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Abstract: In this article we have developed a new explicit four-step linear method of fourth algebraic
order with vanished phase-lag and its first derivative. The efficiency of the method is tested by
solving effectively the one-dimensional time independent Schrödinger’s equation. The error and
stability analysis are studied. Also, the new method is compared with other methods in the literature.
It is found that this method is more efficient than these methods.

Keywords: phase-lag; initial value problem; symmetric multistep method; Schrödinger’s equation;
truncation error

1. Introduction

In this article the numerical solution of certain second-order initial-value problems with periodical
and/or oscillatory solutions as

η′′(x) = f (x, η), η(x0) = η0 and η′(x0) = η′0, (1)

is investigated. As it is seen in Equation (1), this model does not involve the first derivative explicitly.
In practice, there are several mathematical models in the form of Equation (1), characterizing certain
scientific problems in the fields of chemistry, quantum chemistry, physics, quantum mechanics, etc., [1].

In the literature, there are various algorithms addressing the numerical solution of boundary and
initial value problems of this type. These methods can be classified in two main categories. The first
category involves methods with constant coefficients, and the second one involves methods using
variable coefficients. Methods of the first type are developed in Gautschi [2], Jain and et al. [3],
and Steifel and Bettis in [4], while methods of the second kind are presented in Chawla and
et al. [5,6], Dahlquist [7], Franco [8], Lambert and Watson [9], Krishnaiah [10], Simos and et al. [11,12],
Saldanha and Achar [13], Achar [14], and Daele and Vanden Berghe [15].

A well known example of Equation (1), in science, is Schrödinger’s equation. Much research has
been conducted on numerical methods for solving such a model numerically, (see for example [16–21]
and the references therein).

The purpose of this article is to develop a new efficient method, with variable coefficients, for
solving the time independent Schrödinger’s equation. The methodology in developing this method is
based on the symmetric multistep methods introduced by Quinlan and Tremaine [22]. Its efficiency in
handling numerically initial value problems with oscillatory solutions comes from the requirements
imposed on its phase-lag and some of its derivatives, as well as its high algebraic order.

The article is organized as follows: Section 2 involves the basic concepts from the literature
required for developing the new method. In Section 3 we present the development methodology
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of this method. The analysis of the error and stability of the new method is considered in Section 4.
Finally, in Section 5 we present the numerical results.

2. Preliminaries

Numerical solution of the initial value problem Equation (1), can be derived by using multistep
methods with k steps as:

k

∑
i=0

αiyn+i = h2
k

∑
i=0

βi f (xn+i, yn+i), (2)

using a set of equally spaced points {xi}k
i=0 discretizing the interval [a, b] into k subintervals, with a

step size h, where h = |xi+1 − xi|, for i = 0, 1, ..., k − 1. When k is an even integer, αν = αk−ν and
βν = βk−ν for ν = 0, 1, ..., k

2 , then the method Equation (2) is said to be symmetric method.
The linear multistep method given in Equation (2) is associated with an operator as

L(x) =
k

∑
ν=0

ανu(x + ν h)− h2
k

∑
ν=0

βνu′′(x + ν h), (3)

where u is any two times continuously differentiable function.
Without loss of generality we may take αk = 1, hence Equation (2) can be written as

yn+k +
k−1

∑
i=0

αiyn+i = h2
k

∑
i=0

βi f (xn+i, yn+i). (4)

Definition 1. [23] The multistep method Equation (2) is said to have an algebraic order q when the associated
linear operator L vanishes for any algebraic polynomial in the linear span of {1, x, x2, ..., xq+1}.

Applying a symmetric 2m−step method to the scalar test equation

y′′ = −φ2 y, (5)

leads to the following difference equation:

Am(v) yn+m + ... +A1(v) yn+1 +A0(v) yn +A1(v) yn−1 + ... +Am(v) yn−m = 0, (6)

where Ai(v) = αi + βi v2, i = 0, ..., m, v = φ h, and h is the step size.
Equation (6) is associated with a characteristic equation given by:

Am(v) λm + ... +A1(v) λ +A0(v) +A1(v) λ−1 + ... +Am(v) λ−m = 0. (7)

The following definition was formulated by Lambert and Watson in [9]:

Definition 2. A symmetric 2m−step method, which has a characteristic Equation (7), is said to have an interval
of periodicity (0, v2

0) whenever the roots λj, j = 1, 2, ..., , 2m of Equation (7) satisfy:

λ1 = eIµ(v), λ2 = e−Iµ(v), and |λj| ≤ 1, for j = 3, ..., 2m, (8)

for all v ∈ (0, v2
0), where µ is a real valued function.

Definition 3. [24,25] The phase-lag, of any symmetric multistep method corresponding to the characteristic
Equation (7), is defined as the first non vanishing term in the power series expansion of

ξ = v− µ(v). (9)
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The phase-lag is said to have an order p whenever ξ is O(vp+1) as v→ ∞. The phase-lag of any
linear symmetric 2m−step method can be computed using the following theorem proved in [24]:

Theorem 1. Any linear symmetric 2m-step method with characteristic equation given by Equation (7) has a
phase-lag order q and a phase-lag constant c that satisfies

− cvq+2 + O(vq+4) =
∑m

j=1 2Aj(v) cos(j v) +A0(v)

∑m
j=1 2 j2Aj(v)

. (10)

3. Method Development

In this article we consider an explicit linear symmetric four-step method as:

yn+2 + yn−2 + α1 (yn+1 + yn−1) + α0 yn = h2 [β1 ( fn+1 + fn−1) + β0 fn] , (11)

where fn+i = y′′(xn+i, yn+i), i = 0, ±1.

The following proposition follows radially from Theorem 1 with m = 2.

Proposition 1. The linear symmetric four-step method Equation (11) has a phase-lag order q and a phase-lag
constant c given by:

− c vq+2 + O(vq+4) =
τ0(v)
τ1(v)

, (12)

where
τ0(v) = 2A2(v) cos(2 v) + 2A1(v) cos(v) +A0(v),

τ1(v) = 8A2(v) + 2A1(v),

and Ai(v) = αi + βi v2, i = 0, 1, 2.

The parameters are chosen so that the method is consistent. Thus, setting α1 = − 3
40 and α0 = − 37

20
in Equation (11) we get the following method:

yn+2 + yn−2 −
3

40
(yn+1 + yn−1)−

37
20

y0 = h2 [β1 ( fn+1 + fn−1) + β0 f0] . (13)

Hence, in view of Equation (12), the method Equation (13) has a phase-lag given by:

PL(v) =
Ψ1(v)
Ψ2(v)

, (14)

where

Ψ1(v) := 2 cos(2 v) + 2 cos(v)
(
− 3

40
+ β1 v2

)
+ β0 v2 − 37

20
,

and

Ψ2(v) := 8 + 2
(
− 3

40
+ β1 v2

)
.

The method in Equation (13) is subject to the following two conditions:

PL(v) = 0,
PL′(v) = 0.

}
(15)
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Solving the linear system Equation (15) for the coefficients β0 and β1 we obtain

β0 =
−1

20 v3

(
− 160 v cos2(v) + (−37 + 40 cos(2 v))(v− 2 cot(v)) + 6 cos(v) cot(v)

)
,

β1 =
1

40 v3

(
(3 v + 6 cot(v) + 74 csc(v)− 80 cos(2 v) csc(v)− 80 v csc(v) sin(2 v)

)
.

 (16)

As it is seen in Equation (16), the coefficients βi for i = 0, 1, depend on v = φ h. Moreover, these
coefficients have indeterminate forms as v approaches zero, as their numerators and denominators
vanish as v→ 0. Hence, the division of such expressions will cause huge round-off errors. To overcome
this situation, these coefficients are replaced by their Taylor series expansions, which are given by:

β0 = 61
48 + 643

2400 v2 − 2053
26880 v4 + 51113

7257600 v6 − 23021
63866880 v8 + 486061

41513472000 v10 − 1727441
5977939968000 v12

+ 3495979
1016249794560000 v14 − 21785879

108128978141184000 v16 + O(v17),

β1 = 637
480 −

643
4800 v2 + 421

89600 v4 − 1373
14515200 v6 + 161

456192000 v8 − 6101
83026944000 v10 − 2770787

418455797760000 v12

− 9609433
14227497123840000 v14 − 221928661

3243869344235520000 v16 + O(v17).


(17)

The behavior of the coefficients β0 and β1, given by Equation (16), is shown in Figures 1 and 2.
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Figure 1. Behavior of the coefficient β0.
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Figure 2. Behavior of the coefficient β1.
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4. Error and Stability Analysis

4.1. Comparative Error Analysis

The local truncation error, denoted by LTE, for the new developed method, named as NL4SM,
is derived through substituting the values of the coefficients given by Equation (17) in Equation (13),
then expanding both sides in Taylor series, to give:

LTENL4SM =
643 h6

9600

(
y(6) + 2 φ2 y(4) + φ4 y(2)

)
. (18)

To investigate the behavior of the LTE, given by Equation (18), we will use radial time independent
Schrödinger’s equation

y′′(x) = η(x) y(x), (19)

in which the function η can be expressed as (see [17])

η(x) = ζ(x) + G, (20)

with ζ(x) = V(x)−Vc, where V(x) is a potential function, Vc is a constant approximating the potential
at a certain point x, and G = Vc − E, where E represents the energy.

Next, we will compare the behavior of the LTE in Equation (18) when it is applied to the above
test equation with other known methods of the same type in the literature. Namely, we consider the
following methods:

• The classical method, that is the method corresponding to Equation (13) when the coefficients
are constants

LTECLM =
643 h6

9600
y(6)n + O(h8).

• The methods derived in [26]:

LTEL4SMSI =
161 h6

2400

(
y(6)n + 2 w2 y(4)n + w4 y(2)n

)
+ O(h8),

• and

LTEL4SMSII =
329 h6

4800

(
y(6)n + 2 w2 y(4)n + w4 y(2)n

)
+ O(h8).

• The newly developed method given by Equation (13)

LTENL4SM =
643 h6

9600

(
y(6)n + 2 φ2 y(4)n + φ4 y(2)n

)
+ O(h8).

To determine the asymptotic expressions of the LTEs corresponding to these methods, we have
computed the derivatives occurred in the expressions of these errors, using the equation y′′n = (ζ(x) +
G) y(x), where yn represents an approximation of y(x) at xn, and we obtain

y(2)n = (ζ(x) + G) y(x),

y(4)n = ζ ′′(x) y(x) + 2 ζ ′(x) y′(x) + (ζ(x) + G)2 y(x),

y(6)n = ζ(4)(x) y + 4 ζ(3)(x) y′(x) + 7 (ζ(x) + G) y(x) ζ ′′(x) + 4 (ζ ′(x))2 y(x)

+ 6 (ζ(x) + G) y′(x) ζ ′(x) + (ζ(x) + G)3 y(x).
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Thus, substituting these derivatives in the above error formulas, lead to the following asymptotic
expansions of the LTEs for the above mentioned methods:

• Classical method

LTECLM = h6
(

643
9600

y(x) G3 + ...
)
+ O(h8).

• The four-step method developed in [26]

LTEL4SMSI = h6
[(

161
2400

(ζ(x))2 y(x) +
161
1200

ζ
′
(x) y′(x) +

161
480

ζ
′′
(x) y(x)

)
G + ...

]
+ O(h8).

• The four-step method developed in [26]

LTEL4SMSII = h6
[(

329
4800

(ζ(x))2 y(x) +
329

2400
ζ
′
(x) y′(x) +

329
960

ζ
′′
(x) y(x)

)
G + ...

]
+ O(h8).

• The new method given by Equation (11)

LTENL4SM = h6
[(

643
9600

(ζ(x))2 y(x) +
643
4800

ζ
′
(x) y′(x) +

643
1920

ζ
′′
(x) y(x)

)
G + ...

]
+ O(h8).

As it is seen from the above equations the LTEs involve powers of G = Vc − E. Thus, we will
consider the following two cases:

Case 1. G ≈ 0, i.e., the energy, E, is close to the potential Vc. Therefore, in comparing the LTEs in
these methods only the terms free of G are considered. Hence, for these terms all the methods are of
comparable accuracy, as all their terms free of G are identical.
Case 2. G � 0 or G � 0, that is |G| is considerably large.

As it is seen from the above equations, the asymptotic error in the case of the classical method
increases as the third power of G, while in the last three methods, it increases as the first power of G,
but in the new constructed method it has the lowest coefficients. Thus, for the numerical integration of
the radial time independent Schrödinger’s equation, it seems that the newly developed method is the
most efficient, especially when |G| is large.

4.2. Stability Analysis

Substituting the values of the coefficients given by Equation (16) in the method Equation (13),
then applying this method to the test problem y′′ = −θ2 y, leads to a difference equation associated
with the following characteristic equation

λ4 +A1 λ3 +A0 λ2 +A1 λ + 1 = 0,

where A1 = − 3
40 + β1 s2, A0 = − 37

20 + β0 s2, and s = θ h. Let us mention that the frequency φ in the
developed method Equation (13) is not equal to θ, which indicates the frequency of the above test
problem. The stability region of the new method is presented in Figure 3. The shaded region represents
the region where the method is stable, from which it follows that the method has a periodicity interval
equal to (0, 32.1489).



Mathematics 2019, 7, 1124 7 of 12

Figure 3. Stability region for the newly developed method.

5. Numerical Results and Discussion

To test the efficiency of the new method it is applied to solve numerically the radial time
independent Schrödinger’s equation:

y′′(ξ) =
[

l(l + 1)
ξ2 + V(ξ)− γ2

]
y(ξ), (21)

subject to two conditions:
y(0) = 0, (22)

and one more boundary condition, imposed for large values of ξ, under certain physical considerations,
where γ2 is a real number denotes the energy, l is an integer represents the angular momentum, and V
is the potential function which satisfies V(ξ)→ 0 as ξ → ∞.

The coefficients in the new developed method are variables depending on the frequency of the
problem under consideration. Therefore, we need to specify the value of the frequency φ. We will
apply the new method to solve Equation (21) with l = 0, thus we take φ as:

φ =
√
|V(ξ)− E|, (23)

where E := γ2 is the energy, and we will use the Woods–Saxon potential:

V(ξ) =
50q

a(1 + q)2 −
50

1 + q
(24)

where q = e
ξ−7

a and a = 0.6. The behavior of V(ξ) is shown in Figure 4.
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Figure 4. The Woods–Saxon potential.

In Woods–Saxon potential, the parameter φ is not presented as a function of ξ, instead it is
estimated through approximating the potential, V(ξ), at certain critical points of this potential [17].
For our numerical tests we choose φ as follows (see [17])

φ =

{ √
50 + E, ξ ∈ [0, 6.5],√
E, ξ ∈ [6.5, 15]

(25)

For large values of ξ the potential V(ξ), in Equation (21), decays faster than l(l+1)
ξ2 , thus the radial

Schrödinger equation is reduced to

y′′ +
(

γ2 − l (l + 1)
ξ2

)
= 0, (26)

which has two linearly independent solutions, namely, γξ jl(γx) and γξNl(γξ), where jl(γξ) and
Nl(γξ) are the well know Bessel and Neumann spherical functions, respectively. Hence, as ξ → ∞,
Equation (21) has a solution in asymptotic form which is given by:

y ≈ A γ ξ jl(γ x)− B γ ξ Nl(γ ξ),

≈ A C
[

sin
(

γ ξ − l π

2

)
+ tan(δl) cos

(
γ ξ − l π

2

)]
,

where δl indicates the phase shift, and it can be computed using the equation

δl = arctan
(

y(ξi) S(ξi+1)− y(ξi+1) S(ξi)

y(ξi+1)C(ξi+1)− y(ξi)C(ξi)

)
, (27)

where ξi+1 and ξi are two different points in the asymptotic region, with S(ξ) = γ ξ jl(γ ξ) and
C(ξ) = γ ξ Nl(γ ξ).

Given the energy, E, we will use the developed method to solve the resonance problem, that is to
approximate the phase shift, δl , which has the exact value π

2 . In order to start the method Equation (13)
we need to determined the values of yj for j = 0, 1, ..., 3. From the condition Equation (22) we
have y0 = 0. The remaining values are computed using Runge–Kutta–Nyström methods [27,28].
Based on these values, we will compute the value of δl at xi+1 in the asymptotic region by using the
following methods:
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• The method of order eight produced in [22], which is denoted by QT(8).
• The method of order ten developed in [22], which is denoted by QT(10).
• The method of order eight developed in [22], which is denoted by QT(12).
• The four-step method produced in [26], which is denoted by SIMI.
• The four-step method developed in [29], which is denoted by SIM.
• The method presented in [30], which is denoted by SIMN.
• The method developed in [31], which is denoted by S2St.
• The method produced in [20], which is denoted by S3St.
• The method developed in [32], which is denoted by Y2D.
• The method produced in [21], which is denoted by Y3D.
• The four-step classical method described in Section 2, which is denoted by CLM.
• The new four-step method presented in Section 2, as given in Equation (13), which is denoted

by NewM.

The efficiency of the above methods is tested through computing the CPU time (in seconds)
required for achieving different accuracy digits of the computed value of the phase shift, δl , (which has
the exact value π

2 ), for the three well known energy values; E1 = 53.588872, E2 = 341.495874 and
E3 = 989.701916.

Figures 5–7 depict the absolute error MER = |log(ER)| corresponding to the three energies E1, E2

and E3 respectively, versus the values of the consumed CPU time (in seconds), where

ER = |π
2
− δl,comp|.
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Figure 5. Efficiency of the compared methods for E1 = 53.588872.



Mathematics 2019, 7, 1124 10 of 12

0 0.5 1 1.5

CPU time in seconds

0

1

2

3

4

5

6

7

8

9

10

A
cc

u
ra

cy
 d

ig
its

Resonance problem:  E2=341.495874

NewM

SIMI

CLM

SIM

SIMN

QT-8

QT-10

QT-12

S2St

S3St

Y2D

Y3D

Figure 6. Efficiency of the compared methods for E2 = 341.495874.
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Figure 7. Efficiency of the compared methods for E3 = 989.701916.

6. Conclusions

As it is seen from the results in Figures 5–7, the newly developed explicit four-step method
(NewM) is more efficient than the other methods in solving the resonance problem for the different
energy values; E1 = 53.588872, E2 = 341.495874, and E3 = 989.701916. It is found that among all
the compared methods the new method (NewM) provides the highest accuracy with a lower cost of
consumed CPU time.
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