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Abstract: This article presents a novel hybrid classification paradigm for medical diagnoses and
prognoses prediction. The core mechanism of the proposed method relies on a centroid classification
algorithm whose logic is exploited to formulate the classification task as a real-valued optimisation
problem. A novel metaheuristic combining the algorithmic structure of Swarm Intelligence optimisers
with the probabilistic search models of Estimation of Distribution Algorithms is designed to optimise
such a problem, thus leading to high-accuracy predictions. This method is tested over 11 medical
datasets and compared against 14 cherry-picked classification algorithms. Results show that the
proposed approach is competitive and superior to the state-of-the-art on several occasions.
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1. Introduction

Artificial Intelligence (Al) plays a major role in modern medicine and is key in automating tasks
such as image registration [1-3], diagnosis [4,5] and prognosis [6,7], thus allowing for doctors and
practitioners to make faster and more accurate decisions [8]. Indeed, recent advances in Al have
made it possible for expert systems [9] and machine learning techniques [1,10] to outperform human
decision-making over some repetitive procedures and are definitely more accurate at spotting hidden
patterns in medical images or signals. Obviously, this does not mean that human intervention can be
completely removed, in particular in the medical diagnosis domain, but the latter can significantly
benefit from the informative feedback returned by Al-based diagnoses and prognosis systems. For
instance, convolutional neural networks can be fed with EGG signals or magnetic resonance imaging
(MRI) images to predict diagnoses of neurodegenerative diseases, for example Alzheimer’s [11,12], and
accurately classify brain lesions [13-15]. In this light, applied Al displays a valuable societal impact
and carries a promising potential for improving upon decision-making in medicine. However, the use
of computer-aided diagnosis is sometimes criticised and despite the medical community being aware
of the importance of modernising its methods, some researchers are hesitant due to the possibility
of false-positive or false-negative cases, and some others point out moral implications [16]. This
stimulates and motivates computer scientists, who continually search for new and more accurate
techniques. Room for improvement is easily identified for example, in the context of historical data
analysis. Large databases are nowadays available and can be used without the need for ethical
approval. Hence, exploiting this knowledge optimally for training Al techniques would help generate
more reliable automatic diagnosis and prognosis predictions.
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To achieve this goal, supervised machine-learning is currently preferred in medicine [10], as
data are labelled based on the kind of tissue, prognosis, patient age and several other useful
features, to perform prediction. Successful studies using supervised classification strategies, for
example., cardiovascular medicine [17] and genetics [18], are present in the literature. However, better
performances can be obtained by optimising the classification process. For this reason, this piece
of research proposes a novel classification method, referred to as “Optimisation-Driven Prediction”
(ODP), to be used for automated medical diagnosis and prognosis. This classifier is designed around a
newly designed variant of a metaheuristic for real-valued optimisation, referred to as Particle Swarm
Estimation of Distribution Algorithm (PSEDA), originally proposed in Reference [19].

The remainder of this article is structured as follows:

e  Section 2 gives a brief overview of the metaheuristics optimisation approaches employed in this
study and highlights differences between previous classification schemes based on optimisation
algorithms and the proposed method;

e  Section 3 clarifies objectives and methods for this piece of research;

Section 4 describes the proposed ODP method, including an explanation of the working principle
behind the novel PSEDA variant, the definition of the classification process in the fashion of
an optimisation problem and the formulation of five different objective functions, aka fitness
function, to strengthen the validity of the proposed approach;

e  Section 5 gives details of the experimental phase to make the presented results reproducible;
Section 6 presents and discuss the numerical results;

Section 7 concludes this work by summarising the key research outputs and drawing some
considerations for possible future developments.

2. Background and Related Work

Particle Swarm Optimization (PSO) [20] is the most popular Swarm Intelligence (SI)
metaheuristic [21-23] for solving numerical optimization problems. Similar to common
population-based Evolutionary Algorithms (EAs) [24], it employs a set of candidate solutions to
first explore the search space to then converge to the most promising basin of attraction. On the
other hand, the PSO lacks selection mechanisms, which are usually replaced with the 1-to-1 spawning
mechanisms in SI algorithms and features a unique perturbation strategy mimicking starling flocks’
behaviour. Hence, solutions move and interact, rather than being evolved as in EAs, according to
the dynamics outlined in Reference [25]. Several PSO variants have been designed to deal with a
wide range of problems [26], including large scale ones [27,28], as well as challenging engineering
applications [29], and hybrid versions were also designed thus generating effective PSO based
multi-strategy approaches [30] and Estimation of Distribution Algorithms (EDAs) [31,32]. The EDA
framework is quite interesting and has proven to be successful over different fields such as Robotics [33]
and combinatorial domains [21]. These algorithms have a probabilistic representation of the population,
thus are not required to store individuals since they are sampled on-demand from distribution of
probabilities. The latter is continually adapted to the problem at hand so that sampled candidate
solutions have a higher probability of falling in a neighbourhood of the optimal solution. Some
examples of EDAs, referred to as “compact” algorithms, can be found in Reference [32]. It is also
worth mentioning the so-called BOA-PSO algorithm, proposed in Reference [34], where a multivariate
distribution is used instead of a set of univariate distributions (i.e., one per design variable), the EDPSO
algorithm designed in Reference [35], which uses a mixture of univariate Gaussian distributions, as well
as the more recent variant in Reference [36], where an EDA is used to model the “historical memory”
of successful solutions in a PSO framework. Similarly, the Particle Swarm Estimation of Distribution
Algorithm (PSEDA) introduced in Reference [19] is based on adjusting a probability distribution to
simulate the behaviour of a classic PSO. PSEDA has proven to be efficient and to outperform classic
PSO algorithms over several optimisation problems. In this light, the PSEDA framework was further
improved in this piece of research and then used in the proposed ODP approach.



Mathematics 2019, 7, 1051 3 0f 20

It must be said that the literature already presents classification methods using metaheuristic
for numerical optimisation but these differ from ODP. As an example, a genetic algorithm is used in
Reference [37] for finding optimal coefficients of a wavelet kernel extreme learning classifier, while
a memetic algorithm is used in Reference [38] to optimise a model for gene selection in microarray
data. Moreover, past studies made use of a standard PSO in Reference [39] as well as the Artificial Bee
Colony paradigm (ABC) [40] for data classification and clustering, respectively. Conversely, in the
ODP method optimisation is used at the training level. The PSEDA variant described in Section 4.1,
and schematically shown in Algorithm 1, is embedded in ODP and used to automatically tailor a
classifier to the dataset.

3. Objectives and Methods

This research intends to design a novel prediction method for medical diagnosis and prognosis
capable of classifying multivariate healthcare datasets with high accuracy and, therefore, a low rate of
false negatives and positives.

In light of what was described in Section 2, the PSEDA algorithm was chosen for its outstanding
performances [19] and for its algorithmic features, which make it behaves similarly to SI algorithms,
as the PSO successfully used for the classification problem in Reference [39], and EDAs (which are a
kind of EAs), simultaneously. Technical details on the working mechanisms of PSEDA are given in
Section 4.1. To further improve upon the classification process, the PSEDA algorithm was not simply
employed but was improved by introducing a self-adaptive mechanism to adjust the exploratory
step-size on-the-fly. By using this novel variant, referred to as self-adaptive PSEDA (sa—PSEDA), the
proposed method always returns optimal, or near-optimal, predictions. Indications on how to use
sa—PSEDA for classification purposes are in Section 4.2.

In a nutshell, the proposed methodology consists of defining the classification process in the form
of an optimisation problem, which requires the formulation of an objective function, aka a fitness
function, within the metaheuristic optimisation community. To perform a thorough comparative
analysis and give more validity to our results, five different fitness functions are considered in this
study. Three of them are cherry-picked from the literature [39], while two more are originally proposed
for this specific piece of research. A rigorous analytical formulation of the employed fitness function is
given in Section 4.2.

Finally, the methodology for evaluating the performances of sa-PSEDA consists of using
11 different multivariate medical datasets from the “UCI machine learning repository” [41] and
generating predictions with each fitness function. To perform a fair comparison, classification results
are also produced with the previously mentioned PSO and ABC methods from References [39,40].
Their implementation is made available in an online repository reachable from https:/ /bit.ly /2VK9CS3.
Moreover, a comparison against popular classifiers, that is, a naive nearest centroid classifier, and 11
more state-of-the-art methods in their Weka [42] implementation, is also carried out. The statistical
tests in Reference [42] are used to validate the comparative analysis and draw rigorous conclusions.

4. The Optimisation-Driven Prediction Method

The ODP method is a supervised classification approach requiring training data to generate
a prediction function. To perform the training process optimally, a metaheuristic for continuous
optimisation is used. This means that the classification task must be formulated as an optimisation
problem. This process requires the definition of at least a fitness functions, a formal description of
the search space and an appropriate encoding strategy to represent class representatives as candidate
solutions. These details are clarified in the following sections.

4.1. The sa-PSEDA Algorithm

The original PSEDA in Reference [19] simulates the internal dynamics of a PSO algorithm with
a probabilistic model. Unlike other EDAs, this is achieved by associating each “particle” with its
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own probabilistic model. The latter are update and moved in the search space according to the PSO
logic, which requires attractors as the local (i.e., a neighboured of a particle must be considered) and
the global (i.e., in the entire swarm is considered) best solutions, to then sample a new particle in
a different location of the search space. Hence, these distributions are used instead of the so-called
“velocity” vector, which is the PSO perturbation vector added to the particles to move them towards
most promising regions. Advantages of having a stochastic perturbation are evident over multimodal
problems and reduce the rise of deleterious structural biases [25,43,44].

Without loss of generality, let us suppose to have a generic minimisation problem in the domain
0 = [, uk]d C R (k =1,2,3,...,d) where a real valued fitness function f : ® — R is defined.
The ith particle in the PSEDA’s swarm (i = 1,2, 3, ...,NP), at generic iteration ¢, is associated with the
following d-dimensional vectors:

e position x;; € O;
personal best position p; ; = arg min f(x;);
s<t
e global best g = arg min f(p;;);
1<i<n
e  position, personal best, and global best at the previous generation, that is, x;;_1, p;;—1, and

gi—1 respectively.

During an iteration cycle of PSEDA, the joint probability distribution P;; of each x;; vector is
updated to then produce x;;,1 ~ P;;. This is done on the assumption that the d components of each
position vector can be modelled with independent and identically distributed (iid) random variables.
Under this condition, P; ; can be factorised in d unidimensional probability density functions

d
Pt =1 Piex
k=1

which facilitates the implementation of the algorithm and leads to a modest algorithmic time overhead,
since each kth component can be efficiently sampled from x; ;1 x ~ P; ;. Eachiid variable is modelled
via a weighted finite mixture [45] of the following probability distributions:

e TN z()zf)k' thatis, a truncated (within [Iy, uy]) normal distribution with mean value x; ; , and standard

g (x).
deviation Titi

e TN l(f )k' thatis, a truncated (within [y, 1;]) normal distribution with mean value p; ; y and standard

. (p).
deviation itk

o TN 5‘3,;), that is, a truncated (within [, 1;]) normal distribution with mean value g; y and standard

(8)

deviation 0Ly
Uy, that is, a uniform distribution within [l u];

Pi1_1k thatis, a relaxed variant of the mixture P;;_;  composed by the three truncated normal
distributions TN 1(1()—1 v TN E’;)_l o TN Eg_ )1 ; of the previous iteration cycle t — 1.

It must be noted that the use of truncated distributions prevents the algorithm from generating
infeasible solutions and thus removes the need for correction strategies [44]. The distributions are
weighted with wy, wy,, wg, w, and wy, as described in Reference [19]. Then, the mechanism in
Reference [45] is employed to sample a candidate solution. This requires the roulette wheel tournament
scheme (see e.g., Reference [24]) as also described in Reference [19].

It is worth observing that the truncated normal distributions are centered on the particle, its
personal best particle and global best particle, in order to mimic the PSO working logic. Since points
surrounding the mean value of a normal distribution have a higher probability of being selected, by
narrowing the standard deviation PSEDA becomes almost identical to a PSO. On the other hand,
higher standard deviation values result in different algorithmic behaviours. In light of this, it is obvious



Mathematics 2019, 7, 1051 5 0f 20

that convergence speed also depends on the standard deviation values of the normal distributions.
To make sure that these values are self-adapted on the problem at hand during the optimisation
process, the proposed sa-PSEDA variant is equipped with the tuning mechanism, formalised with the
equations below:

min{ |x; ¢k — Pirkl, [Xiexk — ek} if itis greater than 0

itk & . 1)
€1k otherwise
min{|p; sk — Xitkl, [Pitk — Qekl}  if itis greater than 0
()
iy 0 ()
eif,k otherwise
min{|g¢x — Xitkl, |8k — Pirk|} if itis greater than 0
&) o 3)
el(‘(’;)k otherwise
where ei(f)k, el.(f)k, el(f)k are small random numbers uniformly distributed in [0,0.01]. The starting

value for each standard deviation is the smaller distance between the peak of the truncated normal
distribution and the peak of the remaining truncated normal distributions.

Algorithm 1 sa-PSEDA
1. procedure SA-PSEDA

2 t<0
3 Randomly initialize the n individuals
4: while t < M do > M is the number of allowed generations
5: for all individuals (i = 1, dots, NP) do
6 Evaluate fitness f(x; ;)
7 Save the previous personal best p; ;1
8 Update personal best p; ;
9 end for
10: Save the previous global best g;_4
11: Update global best g;
12: for all individuals i do
13: for all dimensions k do
14: Compute (Ti(ﬁ(, (71,(2{, (Tt(j“? according to Equations (1)—(3)
15: Save the previous position x;;_1
16: Sample x; 1 from P;; > with the method in [45]
17: end for
18: end for
19: t+—t+1

20: end while
21: end procedure

Finally, it is also worth noting that the distribution P was designed to reproduce the effect
of the velocity vector, while the uniform distribution U, was introduced in order to regulate the
exploration/exploitation balance of the evolutionary search [46].
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For the sake of clarity, the sa-PSEDA algorithmic framework is shown in the pseudo-code
in Algorithm 1.

4.2. The Classification Strategy

Classification is a classic application of machine learning [47] consisting of generating a prediction
from labelled observations. In this work, such observations are numerical values. This format is quite
common in health care data as the vast majority of medical tests return values that are then labelled by
finding the range of belonging.

Formally, this format can be expressed by defining instances with real-valued vectors of the kind
A C R™ and the class space for the classification problem as an ordered set B = {1,...,k} of integers
values. The classification process takes place via two main sequential phases—(1) the training of
a prediction function 1 : A — B over a training set T = {(a;,b;)|a; € A, b; € B}; (2) the use of the
fine-tuned prediction function over new datasets.

Typical methods for implementing the prediction function / are decision trees [48], aggregations
or associations rules [49,50], a Bayesian or neural network [51] or hybrid approaches such as, for
example, fuzzy neural systems [52]. However, in this work, we preferred the centroid algorithm from
Reference [53]. This was already used in SI classifiers in the past [39,40] and requires the computation
of the centroid for each class, which is not a computationally expensive procedure (i.e., it does not
introduce overheads in the ODP method) and it is suitable for real-value datasets.

A formal definition of the adopted prediction function is

Iy (a) = arg min d(x, a) )
1<i<k

where x(0) € A is the centroid of the class i € B, and d (+,-) is the Euclidean distance. Since A C R"
and |B| = k, the use of h_ 1) & comes with an acceptable computational complexity (i.e., O (k- m)).

The proposed sa-PSEDA can now be used to “train” k by finding its optimal parameters, that is,
the class representatives x(1), ..., x(K). This means that the prediction function is actually “evolved”
and tailored to the specific classification task, which is now stated as an optimisation problem. The
sa-PSEDA is then a key component of the classifier, operating in a search space ® C R¥"™ where
candidate solutions x € © are represented in the form x = <x(1), e, x(k)> with x() € R™ and
i € {1,...,k}) since each one of the k classes has m numerical features.

In order to evaluate the quality of a generic solution x on the training set T, five different fitness

functions have been taken into account:

‘ —-

P1(x) = T Z 5(x,a;, b;) (5)

| | (a;,b;)eT
ha(x) = % Y. d(ax 6)

| |( ibi)eT
P3(x) = 0.50 - 1 (x) +0.50 - P (x) (7)
Pa(x) = 0.25- 91 (x) +0.75 - () ®)
1/25(3() =0.75-1Y (x)+0.25- l/Jz(X) 9)

where d : R x R™ — [0,1] is the normalised Euclidean distance, introduced in Reference [39], while

1oifhya w(ai) # b
0 otherwise

5(xl ai, bl) = {
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By minimising the proposed fitness functions the same optimisation algorithm can be used to
perform five different training processes. To distinguish between them, the fitness function is added
to the algorithm’s name as follows: sa-PSEDA-, sa-PSEDA-,, sa—PSEDA-3, sa-PSEDA-4, and
sa—PSEDA-s.

It must be remarked that the first three fitness functions have been proposed in previous
studies [39,40], while the remaining two are originally designed to perform a wider comparative
analysis. The ¢; function represents the error rate on the training set and has a complexity of
O(|T| - k- m), while ¢, computes the average distance of training instances from the class representative
of the known classes. The latter comes with a lower complexity of O(|T| - m) but not necessarily with
an inferior quality of the results. 13, {4, 5 are convex combinations of the first two fitness functions
and only differ by the adopted weights (i.e., {3 is balanced with equal weights while 1, and 5 are
unbalanced toward ¢ and 1, respectively). The last three fitness functions have the same complexity
of i1 and are obtained by composing 1 and .

5. Experimental Setup

The ODP method was run over 11 well-known medical datasets for diagnosis and prognosis,
taken from the UCI machine learning repository [41], and evaluated with 10 repetitions of the stratified
10-folds cross-validation technique. During each repetition, the dataset is split into 10 batches, each
one following the same class distribution of the entire dataset. Then, instances from 9 batches are used
to train the supervised classifier while the 10th batch is used for testing the learned model. In total,
100 test rounds are performed for every dataset, thus the performances of every algorithm are averaged
over the 100 tests and the corresponding results are provided in Section 6.

A detailed description of the 11 employed datasets is given in Section 5.1. Moreover, it must be
stressed out that the presented results are obtained by using sa-PSEDA with the parameter setting
reported in Section 5.2, where comparison algorithms are also listed. These values for the parameters
are the outcomes of a fine-tuning empirical process carried out to train the classifier optimally.

5.1. The Datasets

The 11 classification datasets are described in Table 1, which schematically shows the number
of instances, class labels, attributes, the attributes’ structure (i.e., the number of real-valued, integer,
and logical attributes) and a warning to flag missing information. Indeed, it is quite common to find
datasets with missing information in medicine. However, this problem can be easily dealt with as data
are numerical and missing fields can be replaced with the average value of the present values [40].

Table 1. Test problems.

Dataset #Inst. #Classes #Attr. #Real #Int. #Log. Missing Inf.
Breast-Real 569 2 30 30 0 0 no
Breast-Integer 699 2 9 0 9 0 yes
Dermatology 366 6 34 0 33 1 yes
Diabetes 768 2 8 2 6 0 no
Haberman 306 2 3 0 3 0 no
Heart-2C 303 2 13 1 9 3 yes
Heart-5C 303 5 13 1 9 3 yes
Liver 341 2 6 1 5 0 no
Parkinsons 195 2 22 22 0 0 no
Thyroid 215 3 5 4 1 0 no
Vertebral 310 3 6 6 0 0 no

From Table 1 it can be easily noticed that the chosen problems are diverse and are adequate to test
the versatility of the proposed method. Moreover, each dataset has a multivariate nature and presents
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strong dependencies amongst the attributes. For the sake of completeness, a concise description of
each dataset is given below.

Breast-Real and Breast-Integer are based on the “Breast Cancer Wisconsin (Diagnostic)” and “Breast
Cancer Wisconsin (Original)” datasets from UCI. In this article, instances are classified in two diagnosis
class, that is, benign and malign breast cancer, respectively. Both the datasets come with an ID field that
was removed to perform our experiments. It must be noted that, while the first dataset is real-valued,
the second one has integer attributes in the range [1,10]. However, this is not an issue as the ODP
method can indifferently work on real-valued sets and its subsets.

Dermatology contains diagnoses of erythematous-squamous diseases and is the largest dataset
considered in this study with its 33 integer attributes, in the range [0, 3], and 1 logical attribute (i.e.,
Boolean) per instance. The six possible diagnoses are—Psoriasis, Seborrheic Dermatitis, Lichen Planus,
Pityriasis Rosea, Chronic dermatitis, and Pityriasis Rubra Pilaris.

Diabetes is based on the “Pima Indians Diabetes” dataset for diabetes diagnoses of female patients.
It has six integer attributes, each with a large cardinality, and two real-valued attributes.

Haberman is a database of long-term survivors who undergone breast surgeries and provides
information on the survival time, for example, whether or not the patient died within 5 years from the
surgery. It represents the smaller dataset considered in this study in terms of the number of attributes.
The latter are three integer values with a large cardinality.

Heart-2C and Heart-5C contain data from heart disease diagnoses from the “Cleveland Processed
Heart Disease” dataset in UCIL The difference between the two datasets is in the number of classes.
Heart-2C can be used as a binary classification problem (i.e., the patient is diseased or not), while
Heart-5C has four possible classes defined by specific vascular parameters. These two datasets have
one real-valued, logical and integer attributes.

Liver is a database of liver disorders, mainly due to excessive alcohol consumption, in male
patients. Attributes have both real-valued and integer formats and refer to blood test results. One
must be aware that this dataset contains duplicated instances that need to be removed before being
used. This issue is pointed out in the UCI website.

Parkinsons consists of a range of biomedical voice measurements from healthy individuals and
patients affected by Parkinson’s disease. This dataset was downloaded from the UCI repository and
the field containing the patient’s name was removed from each attribute as not relevant to this study.

Thyroid is based on the “new-thyroid” dataset from UCI and contains diagnoses of thyroid gland
diseases. It has three classes—normal, hyperthyroidism and hypothyroidism.

Vertebral, aka “Vertebral Column” dataset, contains values for six biomechanical features used to
classify orthopaedic patients into the three “normal,” “disk hernia” and “spondylolisthesis” classes.
Also in this case, the dataset is multivariate.

5.2. Parameter Settings and Comparison Algorithms

The suggested parameters configuration for the sa—PSEDA predecessor in Reference [19] indicates
a swarm size of 50 particles and variation operator’s parameters equal to w = 0.7298 and ¢ = ¢, =
1.49618 respectively. This leads to the calculation of the wy, w, and we weights, discussed in Section 4.1,
as shown below:

° wx:wm:(l—wu)05m,
— 4 .
. wp—(l—wu)'W/

while w,, was set to 0.05.

These values were tested with the sa-PSEDA variant and compared against several other
parameters combinations. We concluded that the same setting can be used for sa-PSEDA apart
from the value for the w, weight. The latter has to be lowered down to 0.01 to obtain optimal
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performances. This conclusion was obtained by running sa-PSEDA with a computational budget fixed
to 300,000 fitness evaluations over four common testbed problems:

e  Schwefel 1.2:

, 2
d i
flx,x0,...,x5) = Z (ij>
i1 \j=1
where —100 < x; <100, x* = 0,0,...,0 and f;,(x*) = 0;

e  Rosenbrock:
d—1

2
f(X1,X2, . ,xd) = Z [100 (xiH — X12> + (xi — 1)2:|
i=1
where —10 < x; <10, x* =1,1,...,1and fy;,(x*) = 0;
e  Rastrigin:
n
flx1,x0,...,xq) = An+ Y [xlz - 10cos(27‘cxi)}
i=1
where —5.12 < x; < 5.12, x* = 0,0,...,0 and f;;,(x*) =0;
o  Ackley:

d
x? % Y. cos(27x;)

0.2
' —e i=1 +20+e

flxr,x2,..,x4) = —20e i
where —32.768 < x; < 32.768, x* = 0,0,...,0 and fy;,(x*) = 0;

ESWEEY

L=

displaying different fitness landscapes. Further details and source code (implemented in Java) for
these functions can be found in [54]. This experiment was repeated 50 times per problem to observe
the average performances and its standard deviation. Each problem was considered at d = 30 and
d = 10 dimension values. Table 2 shows a comparison obtained by executing sa-PSEDA with w,, equal
to 0.05 (as proposed in the [19]) and 0.01. The best results, displayed in boldface, show that 0.01 is
preferable. This is also confirmed with the t-test outcome reported, with a compact yes/no notation, in
the last column of Table 2. In this column, a “yes” indicates that the variant with w, = 0.01 statistically
outperforms the other variant , while a “no” means that the two variants are statistically equivalent.

Table 2. Tuning results on numerical benchmarks

Benchmark  d Minimum Fitness (avg + std) Statistical
sa-PSEDA w, = 0.01 sa-PSEDA w, = 0.05 Difference
30 0+0 2.1127 +£1.6295 no
Schwefel 1.2 10 0+0 040 no
Rosenbrock 30 8.9764 + 13.2544 47.3852 + 34.5774 yes
10 0.0315 + 0.0475 0.2110 £ 0.3535 no
Rastrigin 30 0+0 0.0200 = 0.1393 yes
& 10 0+0 0+0 no
30 0+0 0+0 no
Ackley 10 0+0 0+0 no

It can be noted that sa-PSEDA seems to be very robust and resilient to variations of parameters as
results are very similar. Hover, since improvements are registered with w, = 0.01, this value was used
instead of the one proposed for PSEDA in Reference [19].

To show the quality of the proposed ODP method, when equipped with the fine-tuned sa-PSEDA
optimiser, a set of comparison algorithms was chosen from the literature, as explained in Section 3.

Thus, the classification approach using a PSO algorithm in Reference [39] was implemented and
run over the 11 datasets used in this study with the parameter settings proposed by its authors, namely
n =50, Tyax = 1000, Vpax = 0.05, vyiy = —0.05, c1 = 2.0, c2 = 2.0, Wyax = 0.9 and w,,;,, = 0.4.
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Moreover, the classification approach using the ABC algorithm in Reference [40] was also
implemented and run with the parameter settings proposed by its authors, namely a colony size
of 20, a maximum generations number of 2500 and a limit value of 1000. To perform a fair comparison,
the proposed number of iterations for the PSO was increased from 1000 to 2500 in order to obtain the
same number of fitness evaluations (i.e., 50,000) used for sa—PSEDA and PSO over the 11 classification
problems.

The source codes used for sa-PSEDA, PSO and ABC are made available in an online repository
reachable from https:/ /bit.ly /2VK9CS3.

Finally, 12 popular classification methods were selected. The first one is the Nearest-Centroid
(NC) classifier used, for example, in References [53,55]. This classifier was taken into consideration as
similar to the classification mechanism of the proposed ODP method, even though it does not come
with an effective training logic. Usually, this kind of method is employed when a very fast classification
process is required. The other 11 classification strategies are instead state-of-the-art schemes taken from
the Weka software suite (release 3.8) [42]. Weka contains a large number of Bayesian, functions-based,
lazy (or instance-based), meta-schemes, rules-based, tree-based and so on, classifiers. We have chosen
some methods from each available group to have a wider range of classification techniques. These are:

the Bayes Net in Reference [56];

the Multi Layer Perceptron Artificial Neural Network (MLP) in Reference [57];
the Radial Basis Function Artificial Neural Network (RBF) in Reference [58];
the Nearest Neighbor (NN) method in Reference [59];

the k-Nearest Neighbors (kNN) in Reference [59] with k = 5;

the lazy “k-Star” scheme in Reference [60];

the Bagging method in Reference [61];

the MultiBoostAB (MBAB) algorithm in Reference [62];

the Ripple Down Rule learner (Ridor) [63];

the popular Naive Bayes classifier (NBTree) [64];

the Voting Feature Intervals classifier (VFI) proposed in Reference [65].

Unless differently specified in the list above, all these methods were run with the parameter
settings indicated in the original articles.

Considering that five instances of sa-PSEDA, PSO and ABC have been executed—that is, one per
fitness function—a total of 27 classification schemes were run in this investigation. All the classifiers
based on optimisation algorithm are referred with the same notation of ODP, that is, sa—PSEDA-;,
PSO-¢; and ABC-y; where i = 1,2, 3,4,5 is the number of the fitness function listed in Section 4.2.

6. Experimental Results

Due to a large number of results being obtained with the 27 classifiers and the 10 repetitions
of the 10-folds cross-validation method, which means that 2700 classification tasks were run, results
are arranged in two groups. Section 6.1 contains the comparison amongst the three classifiers using
SI metaheuristics for optimisation plus the NC method. In Section 6.2 the best amongst the five
sa-PSEDA instances (individuated in Section 6.1) were compared against the 11 state-of-the-art
algorithms from Weka.

Numerical results are displayed in tables in terms of average accuracy (£standard deviation).
The best value is highlighted in boldface. The outcome of the test of significance returned by the
Weka platform [42] is also reported (i.e., a paired t-test with confidence level set to 0.05) to validate
results statistically. A compact notation is used. The equals sign = indicates the comparisons which
results are statistically equivalent, that is, the distribution of the results of the reference algorithm does
not significantly differ from the distribution of the comparison algorithm, while circles are used to
point out significant statistical differences. In particular, a black circle o refers to the case where the
reference algorithm outperforms the comparison algorithm. Conversely, a white one o indicates that
the reference algorithm is outperformed by the comparison algorithm.


https://bit.ly/2VK9CS3

Mathematics 2019, 7, 1051 11 of 20

6.1. Comparison against SI Classifiers

In total, 15 SI classifiers are evaluated. Table 3 compares their classification performances by
arranging the three main methods into five groups according to the employed fitness function, that is,
Y1 and psip 1P3 and P4 and 5. The reference algorithm of each ith group (i = 1,2, 3,4, 5) is sa-PSEDA-;.
It must be remarked that the NC classifier, which does not use the SI logic, is also added here as the
ODP method contains a similar classifier (trained with sa-PSEDA). Thus, it is appropriate to include it

in this comparison.

Table 3. Average accuracy =+ standard deviation and statistical analysis [42] for the 15 SI classifiers and

the NC classifier over the 11 classification problems.

Algorithm Avg Accuracy Statistical Analysis
sa-PSEDA-y, 81.45 + 13.61 -
PSO-y 80.35 + 13.39 2e = Qo
ABC-yn 80.53 + 13.30 3e 7= 1o
sa-PSEDA-y, 77.40 & 16.59 —
PSO-1, 76.59 + 15.96 le 10 0o
ABC-1 77.48 + 16.69 0Oe 10 lo
sa-PSEDA-y3 82.90 &+ 13.70 —
PSO-13 82.66 + 13.75 3e 7= 1o
ABC-y3 82.07 +13.85 5¢ 6= 0o
sa-PSEDA-y, 82.23 +14.16 —
PSO-14 81.90 £ 14.09 20 = lo
ABC-y4 81.87 + 14.06 3¢ 8= 0o
sa-PSEDA-y5 82.92 4 13.88 —
PSO-y5 82.51 + 14.02 2¢ 9= 0o
ABC-y5 81.91 +13.91 6e 5= 0o
NC 7815+16.13 10e 0= 1o

It can be noted that sa-PSEDA displays the overall best performance. However, it is interesting to
observe that when 1, is employed, the ABC based classier obtains the best performance and statistically
outperform sa-PSEDA in one case (it is equivalent to sa-PSEDA otherwise). Conversely, if the other
fitness functions are used, sa—-PSEDA always displays the best average result and it outperforms
the other methods also statistically. This means that the second fitness function is not suitable for
modelling the problems at hands, as it is the only one deteriorating the performances of the proposed
method. The best accuracy is obtained by employing s, as highlighted in the box plot in Figure 1 and
the statistical analysis in Table 4.

The comparison between the NC method and sa-PSEDA-¢5 shows that ODP always outperforms
its predecessor (i.e., NC). This motivates the proposed ODP method, which is basically an optimised
version of the NC classifier. In this light, this work shows that extremely complex classification
strategies are not necessary, as a simple one can be enhanced by optimising the training process (as
done in ODP). This is even more evident in Section 6.2, where state-of-the-art classifiers are compared
against the ODP method.

It also worth spending a few words on the key role played by the fitness function. Recently,
the research community has been producing novel bio-inspired metaheursitcs for optimisation in an
attempt to obtain better results. However, most of the novel algorithms share very similar structures,
as, for example, firefly algorithms [66] and differential evolution [44,67] are ruled by similar internal
dynamics [25] and are designed without taking into consideration the problem at hand. This process
does not always lead to optimal results, as it is known that universal optimisers do not exist, and the
best performance is always returned by algorithms tailored to the problem [68]. In this light, more
attention should be paid to the formulation of the problem by defining an informative fitness function.
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For these reasons, the five functions used in this paper were defined to provide a variety of fitness
landscapes and different results were expected depending on their use.

100

70

Accuracy

60

50

40

30

sa-PSEDA-1

Figure 1. Box plots for sa-PSEDA equipped with the five fitness functions under study.

sa-PSEDA-2

Algorithm

sa-PSEDA-3

sa-PSEDA-4

sa-PSEDA-5

Table 4. Average accuracy =+ standard deviation and statistical analysis [42] for sa-PSEDA-45 against

sa-PSEDA-1,sa-PSEDA-1,, sa-PSEDA-y3 and sa-PSEDA-1; over the 11 classification problems.

Algorithm  Avg Accuracy Statistical Analysis
sa-PSEDA-y; 81.45 + 13.61 7¢ 4= 0o
sa-PSEDA-y, 774041659 10e 1= 0o
sa-PSEDA-yp3 829041370 1le 10= 0o
sa-PSEDA-y, 82.23 +14.16 6e 4= 1o
sa-PSEDA-y5 82.92 4 13.88 -

To summarise, the classifiers returning the first, second and third best accuracy value over
each problem are listed in Table 5. This table gives a better overview and further confirms the
superiority of sa-PSEDA-¢5 and sa—PSEDA in general. Indeed, the second-best classification approach
is sa-PSEDA-¢3 and the only two datasets where sa-PSEDA is not listed amongst the first three most
effective classifiers are Dermatology and Heart-2C.

Table 5. Best Swarm Intelligence (SI) classification methods (plus nearest centroid (NC)).

Dataset Best Classifier ~2nd Best Classifier  3rd Best Classifier
Breast-Real PSO-15 sa-PSEDA-y5 sa—PSEDA-13
Breast-Integer sa-PSEDA-5 PSO-y5 PSO-y3
Dermatology ABC-1 sa—PSEDA-1, NC
Diabetes sa—PSEDA-1; sa-PSEDA-5 sa-PSEDA-13
Haberman ABC-y5 sa-PSEDA-ys5 PSO-y5
Heart-2C PSO-1py sa—PSEDA-13 PSO-y3
Heart-5C sa—PSEDA-13 PSO-y sa-PSEDA-y5
Liver PSO-y3 sa-PSEDA-15 PSO-y5
Parkinsons sa-PSEDA-y; sa-PSEDA-5 sa-PSEDA-13
Thyroid PSO-15 sa-PSEDA-y5 sa—PSEDA-13
Vertebral PSO-y5 sa-PSEDA-1s PSO-y5
All sa-PSEDA-5 sa-PSEDA-13 PSO-y3
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An explanation of the poor performance obtained over the Dermatology dataset in comparison
with that one obtained with the simple NC method can be related to an inadequate computational
budget of the sa-PSEDA algorithm. Indeed, this dataset has 204 (6 classes x 34 attributes) and might
require more fitness functional calls, while the NC method is not affected by this problem. This should
be investigated, as PSO and ABC perform better despite using the same computational budget, even
though sa—PSEDA-5 has the overall (i.e., average) fastest convergence speed, as shown in Figure 2.

Finally, it can be observed that using a combination of 1 and ¢, leads to better results only if
higher importance is given to ;. This is what is done in function 5. Conversely, unbalancing the
weights towards 7, as done in 4, is not beneficial as the obtained classification carry an accuracy
inferior to the one of ¢3 (which is balanced).

0.4 T T T

PSEDA-ys
PSO-yg --------
ABC-yg -------
NG ——
0.35 H g
0.3 g
[} A T
=
©
>
g oz g
£ . ]
B
[0}
@ SN ]
02 e i
045 L -
0.1 Il Il 1 Il
0 10000 20000 30000 40000 50000

No. Fitness Evaluations

Figure 2. Average fitness trends for the SI classifiers (equipped with ¢5) and the NC classifier.

6.2. Comparison against State-of-the-Art Classifiers

A thorough comparative analysis is performed in Table 6, where the most accurate SI classifier,
that is, sa-PSEDA-5, is used as a reference algorithm against the 11 state-of-the-art methods listed in
Section 5.2.

In terms of average accuracy, the proposed method is second only to the MLP scheme and
significantly outperforms 10 state-of-the-art more complex classification strategies.

It must be noticed that sa-PSEDA-5 is very competitive if compared against MLP over each
single dataset. Indeed, it outperforms MLP on six datasets, while it is significantly outperformed on
only three other datasets. This leads to an inferior average result, which does not necessarily mean that
one classier is better than the other. One must then conclude that MLP shows very high performances
on three specific application domains but is less flexible than sa—-PSEDA-5. Interestingly, Dermatology
is one of these three datasets. A loss of accuracy over this specific dataset was already pointed out in
Section 6.1.
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Table 6. Average accuracy =+ standard deviation and statistical analysis [42] for sa-PSEDA-15 against state-of-the-art algorithms from Reference [42] over the 11

classification problems.

Dataset sa-PSEDA-y5 BayesNet MLP RBF NN kNN kStar Bagging MBAB Ridor NBTree VFI
Breast-Real 97.08 9440 o 9661 e 9422 o 9564 e 96.88 9466 e 9487 e 9355 e 9391 9389 e 9137 e
cast-Rea (£222)  (£329)  (£245) (£3.15) (£232) (4225 (£2.76) (£2.99)  (43.88) (+£3.41) (+£3.16) (+3.00)
BreastInfescr 96.88 9720 o 9565 e 9609 e 9534 e 9694 9535 e 9550 e 9434 e 9532 9631 o 9562
& (£213)  (£170)  (£250)  (£222)  (+2.59)  (£1.99)  (£254)  (£259)  (+3.11)  (£252)  (£229) (£2.62)
Dermatolo 95.55 97.98 o 9734 o 9629 95.60 9691 o 9456 e 9642 o 5027 e 9520 96.33 9150 e
8Y  (4331)  (£238)  (£247)  (£2.83)  (£3.16)  (£256)  (£355)  (£294)  (£1.12)  (£372)  (£326) (£3.90)
Diabetes 76.55 7525 o 7475 e 7404 e 7062 e 7386 e 7019 e 7542 e 7338 e 7297 7524 e 6257 e
(£456)  (£4.78)  (£490)  (+491)  (+467)  (£461)  (£477)  (+462)  (£574)  (+478)  (£523) (+£5.35)
Haberman 75.60 7157 o 7387 e 7379 e 6603 e 7049 e 7027 e 7356 e 7279 e 7252 7194 e 5783 e
aberma (£6.95)  (£395)  (4627)  (£516)  (£6.66)  (£517)  (£580)  (+5.64)  (£575)  (£579)  (£453)  (+£11.31)
Heart.oC 82.81 82.63 7948 o 8230 7548 e 8057 e 7464 e 8188 82.05 77.23 7987 e 7873 e
ea (£7.57)  (£7.78)  (£7.80)  (£7.40)  (£8.03)  (£7.33)  (£7.62)  (£7.67)  (£7.64)  (£825)  (£7.02) (£8.07)
Heart.5C 56.67 56.85 53.02 e 5658 5294 e 5570 5033 e 5794 5189 e 5471 5369 e 4299 e
(£7.07)  (£6.66)  (£749)  (£742)  (+655)  (£654)  (£6.02)  (+491)  (+5.04)  (£620)  (£595) (£7.82)
Liver 68.88 5658 e  69.00 6561 o 6186 e 6156 e 6593 e 7021 6488 o 6611 6449 o 5922 e
(£7.09)  (£444)  (£8.07)  (£751)  (£720)  (£856)  (£7.65)  (£692)  (+724)  (+£654)  (£6.93) (£8.55)
Parkinsons 87.96 7943 e 9143 o 8153 e 9591 o 9273 o 89.67 88.84 8467 o 8632 88.18 7036 e
(£6.19)  (£833)  (4+6.86)  (£7.06)  (+452)  (+527)  (£868)  (+6.85)  (£7.03)  (+7.84)  (+7.47) (£9.28)
Thoroid 96.69 9510 o 9643 96.41 96.93 9385 e 9498 e 9325 o 8151 e 9242 9260 e 9071 e
yro (£3.64)  (£412)  (+411)  (£411)  (+416)  (+481)  (£389)  (+496)  (£539)  (£559)  (+5.57) (£6.25)
Vertebral 77.45 7468 o 8497 o 8300 o 7674 7477 e 7977 o 8335 o 7739 80.26 80.68 o 7587
ertebra (£6.68)  (£641)  (£577) (£6.22) (£647)  (48.00) (£6.91) (£6.37) (+£3.26 (£5.95) (+6.89) (£6.65)
Average 82.92 80.15 82.96 81.81 80.28 81.30 80.03 82.84 75.16 80.63 81.20 74.25
Sat. Analysis - 7e/2=/20 6e/2=/30 6e/4=/10 7e/3=/10 6e/3=/20 5/4=/20 5/4=/20 9e/2=/00 8e/2=/10 8e/2=/10 10e/1=/00
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Figure 3. Box plots for sa-PSEDA-5 and the 11 state-of-the-art classification schemes from Reference [42].
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It is worth noticing, with reference to Figure 3, that MLP displays longer whiskers than
sa—PSEDA-5, which also has fewer non-classified (outliers) points and a more contained box (i.e.,
upper and lower quartile range). This highlights some instability for the MLP method. This is
confirmed by the fact that, concerning the statistical analyses shown in Table 6, the proposed approach
displays the best performance.

To further understand the potential of the proposed method for medical diagnosis and prognosis,
the algorithms returning the best, second-best and third-best accuracy values are listed next to each
corresponding classification problem in Table 7.

Table 7. Best classification methods (sa-PSEDA-y5 plus 11 state-of-the-art algorithms).

Dataset Most Performant 2nd Most Perf. 3rd Most Perf.
Breast-Real sa-PSEDA-5 kNN MLP
Breast-Integer BayesNet kNN sa-PSEDA-y5
Dermatology BayesNet MLP kNN
Diabetes sa-PSEDA-5 Bagging BayesNet
Haberman sa-PSEDA-5 MLP RBF
Heart-2C sa-PSEDA-y5 BayesNet RBF
Heart-5C BayesNet sa-PSEDA-y5 RBF
Liver Bagging MLP sa-PSEDA-y5
Parkinsons NN kNN MLP
Thyroid NN sa-PSEDA-y5 MLP
Vertebral MLP Bagging RBF

All MLP sa-PSEDA-5 Bagging

Without considering the sa-PSEDA instances equipped with the other fitness functions,
sa-PSEDA-1p5 on its own appears in the table nine times and it is only missing in two datasets
out of eleven.

7. Conclusions and Future Work

From the algorithmic point of view, the proposed sa-PSEDA algorithm appeared to be robust
and more resilient to parameter variations than its predecessor PSEDA. This is interesting, as it
comes to prove that the algorithmic design phase plays a major role in the metaheuristic optimisation
field and that even a small variation in the algorithmic structure can lead to significantly better
algorithmic structures. Moreover, this observation also shows that self-adaptation is key to good
performances. This conclusion is coherent with the No Free Lunch Theorems in optimisation [68] and
further confirms them.

As for the classification results, the proposed ODP method turned out to be extremely competitive
against the chosen competitors, including the state-of-the-art classification algorithms from Weka,
which are outperformed in several occasions. This is particularly evident when sa-PSEDA is used with
the 5 fitness function, which has proven to be the most adequate for the medical domain. This fitness
function is not taken from the literature but is proposed in this article. Due to the obtained accuracy,
we recommend its use while designing similar classification approaches.

Since a deterioration of the accuracy is noted in datasets containing a large number of outliers,
future investigations will be carried out to deal with this issue. On top of designing a pre-processing
phase to filter out outliers, we will focus on the algorithmic design to obtain a novel optimisation
algorithm displaying a more robust structure. This should be doable by means of the EDA
paradigm, as distributions can be updated so as to move their mean value away from outlier points.
Alternatively, the use of multivariate Gaussian distribution could also help avoid this deterioration of
the accuracy. Another future line of research is to handle the different types of search spaces (numerical,
integer, binary) by means of the algebraic framework for evolutionary computations proposed in
References [46,69,70].
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