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Abstract: The proposed investigation concerns the impact of inclined magnetohydrodynamics
(MHD) in a Casson axisymmetric Marangoni forced convective flow of nanofluids. Axisymmetric
Marangoni convective flow has been driven by concentration and temperature gradients due to
an infinite disk. Brownian motion appears due to concentration of the nanosize metallic particles
in a typical base fluid. Thermophoretic attribute and heat source are considered. The analysis
of flow pattern is perceived in the presence of certain distinct fluid parameters. Using appropriate
transformations, the system of Partial Differential Equations (PDEs) is reduced into non-linear
Ordinary Differential Equations (ODEs). Numerical solution of this problem is achieved invoking
Runge–Kutta fourth-order algorithm. To observe the effect of inclined MHD in axisymmetric
Marangoni convective flow, some suitable boundary conditions are incorporated. To figure out
the impact of heat/mass phenomena on flow behavior, different physical and flow parameters are
addressed for velocity, concentration and temperature profiles with the aid of tables and graphs.
The results indicate that Casson fluid parameter and angle of inclination of MHD are reducing factors
for fluid movement; however, stronger Marangoni effect is sufficient to improve the velocity profile.

Keywords: Casson nanoliquid; Marangoni convection; inclined MHD; Joule heating; heat source

1. Introduction

The theory of magnetohydrodynamics (MHD) is highly appreciated for the industrial purposes.
It is based on magnetic properties of electrically conducting liquids. The characteristic of MHD field is
to generate currents in moving liquid and produce forces that act upon the liquid flow and reconstruct
the magnetic field itself. To modify flow features of heat and mass analysis, the applied magnetic
field impacts the deferred nanoparticles and reforms their absorption inside the liquid. This efficient
phenomenon was first utilized for astrophysical and geophysical related problems. Recently, heat
transportation and MHD flows have played significant roles in agricultural engineering, petroleum
industries and medical treatment such as MHD strategy used for reduction of blood during surgeries,
magnetic cell separation and treatment of certain arterial diseases. Basically, the MHD parameter is
not only working as a significant parameter to control the cooling/heating rate but also to achieve
desired quality of product for different flows. Further, MHD can be used in continuous casting of metal
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processing to suppress instabilities and control flow field. In this context, Hayat et al. [1,2] explored
the MHD flow through moving surfaces and concluded that enhancement in magnetic parameter
shows increase in nanoparticles concentration and temperature profiles. Hayat et al. [3,4] numerically
studied heat transfer impact on MHD axisymmetric third grade liquid flow. Shafiq et al. [5] presented
the study of bioconvective MHD tangent hyperbolic nanoliquid flow with Newtonian heating. Shateyi
and Makinde [6] prepared MHD stagnant point flow through a radially stretching convectively heated
disk. Hayat et al. [7] investigated the third grade axisymmetric MHD flow over a stretched cylinder
and showed that momentum layer thickness and velocity profile are increasing when the curvature
parameter increases. Moreover, Shafiq et al. [8] discussed magnetohydrodynamics axisymmetric third
grade liquid flow between two porous disks.

The novelty of Marangoni convection is generally the edge dissipative layer between two phase
fluid flows such as gas–liquid and liquid–liquid interfaces. It depends upon the variation of surface
tension driven by temperature, chemical concentration and applied magnetic field. These gradients
can occur only when fluid interfaces contain different fluid properties from each other. Due to
the viscosity of interacting liquids, external forces such as gravitational and shear forces come into
action. Most researchers have focused their interest on simulating these external forces by utilizing
governing equations due to its widespread application in the fields of space processing, industrial
manufacturing processes and microgravity science. The significance of Marangoni convective flows in
the transportation process of heat and mass into different systems have been thoroughly scrutinized
in [9–11]. Kumar et al. [12] discussed Marangoni convective Casson nanoliquid flow in the presence
of chemical reaction and uniform heat source/sink and observed that Marangoni parameter showed
dominant behavior in terms of velocity as well as temperature fields. Din et al. [13] examined the
effect of Marangoni convection on based nanoliquid with thermal radiation and demonstrated that
decreasing behavior of velocity profile depends on suction parameter, whereas the temperature
distribution and boundary layer thickness increased with an increase in nanofluid volume fraction.
Sheikholeslami and Ganji [14] studied the impact of magnetic field on nanoliquid flow by Marangoni
convection by Runge–Kutta technique and observed that an increment in heat transfer depended on
an increment in solid volume fraction of nanofluid. Hayat et al. [15] investigated the impact of radiation
and Joule heating on Marangoni mixed convective flow.

For the last few decades, survey of non-Newtonian fluid flows has been the center of attraction
for researchers, engineers and scientists. This is due to the application of non-Newtonian liquid
flows in the real world, e.g., in bio-engineering, drilling operations, plastic polymers, paint, optical
fibers, coated sheets, cosmetics, salt solutions, food item, etc. The existing problems in nature related
with larger diameter and higher shear rates can be solved easily; however, when these flows are
related to small diameter with low shear rates, the importance of non-Newtonian fluids (see [16,17])
are non-negligible. The deviation from classical Newton’s law of viscosity and flow behavior under
shear stress to the non-Newtonian fluids become complex. These flows are challenging task for
researchers due to their non-linear rheological behavior. Casson liquid model is one of simplest models
of non-Newtonian fluids. The idea of Casson fluid administrated by Casson (see [18]) is to build up
the blood flow problems. Due to its rheological properties, Casson liquid behaves as a soft solid when
yield stress is higher than shear stress, whereas, if shear stress approaches to infinity, then it starts
to deform (see [19]). This structure is widely used for different materials, such as jelly, chocolate,
honey, blood, tomato sauce and condensed fruit juices. Charm and Kurland [20] used Casson fluid
model and investigated the viscosity of human blood. Bhattacharyya and Hayat [21] analyzed the
Casson fluid on MHD boundary layer flow through shrinking sheet. Kumar et al. [22] investigated the
viscous dissipation phenomenon in Casson nanoliquid over a moving radiative surface. Moreover,
Casson fluid flow model [23–25] has been considered for different geometries and various effects
in the literature.

The introduction of nanoparticles in different systems is most favorable to intensify thermal
conductivity of classical liquid flows, convection heat transfer coefficient and to control loss in energy.
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The advantages of nanosize particles in fluid systems is to increase surface area, capacity of heat
transfer, intensify the flow interface after collision and interact fluid particles with each other. Thus,
this phenomenon is a backbone of the industrial processes and is also beneficial for solar energy
resources and bio-medical treatment (see [26–34]). The proficiency of the solar systems [35] can be
improved by incorporating the nanoparticles as working fluid into the systems. The iron based
nanoparticles may be utilized as drug and radiation transportation for the treatment of cancer patient
(see [36,37]). Using magnets the particles can be enter through blood stream to tumor. This type
of cancer treatment permits high local doses of drugs into the body without any significant side
effect. Further, micelles nanoparticles have been recently introduced to target the kidney cells
diseases. These particles can pass into the kidney and remain there. Similarly, magnetic based
nanoparticles are also used for cell separation, hyperthermia therapies and for the increment in
Magnetic Resonance Imaging (MRI) with contrast behavior. Hayat et al. [38] judged that nanofluid
enhanced the temperature and associated boundary layer width of Casson flow. Naseem et al. [39]
numerically investigated third grade nanoliquid flow using the Cattaneo–Christov model over a Riga
plate and observed that, with an increment in thermal and concentration relaxation parameters, a
reduction occurred in concentration and temperature distribution, respectively. Rasool et al. [40]
examined the MHD Darcy–Forchheimer nanoliquid flow under the nonlinear stretched surface.
Rashid et al. [41] investigated the entropy generation in Darcy–Forchheimer flow of nanofluid with
five nanomaterials due to stretching cylinder. Naseem et al. [42] considered the MHD biconvective flow
of a Powell–Eyring nanoliquid over a stretching plate. Rasool et al. [43–48] reported some interesting
results involving the role of nanoparticles in typical base fluids flowing over different surfaces.

In the studies mentioned above, one can see that an utmost attention is given to natural convection
and heat and mass transfer analysis but less importance has been given to the convection through
Marangoni phenomena especially in nanofluid flows. The thermo-capillary and soluto-capillary affects
are the main factors in Marangoni convection of fluids and nanofluids. Furthermore, flat surfaces
with linear stretching are assumed frequently but axisymmetric analyses are less reported. The main
contribution of this research is to examine the process of heat and mass transportation for axisymmetric
Marangoni convective flow with an inclined MHD by taking Casson nanofluid flowing towards an
infinite disk. Brownian motion and thermophoresis are deliberated on account of nanoparticles
structure. Finally, the problem is solved by an accurate numerical technique known as Runge–Kutta
fourth-order algorithm, whereas previous studies are given mostly by HAM.

2. Problem Formulation and Coordinate System

The geometry of the problem (see Figure 1) is based on the MHD effect for axisymmetric
Marangoni convective, incompressible, steady and laminar flow utilizing the electrically conducting
Casson nanoliquid model. Marangoni convective flow is caused due to concentration and temperature
gradients on surfaces generated by surface tension. A uniform magnetic field is applied in such a way
that it makes an angle α1 in non-vertical direction. The cylindrical coordinates system is considered
along and normal to the interface of flow problem. Concentration and temperature interfaces of the
flow structure are altered at the surface of the disk. The analysis of heat transfer is examined through
Joule heating and viscous dissipation. The formulated governing equations for the MHD effect on
Marangoni convective flow structure are given as (see, for example, [4–15]):

∂ũ
∂r̃

+
∂w̃
∂z̃

+
ũ
r̃
= 0, (1)

ũ
∂ũ
∂r̃

+ w̃
∂ũ
∂z̃

=
µ

ρ

(
1 +

1
β1

)
∂2ũ
∂z̃2 −

σB2
0

ρ
sin2 α1ũ, (2)
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ũ
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(
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(
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1
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)(
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)2
+

σB2
0

ρcω
sin2 α1ũ2, (3)

ũ
∂C̃
∂r̃

+ w̃
∂C̃
∂z̃

= DB
∂2C̃
∂z̃2 +

DT̃
T̃∞

∂2T̃
∂z̃2 . (4)

In Equations (1)–(4), ρ characterizes fluid density; µ signifies dynamic viscosity; β indicates
parameter of Casson fluid; σ symbolizes surface tension; C̃ and T̃ represent fluid concentration and
temperature, respectively; C̃∞ and T̃∞ characterize fluid ambient concentration and temperature
far away from the surface, respectively; τ shows shear stress; DB is the coefficient of Brownian
diffusion; k indicates coefficient of absorption; cω denotes specific heat; DT̃ characterizes coefficient
of thermophoretic diffusion; Q1 represents heat source sink coefficient; and α1 signifies angle
of inclination.

Figure 1. Physical diagram of the flow model.

The subjected boundary conditions are (see, for example, [10]):

µ
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z̃→∞ −→ C̃∞. (5)
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The suitable transformations incorporated in the proposed flow structure are (see, for
example, [6]):

η =

√
b
ν

z̃, ũ = br̃ g′(η), w̃ = −2
√

bνg(η), ζ =
C̃− C̃∞

C̃g − C̃∞
, φ =

T̃ − T̃∞

T̃g − T̃∞
. (6)

Moreover, assumptions indicate that surface tension is a linear function of concentration and
temperature, which may be represented as (see, for example, [10]):

σ = σ0 − γT̃(T̃ − T̃∞)− γC̃(C̃− C̃∞), (7)

where σ0, γT̃ and γC̃ represent the positive constants. After incorporating the above-mentioned
transformations into Equations (1)–(4), we obtain(

1 +
1
β1

)
g′′′ + 2gg′′ − (g′)2 −M2

1 sin2 α1 g′ = 0, (8)

g(0) = 0, (1 +
1
β1

)g′′(0) = −2 Ma(1 + Ra ζ(0)), g′(∞) = 0, (9)

φ′′ + 2 Pr g φ′ + Pr N1φ′ζ + Pr N2(φ
′)2 + Pr Ec

(
1 + 1

β1

)
(g′′)2 + Pr Ec M2

1 sin2 α1(g′)2 + Pr B1φ = 0, (10)

φ(0) = 1, φ(∞) = 0, N′1ζ(0) + N2 φ′(0) = 0, (11)

ζ ′′ + 2Le gζ ′ +
N2

N1
φ′′ = 0, (12)

ζ(0) = 1, ζ(∞)→ 0. (13)

In Equations (8)–(13), N1 =
τDB(C̃g−C̃∞)

ν indicates Brownian motion parameter, N2 =
τDT̃(T̃g−T̃∞)

νT̃∞

characterizes thermophoresis parameter, M1 =
σB2

0
8ρb shows magnetic number, Ma =

γT̃
µΩ

√
Ω
γ signifies

Marangoni number, Ra =
γT̃ B
γT̃ A shows Marangoni ratio parameter, B1 = Q

hρcω
represents heat source

sink, Pr = ρcωµ
k signifies Prandtl number, Ec = ŭ2

∞
cω(T̃w−T̃∞)

indicates Eckert number, and Le = ν
DB

denotes Lewis number. Additionally, Nu the local Nusselt number is given as

Nu =
−r̃
(

∂T̃
∂z̃

)∣∣∣
z̃ = 0

k(T̃∞ − T̃w)
, (14)

and in dimensionless form becomes

R−1/2
d Nu =

Nu√
Rd

= −φ′(0), (15)

where Rd = ũw r̃
ν is local Reynold’s parameter.

3. Computational Scheme

We now solve the governing Equations (8)–(13), numerically by employing Runge–Kutta
fourth-order technique. For different sundry parameters, we perform numerical computation.

4. Physical Interpretation and Analysis

The main objective of this segment is to communicate the physical importance of heat and mass
transportation phenomenon in axisymmetric Marangoni convective flow with the impact of inclined
MHD on Casson nanoliquid over an infinite disk. To clearly check the insight of proposed model, the
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impact of different parameters (Casson fluid parameter β1, magnetic number M1, angle of inclination
α1, Marangoni number Ma, Brownian motion parameter N1, thermophoresis parameter N2, Prandtl
number Pr, heat source sink B1 and Lewis number Le) are considered on velocity field g(η),
temperature profile φ(η), concentration distribution ζ(η) and local Nusselt number Nu.

4.1. Assessment of Velocity Distribution

The performance of Casson fluid parameter β1 on velocity field g′(η) is demonstrated in Figure 2.
In this figure, one can see that, for enhancement in β1, velocity profile increases near the wall but
decreases when η > 1.4 and vanishes far away from the surface. This is because an increment in Casson
fluid parameter produces a decrease in yield stress and the fluid adopts rheological behavior and
associated boundary layer width reduces. In Figure 3, it is analyzed that a rise in magnetic parameter
M1 drops the fluid velocity. This logic is dependent on the fact that an increment in magnetic field
M1, which causes an increase in the resistive nature of Lorentz force, and consequently decreases the
velocity field. Figure 4 demonstrates the influence of inclination angle α1 on g′(η). It is apparent from
the sketch that velocity profile g′(η) reduces when the angle of inclination α1 increases. This is because,
when angle of inclination increases, the impact of magnetic field rises on liquid and as a result Lorentz
force increases, which in turn decreases the velocity profile. In addition, for α1 = 0, there is no effect
of magnetic field on velocity profile, whereas, for α1 = π/2, maximum resistance is noted. In Figure 5,
graphical representation signifies that velocity field is mounting function of Marangoni number Ma.
This behavior is because of Marangoni number, as it is the ratio between tangential stress and viscosity.
Therefore, the fluid with higher surface tension acts more strongly on the surrounding liquid and
consequently it enhances velocity of the fluid.

Β1 = 1.3, 1.5, 2.0, 2.5

  M1 = 0.5,  Α1 = Π/3, Ra = 0.5,  B1 = 0.2, Ma = 0.3,  Q1 = 0.5, Pr = 1.0, Ec = 0.3,

 N1 = 0.5, N2 = 1.5, Le = 1.5,

1 2 3 4 5 6 7
Η

0.1

0.2

0.3

0.4

0.5

0.6

g'HΗL

Figure 2. Influence of β1 on velocity field.
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 Β1 = 1.3,  Α1 = Π/3, Ra = 0.5,  B1 = 0.2, Ma = 0.3,  Q1 = 0.5, Pr = 1.0, Ec = 0.3,

 N1 = 0.5, N2 = 1.5, Le = 1.5,

 M1= 0.0, 0.2, 0.4, 0.6

1 2 3 4 5 6 7
Η

0.1

0.2

0.3

0.4

0.5

g'HΗL

Figure 3. Influence of M1 on velocity field.

 Β1 = 1.3,  Ra = 0.5,  B1 = 0.2, M1 = Ma = 0.3,  Q1 = 0.5, Pr = 1.0, Ec = 0.5,

 N1 = 0.5, N2 = 1.5, Le = 1.5,

Α1 = 0.0, Π/4, Π/3, Π/2 

1 2 3 4 5 6 7
Η

0.1

0.2

0.3

0.4

g'HΗL

Figure 4. Influence of α1 on velocity field.
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 Β1 = 1.3,  Ra = 0.5,  B1 = 0.2, M1 = 0.3, Α1 = Π/3,  Q1 = 0.5, Pr = 1.0, Ec = 0.5,

 N1 = 0.5, N2 = 1.5, Le = 1.5,

Ma = 0.3, 0.4, 0.5, 0.6 

1 2 3 4 5 6 7
Η

0.1

0.2

0.3

0.4

g'HΗL

Figure 5. Influence of Ma on velocity field.

4.2. Assessment of Temperature Distribution

In this subsection, the temperature field φ(η) corresponds to various sundry parameter such
as thermophoresis parameter N2, Brownian motion parameter N1 and heat source parameter B1

are plotted in Figures 6–8. The behavior of N1 on φ(η) is sketched in Figure 6. The temperature field
φ(η) is increased with a rise in Brownian motion parameter N1. With the increment in Brownian
motion parameter, the fluid molecules becomes more energetic. As a result, the temperature field is
enhanced. Figure 7 shows the significance of Thermophoresis parameter N2 on φ(η). It is noted that
the temperature field is a mounting function of N2. Figure 8 shows the variation of heat source B1 via
temperature field φ(η). It is examined that temperature as well as the associated boundary layer is
increased by increment in heat source parameter B1. Physically, the rise in rate of heat source parameter
B1 leads to the thermal boundary layer thickness becoming greater, as does the temperature field.

 Β1 = 1.3,  Ra = 0.2,  B1 = 0.2, M1 = Ma = 0.3,  Q1 = 0.5, Pr = 1.0, Ec = 0.8,

  Α1 = Π/3, N2 = 0.5, Le = 1.0,

N1 = 0.01, 0.2, 0.4, 0.6 

1 2 3 4 5 6
Η

0.2

0.4

0.6

0.8

1.0

ΦHΗL

Figure 6. Influence of N1 on temperature field.
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 Β1 = 1.3,  Ra = 0.2,  B1 = 0.2, M1 = Ma = 0.3,  Q1 = 0.5, Pr = 1.0, Ec = 0.8,

  Α1 = Π/3, N1 = 0.5, Le = 1.0,

N2 = 0.0, 0.5, 1.0, 1.5 

2 4 6 8
Η

0.2

0.4

0.6

0.8

1.0

ΦHΗL

Figure 7. Influence of N2 on temperature field.

 Β1 = 1.3,  Ra = 0.2, M1 = Ma = 0.3,  Q1 = 0.5, Pr = 1.0, Ec = 0.8,

  Α1 = Π/3, N2 = 0.8, N1 = 0.5, Le = 1.0,

B1 = 0.0, 0.1, 0.2, 0.3 

2 4 6 8
Η

0.2

0.4

0.6

0.8

1.0

ΦHΗL

Figure 8. Influence of B1 on temperature field.

4.3. Assessment of Concentration Distribution

The significance of Brownian motion N1 on concentration profile ζ(η) is displayed in Figure 9. It is
observed from the sketch that larger values of N1 fluid concentration reduce far away from the surface
and vanish after η ≥ 5. On the other side, it increases near the surface. This is due to the existence
of slip mechanisms of fluid particles, which influence the hydrodynamic and thermal bounce. Hence,
the presence of this terminology does not have significant impact on flow concentration. Further,
both thermophoresis parameter N2 and Lewis number Le show increasing impact for concentration
profiles (see Figures 10 and 11). The improvement in fluid concentration profile via Lewis number Le
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is due to the fact that it is characterized by fluid flows where simultaneously mass and heat transport
are involved. Therefore, an improvement is found in fluid concentration.

 Β1 = 1.3,  Ra = 0.2,  B1 = 0.2, M1 = Ma = 0.3,  Q1 = 0.5, Pr = 1.0, Ec = 0.8,

  Α1 = Π/3, N2 = 0.5, Le = 1.0,

N1 = 0.2, 0.3, 0.4, 0.5 

1 2 3 4 5 6 7
Η

-6

-5

-4

-3

-2

-1

0

ΖHΗL

Figure 9. Influence of N1 on concentration field.

 Β1 = 1.3,  Ra = 0.2,  B1 = 0.2, M1 = Ma = 0.3,  Q1 = 0.5, Pr = 1.0, Ec = 0.8,

  Α1 = Π/3, N1 = 0.5, Le = 1.0,

N2 = 0.2, 0.3, 0.4, 0.5 

1 2 3 4 5 6 7
Η

-4

-3

-2

-1

0

ΖHΗL

Figure 10. Influence of N2 on concentration field.
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 Β1 = 1.3,  Ra = 0.2,  B1 = 0.2, M1 = Ma = 0.3,  Q1 = 0.5, Pr = 1.0, Ec = 0.8,

  Α1 = Π/3, N2 = N1 = 0.5, 

Le = 1.0, 1.2, 1.5, 1.9 

1 2 3 4 5 6 7
Η

-4

-3

-2

-1

0

ΖHΗL

Figure 11. Influence of Le on concentration field.

4.4. Assessment of local Nusselt Number

In Table 1, one can see that a good agreement is found between the present results and previous
literature. A very good agreement is found in RK-45 results; however, the results of HAM are
a little different but the variation trend is similar in all the cases. Table 2 presents the significance
of physical parameters through local Nusselt number Nu for axisymmetric Marangoni convective flow
of Casson liquid over an infinite disk with the impact of an inclined MHD. Near the wall or boundary,
Nusselt number has a dominant role, for the computation of thermal profile variations. The numerical
quantities of Nusselt number is supportive to convey the cumulative tendency of temperature gradient
in flow domain. It is observed in the table that rises in the Marangoni convective fluid parameter,
Ma, Marangoni ratio, Ra, and N2 monotonically decrease the Nusselt number Nu by keeping other
fluid parameters fixed. On the other hand, the parameters N1, Pr, B1 and Le manifest rises in heat flux
behavior Nu. The small increase on average Nusselt number indicates that greater heat exchange rate
occurs near boundary of the disk due to these parameters.

Table 1. Comparison table of current results with previously published literature setting the additional
parameters equals to zero.

r N1 = Nb N2 = Nt Pr Nux (Present) Nux ([12]) Nux ([15])

0.0 1.488649 1.488646 –
0.1 1.551383 1.551382 –
0.2 1.609960 1.609962 –

0.5 1.893601 1.893601 –
1.0 1.609966 1.609962 –
1.5 1.376585 1.376584 –

0.5 1.893141 1.893141 –
1.0 1.737723 1.737723 –
1.5 1.609960 1.609962 –

4.0 1.764112 1.764332 1.535191
5.0 1.767000 1.767004 1.696162
6.0 1.768490 1.768493 1.808222
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Table 2. Numeric values of local Nusselt parameter Nu for distinct values of sundry parameter where
β1 = 1.5, M1 = 1.0, Ec = 0.8 and α1 = π/5.

Ma Ra N1 N2 Pr B1 Le −R−1/2
d Nu

0.0 0.2 0.5 0.5 0.5 0.1 1.0 1.00000
0.3 0.99797
0.6 0.99772

0.3 0.1 0.5 0.5 0.5 0.1 1.0 0.99966
0.3 0.99690
0.5 0.99588

0.3 0.2 0.1 0.5 0.5 0.1 1.0 0.99657
0.5 0.99797
1.0 0.99966

0.0 0.2 0.5 0.1 0.5 0.1 1.0 0.99962
0.5 0.99797
1.0 0.99549

0.3 0.2 0.5 0.5 0.1 0.1 1.0 0.99755
0.7 0.99797
1.2 0.99857

0.3 0.2 0.5 0.5 0.5 0.1 1.0 0.99829
0.4 0.99979
0.8 1.00009

0.3 0.2 0.5 0.5 0.5 0.1 1.0 0.99829
1.4 0.99883
1.8 0.99923

5. Conclusions

In the present research work, we used RK45 scheme to simulate the two-dimensional Marangoni
convective flow along with MHD effect and related heat and mass transfer problem over an infinite
disk. The efficiency of proposed model was observed numerically and graphically, and found in
good agreement for heat transportation process. The influence of distinct parameters on proposed
flow problem are discussed in detail above. Further, the main findings of the present study are
highlighted below:

• Increase in Brownian motion parameter enhances the flow temperature field, however the same
goes for a declination of concentration field.

• Rise in thermophrases parameter improves the fluid temperature as well as concentration field.
• Larger values of Lewis number corresponds to the high concentration profile.
• Casson fluid parameter is found to be a reducing factor for fluid movement; therefore, admitting

the higher quantity of Casson fluid parameter causes a reduction in fluid velocity.
• Increment in magnetic parameter and angle of inclination are reducing factors for the motion

of fluid; however, the opposite performance in terms of heat transfer rate via Nusselt number is
noted for the two parameters.

• The higher amount of Marangoni number condenses the active connectivity, which leads
to improve the velocity profile.

• Temperature distribution rises up for the larger values of heat source sink.
• Increase in the Marangoni and Prandtl numbers show high increment on average Nusselt number,

which leads to the conclusion that less heat exchange happens near the disk, while small values
of fractional and physical parameters β1, M1, α1, Ra, N1, N2, Ec, B1 , and Le manifest the high heat
exchange rate near the boundary of the disk.
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