; Accepted: 2 September 2019; Published: 16 October 2019
����������
�������

Abstract: The purpose of this paper is to introduce the new notion of a specific point in the space of the
bounded real-valued functions on a given non-empty set and present a result based on the existence
and uniqueness of such points. As a consequence of our results, we discuss the existence of a unique
common solution to coupled systems of functional equations arising in dynamic programming.
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1. Introduction and Preliminaries

Banach fixed-point theorem [1], considered to be the source of metrical fixed-point theory, has
been generalized by many researchers; see [2–5]. One of the most interesting generalizations of this
theorem was given by Jleli and Samet [6] by introducing the notion of ϑ-contraction.

Definition 1 ([6]). A self-mapping Υ on a metric space (Λ, d) is said to be a ϑ-contraction, if there exist ϑ ∈ Θ,
and k ∈ (0, 1) such that

η1, η2 ∈ Λ, d(Υη1, Υη2) 6= 0⇒ ϑ(d(Υη1, Υη2)) ≤ [ϑ(d(η1, η2))]
k,

where Θ is the set of functions ϑ : (0,+∞)→ (1,+∞) satisfying the following conditions:

(ϑ1) ϑ is non-decreasing;
(ϑ2) for each sequence {tn} ⊂ (0,+∞), limn→+∞ ϑ(tn) = 1 iff limn→+∞ tn = 0;
(ϑ3) there exist r ∈ (0, 1) and λ ∈ (0,+∞] such that limt→0+

ϑ(t)−1
tr = λ.

Then, Jleli and Samet [6] proved that every ϑ-contraction on a complete metric space has a unique
fixed point.

Here we give an example which illustrates the functions in Θ.

Example 1. Let ϑ1, ϑ2 : (0,+∞)→ (1,+∞) defined by

ϑ1(t) = e
√

t, ϑ2(t) = 1 +
√

t.

Then ϑ1, ϑ2 ∈ Θ.
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Throughout this paper, for a fixed non-empty set Ω, we use the notation B(Ω) which stands for
the set of all bounded real-valued functions on Ω. Also, unless otherwise specified, d is the sup metric
on B(Ω) defined by

d(h, k) = sup
η∈Ω
|hη − kη|,

for all h, k ∈ B(Ω). It is well known that B(Ω), endowed with the sup metric, is a complete metric space.
Recently, Harjani et al. [7] introduced the notion of α-coupled fixed point in the space of the

bounded functions on a non-empty set as follows.

Definition 2 ([7]). Let Ω be a non-empty set and α : Ω → Ω be a given mapping. An element (η, ξ) ∈
B(Ω)× B(Ω) is called an α-coupled fixed point of mapping Γ : B(Ω)× B(Ω) → B(Ω) if Γ(η, ξ) = η and
Γ(η(α), ξ(α)) = ξ.

They also used the above concept to prove the existence and uniqueness of solutions for a coupled
system of functional equations arising in dynamic programming. The purpose of this paper is to
introduce the notion of α-coupled common fixed points and present a result based on the existence
and uniqueness of such points. As a consequence of our results, we discuss the existence of a unique
common solution of coupled systems of functional equations arising in dynamic programming.

2. Main Theoretical Results

First, we introduce the notion of α-coupled common fixed points as follows.

Definition 3. Let Ω be a non-empty set and α : Ω → Ω be a given mapping. An element (η, ξ) ∈
B(Ω) × B(Ω) is called an α-coupled common fixed point of mappings Γ, Υ : B(Ω) × B(Ω) → B(Ω) if
Γ(η, ξ) = Υ(η, ξ) = η and Γ(η(α), ξ(α)) = Υ(η(α), ξ(α)) = ξ.

Now, we give the main theorem of this paper.

Theorem 1. Let Ω be a non-empty set, α : Ω → Ω and Γ, Υ : B(Ω)× B(Ω) → B(Ω) be given mappings.
If there exist ϑ ∈ Θ and k ∈ (0, 1) such that

ϑ(d(Γ(η1, η2), Υ(ξ1, ξ2))) ≤ [ϑ(max {d(η1, ξ1), d(η2, ξ2)})]k, (1)

for all η1, η2, ξ1, ξ2 ∈ B(Ω) with d(Γ(η1, η2), Υ(ξ1, ξ2)) > 0, then Γ and Υ have a unique α-coupled common
fixed point.

Before going to the proof, we give the following lemma which will be used efficiently in the proof
of Theorem 1.

Lemma 1. Let (Λ, d) be a complete metric space and, σ and $ be self-mappings on Λ such that

η1, η2 ∈ Λ, d(ση1, $η2) > 0⇒ ϑ(d(ση1, $η2)) ≤ [ϑ(d(η1, η2))]
k, (2)

where ϑ ∈ Θ and k ∈ (0, 1). Then σ and $ have a unique common fixed point.

Proof. Notice that by (2), we deduce

ln[ϑ(d(ση1, $η2))] ≤ k ln[ϑ(d(η1, η2))] < ln[ϑ(d(η1, η2))],

which implies from (ϑ1) that

d(ση1, $η2) ≤ d(η1, η2), for all η1, η2 ∈ Λ. (3)
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First, we prove that ξ is a fixed point of σ if and only if ξ is a fixed point of $. Suppose that ξ is
a fixed point of $. Also, assume that ξ is not a fixed point of σ. Then, considering (3), we have

0 < d(σξ, ξ) = d(σξ, $ξ) ≤ d(ξ, ξ) = 0

which is a contradiction, and this implies that σξ = ξ. Similarly, it is easy to show that if ξ is a fixed
point of σ, then ξ is a fixed point of $.

Let η0 ∈ Λ. Define the sequence {ηn} in Λ by η2n+1 = ση2n and η2n+2 = $η2n+1 for all n ∈ N0 =

N ∪ {0}. If η2n = η2n+1 for some n ∈ N, then η2n = ση2n. Thus, η2n is a fixed point of σ and so x2n
is a fixed point of $, that is, η2n = ση2n = $η2n. Similarly, if η2n+1 = η2n+2 for some n ∈ N, then it is
easy to see that η2n+1 = ση2n+1 = $η2n+1. Hence we can assume that ηn 6= ηn+1 for all n ∈ N. Then,
for n = 2m + 1, where m ∈ N∪ {0}, using (2) we get

ϑ(d(ηn, ηn+1)) = ϑ(d(η2m+1, η2m+2))

= ϑ(d(ση2m, $η2m+1))

≤ [ϑ(d(η2m, η2m+1))]
k

≤ [ϑ(d(η2m−1, η2m))]
k2

...

≤ [ϑ(d(η0, η1))]
k2m+1

= [ϑ(d(η0, η1))]
kn

.

By a similar method to above, for n = 2m,, where m ∈ N∪ {0}, we can again obtain

ϑ(d(ηn, ηn+1)) ≤ [ϑ(d(η0, η1))]
kn

.

Thus, for all n ∈ N, we have

1 < ϑ(d(ηn, ηn+1)) ≤ [ϑ(d(η0, η1))]
kn

. (4)

Letting n→ +∞ in the above equation, we get

lim
n→+∞

ϑ(d(ηn, ηn+1)) = 1,

which implies by (ϑ2) that
lim

n→+∞
d(ηn, ηn+1) = 0. (5)

Let dn := d(ηn, ηn+1) for all n ∈ N. To prove that {ηn} is a Cauchy sequence, let us consider
condition (ϑ3). Then there exist r ∈ (0, 1) and λ ∈ (0,+∞] such that

lim
n→+∞

ϑ(dn)− 1
(dn)r = λ. (6)

Let δ ∈ (0, λ). By the definition of limit, there exists n0 ∈ N such that

[dn]
r ≤ δ−1[ϑ(dn)− 1], for all n > n0.

Using (4) and the above inequality, we infer

n[dn]
r ≤ δ−1n([ϑ(d0)]

kn − 1), for all n > n0.
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This implies that

lim
n→+∞

n[dn]
r = lim

n→+∞
n[d(ηn, ηn+1)]

r = 0.

Then, there exists n1 ∈ N such that

d(ηn, ηn+1) ≤
1

n1/r , for all n > n1. (7)

Let m > n > n1. Then, using the triangular inequality and (7), we have

d(ηn, ηm) ≤
m−1

∑
k=n

d(ηk, ηk+1) ≤
m−1

∑
k=n

1
k1/r ≤

∞

∑
k=n

1
k1/r

and hence {ηn} is a Cauchy sequence in Λ. From the completeness of (Λ, d), there exists ξ ∈ Λ such
that ηn → ξ as n→ +∞.

Now, we show that ξ is a common fixed point of σ and $. By considering (3), we deduce

d (η2n+1, $ξ) = d (ση2n, $ξ) ≤ d (η2n, ξ) .

Passing to limit as n→ +∞ in the above inequality, we obtain d(ξ, $ξ) = 0 and so ξ = $ξ. That is,
ξ is a fixed point of $. Taking into account the fact that ξ is a fixed point of σ iff ξ is a fixed point of $,
we conclude that ξ is also a fixed point of σ.

To show the uniqueness of common fixed point of σ and $, suppose that there exist η1, η2 ∈
Λ with η1 6= η2 such that η1 = ση1 = $η1 and η2 = ση2 = $η2. Then, from (2), we get

ϑ(d(η1, η2)) = ϑ(d(ση1, $η2)) ≤ [ϑ(d(η1, η2))]
k < ϑ(d(η1, η2)),

which is a contradiction. Then σ and $ have one and only one common fixed point.

Now, we are ready to present the proof of Theorem 1.

Proof. Define δ : B(Ω)× B(Ω)→ [0,+∞) by

δ((η1, η2), (ξ1, ξ2)) = max{d(η1, ξ1), d(η2, ξ2)}, for all η1, η2, ξ1, ξ2 ∈ B(Ω).

Then, (B(Ω)× B(Ω), δ) is a complete metric space, since (B(Ω), d) is complete.
Consider the mappings ΣΓ, ΣΥ : B(Ω)× B(Ω)→ B(Ω)× B(Ω) defined by

ΣΓ(U) = (Γ(η1, η2), Γ(η1(α), η2(α)))

and
ΣΥ(U) = (Υ(η1, η2), Υ(η1(α), η2(α))) ,

where U = (η1, η2). Then, ΣΓ and ΣΥ satisfy all assumptions of Lemma 1. Indeed, taking account of
(ϑ1) and (1), for all U = (η1, η2), V = (ξ1, ξ2) ∈ B(Ω)× B(Ω), we deduce

ϑ(δ(ΣΓ(U), ΣΥ(V)))

= ϑ(δ((Γ(η1, η2), Γ(η1(α), η2(α))), (Υ(ξ1, ξ2), Υ(ξ1(α), ξ2(α)))))

= ϑ(max{d(Γ(η1, η2), Υ(ξ1, ξ2)), d(Γ(η1(α), η2(α)), Υ(ξ1(α), ξ2(α)))})
= max{ϑ(d(Γ(η1, η2), Υ(ξ1, ξ2))), ϑ(d(Γ(η1(α), η2(α)), Υ(ξ1(α), ξ2(α))))}
≤ max{[ϑ(max{d(η1, ξ1), d(η2, ξ2)})]k,

[ϑ(max{d(η1(α), ξ1(α)), d(η2(α), ξ2(α))})]k}.
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Since

d(η1(α), ξ1(α)) = sup
ω∈Ω
|η1(α)(ω), ξ1(α)(ω)|

≤ sup
ω∈Ω
|η1(ω), ξ1(ω)| = d(η1, ξ1),

and similarly d(η2(α), ξ2(α)) ≤ d(η2, ξ2), we infer that

ϑ(δ(ΣΓ(U), ΣΥ(V))) ≤ [ϑ(max{d(η1, ξ1), d(η2, ξ2)})]k

= [ϑ(δ(U, V))]k.

That is, ΣΓ and ΣΥ satisfy the inequality (2). Therefore, by Lemma 1, there exists a unique
U∗ = (η∗1 , η∗2 ) ∈ B(Ω)× B(Ω) such that ΣΓ(U∗) = ΣΥ(U∗) = U∗. This means that

Γ(η∗1 , η∗2 ) = Υ(η∗1 , η∗2 ) = η∗1

and

Γ(η∗1 (α), η∗2 (α)) = Υ(η∗1 (α), η∗2 (α)) = η∗2 .

This finishes the proof.

3. Application to Dynamic Programming

Consider the following coupled systems of functional equations

r1 (η) = sup
ξ∈∆
{p (η, ξ) + P (η, ξ, r1 (κ (η, ξ)) , s1 (κ (η, ξ)))}

s1 (η) = sup
ξ∈∆
{p (η, ξ) + P (η, ξ, r1 (α(κ (η, ξ))) , s1 (α(κ (η, ξ))))}

(8)

and
r2 (η) = sup

ξ∈∆
{p (η, ξ) + Q (η, ξ, r2 (κ (η, ξ)) , s2 (κ (η, ξ)))}

s2 (η) = sup
ξ∈∆
{p (η, ξ) + Q (η, ξ, r2 (α(κ (η, ξ))) , s2 (α(κ (η, ξ))))}

(9)

for all η ∈ Ω, which appear in the study of dynamic programming (see [8]), where Ω is a state space,
∆ is a decision space, κ : Ω× ∆→ Ω, p : Ω× ∆→ R, P, Q : Ω× ∆×R×R→ R and α : Ω→ Ω are
given mappings.

In this section, we discuss the existence of a unique common solution to the systems of functional
Equations (8) and (9) by using the obtained results in the previous section.

Theorem 2. Consider the systems of functional Equations (8) and (9). Assume that the following conditions
are satisfied:

(i) p : Ω× ∆→ R and P, Q : Ω× ∆×R×R→ R are bounded functions;
(ii) there exists β ∈ (0, 1) such that for arbitrary points η ∈ Ω, ξ ∈ ∆ and h, k, h1, k1 ∈ R,

|P (η, ξ, h, k)−Q (η, ξ, h1, k1)| ≤
[[

1 +
√

sup {|h− h1| , |k− k1|}
]β

− 1

]2

.

Then Equations (8) and (9) have a unique common solution in B(Ω)× B(Ω).
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Proof. First, we consider the operators Γ and Υ defined on B(Ω)× B(Ω) as

(Γ (r, s)) (η) = sup
ξ∈∆
{p (η, ξ) + P (η, ξ, r (κ (η, ξ)) , s (κ (η, ξ)))} ,

(Υ (r, s)) (η) = sup
ξ∈∆
{p (η, ξ) + Q (η, ξ, r (κ (η, ξ)) , s (κ (η, ξ)))}

(10)

for all (r, s) ∈ B(Ω)× B(Ω) and η ∈ Ω. Since functions p, P and Q are bounded, then Γ and Υ are
well-defined.

Now we will show that Γ and Υ satisfy the condition (1) in Theorem 1 with the sub metric d.
Let (r1, s1) , (r2, s2) ∈ B(Ω)× B(Ω). Then, by (ii), we get

d(Γ( r1, s1), Υ(r2, s2))

= sup
η∈Ω
|Γ (r1, s1) (η)− Υ (r2, s2) (η)|

= sup
η∈Ω

∣∣∣∣∣ sup
ξ∈∆
{p (η, ξ) + P (η, ξ, r1 (κ (η, ξ)) , s1 (κ (η, ξ)))}

−sup
ξ∈∆
{p (η, ξ) + Q (η, ξ, r2 (κ (η, ξ)) , s2 (κ (η, ξ)))}

∣∣∣∣∣
≤ sup

η∈Ω

{
sup
ξ∈∆
| P (η, ξ, r1 (κ (η, ξ)) , s1 (κ (η, ξ)))

−Q(η, ξ, r2(κ(η, ξ)), s2(κ(η, ξ)))|
}

≤ sup
η∈Ω

{
sup
ξ∈∆

{ [[
1 +

√
sup {A, B}

]β
− 1
]2 }}

,

(11)

where
A := |r1 (κ (η, ξ))− r2 (κ (η, ξ))| and B := |s1 (κ (η, ξ))− s2 (κ (η, ξ))| .

It yields that

d(Γ(r1, s1), Υ(r2, s2)) ≤
[[

1 +
√

sup {d(r1, r2), d(s1, s2)}
]β

− 1

]2

. (12)

From the above inequality, we obtain

1 +
√

d(Γ(r1, s1), Υ(r2, s2)) ≤
[

1 +
√

sup {d(r1, r2), d(s1, s2)}
]β

. (13)

By setting ϑ ∈ Θ by ϑ(t) = 1 +
√

t for all t > 0 and using (13), we infer

ϑ(d(Γ(r1, s1), Υ(r2, s2))) ≤ [ϑ(max {d(r1, r2), d(s1, s2)})]β

for all (r1, s1) , (r2, s2) ∈ B(Ω) × B(Ω). This means that the condition (1) of Theorem 1 holds and
consequently, Γ and Υ have a unique α-coupled common fixed point, i.e., Equations (8) and (9) have a
unique common solution in B(Ω)× B(Ω).

By using the same method in the proof of Theorem 2 together Theorem 1 with the function ϑ ∈ Θ
defined by ϑ(t) = e

√
t, we get the following result.

Theorem 3. Consider the systems of functional Equations (8) and (9). Assume that the following conditions
are satisfied:
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(i) p : Ω× ∆→ R and P, Q : Ω× ∆×R×R→ R are bounded functions;
(ii) there exists β ∈ (0,+∞) such that for arbitrary points η ∈ Ω, ξ ∈ ∆ and h, k, h1, k1 ∈ R,

|P (η, ξ, h, k)−Q (η, ξ, h1, k1)| ≤ e−β sup {|h− h1| , |k− k1|} .

Then Equations (8) and (9) have a unique common solution in B(Ω)× B(Ω).

4. Conclusions

In this paper, we introduced the notion of α-coupled common fixed points and established the
existence and uniqueness of such points. We applied our results to ensure the existence of a unique
common solution of coupled systems of functional equations arising in dynamic programming. We think
that this new concept will be a powerful tool in searching for the existence of solutions for coupled
systems of integral equations, differential equations, and also fractional integro-differential equations.
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